1
|
Masri S, Fauzi MB, Rajab NF, Lee WH, Zainal Abidin DA, Siew EL. In vitro 3D skin culture and its sustainability in toxicology: a narrative review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:476-499. [PMID: 39359233 DOI: 10.1080/21691401.2024.2407617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
In current toxicological research, 2D cell cultures and animal models are well- accepted and commonly employed methods. However, these approaches have many drawbacks and are distant from the actual environment in human. To embrace this, great efforts have been made to provide alternative methods for non-animal skin models in toxicology studies with the need for more mechanistically informative methods. This review focuses on the current state of knowledge regarding the in vitro 3D skin model methods, with different functional states that correspond to the sustainability in the field of toxicology testing. We discuss existing toxicology testing methods using in vitro 3D skin models which provide a better understanding of the testing requirements that are needed. The challenges and future landscape in using the in vitro 3D skin models in toxicology testing are also discussed. We are confident that the in vitro 3D skin models application may become an important tool in toxicology in the context of risk assessment.
Collapse
Affiliation(s)
- Syafira Masri
- Department of Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
- Advance Bioactive Materials-Cells (Adv-BioMaC) UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nor Fadilah Rajab
- Centre for Health Aging and Wellness, Faculty of Helath Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wing-Hin Lee
- Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), Perak, Malaysia
| | | | - Ee Ling Siew
- ASASIpintar Unit, Pusat PERMATA@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Maharjan S, Ma C, Singh B, Kang H, Orive G, Yao J, Shrike Zhang Y. Advanced 3D imaging and organoid bioprinting for biomedical research and therapeutic applications. Adv Drug Deliv Rev 2024; 208:115237. [PMID: 38447931 PMCID: PMC11031334 DOI: 10.1016/j.addr.2024.115237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Organoid cultures offer a valuable platform for studying organ-level biology, allowing for a closer mimicry of human physiology compared to traditional two-dimensional cell culture systems or non-primate animal models. While many organoid cultures use cell aggregates or decellularized extracellular matrices as scaffolds, they often lack precise biochemical and biophysical microenvironments. In contrast, three-dimensional (3D) bioprinting allows precise placement of organoids or spheroids, providing enhanced spatial control and facilitating the direct fusion for the formation of large-scale functional tissues in vitro. In addition, 3D bioprinting enables fine tuning of biochemical and biophysical cues to support organoid development and maturation. With advances in the organoid technology and its potential applications across diverse research fields such as cell biology, developmental biology, disease pathology, precision medicine, drug toxicology, and tissue engineering, organoid imaging has become a crucial aspect of physiological and pathological studies. This review highlights the recent advancements in imaging technologies that have significantly contributed to organoid research. Additionally, we discuss various bioprinting techniques, emphasizing their applications in organoid bioprinting. Integrating 3D imaging tools into a bioprinting platform allows real-time visualization while facilitating quality control, optimization, and comprehensive bioprinting assessment. Similarly, combining imaging technologies with organoid bioprinting can provide valuable insights into tissue formation, maturation, functions, and therapeutic responses. This approach not only improves the reproducibility of physiologically relevant tissues but also enhances understanding of complex biological processes. Thus, careful selection of bioprinting modalities, coupled with appropriate imaging techniques, holds the potential to create a versatile platform capable of addressing existing challenges and harnessing opportunities in these rapidly evolving fields.
Collapse
Affiliation(s)
- Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Chenshuo Ma
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Bibhor Singh
- Winthrop L. Chenery Upper Elementary School, Belmont, MA 02478, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea; College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, 01007, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Zhu L, Liu K, Feng Q, Liao Y. Cardiac Organoids: A 3D Technology for Modeling Heart Development and Disease. Stem Cell Rev Rep 2022; 18:2593-2605. [PMID: 35525908 DOI: 10.1007/s12015-022-10385-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
Cardiac organoids (COs) are miniaturized and simplified organ structures that can be used in heart development biology, drug screening, disease modeling, and regenerative medicine. This cardiac organoid (CO) model is revolutionizing our perspective on answering major cardiac physiology and pathology issues. Recently, many research groups have reported various methods for modeling the heart in vitro. However, there are differences in methodologies and concepts. In this review, we discuss the recent advances in cardiac organoid technologies derived from human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs), with a focus on the summary of methods for organoid generation. In addition, we introduce CO applications in modeling heart development and cardiovascular diseases and discuss the prospects for and common challenges of CO that still need to be addressed. A detailed understanding of the development of CO will help us design better methods, explore and expand its application in the cardiovascular field.
Collapse
Affiliation(s)
- Liyuan Zhu
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Kui Liu
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qi Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingnan Liao
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
4
|
Seguret M, Vermersch E, Jouve C, Hulot JS. Cardiac Organoids to Model and Heal Heart Failure and Cardiomyopathies. Biomedicines 2021; 9:563. [PMID: 34069816 PMCID: PMC8157277 DOI: 10.3390/biomedicines9050563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiac tissue engineering aims at creating contractile structures that can optimally reproduce the features of human cardiac tissue. These constructs are becoming valuable tools to model some of the cardiac functions, to set preclinical platforms for drug testing, or to alternatively be used as therapies for cardiac repair approaches. Most of the recent developments in cardiac tissue engineering have been made possible by important advances regarding the efficient generation of cardiac cells from pluripotent stem cells and the use of novel biomaterials and microfabrication methods. Different combinations of cells, biomaterials, scaffolds, and geometries are however possible, which results in different types of structures with gradual complexities and abilities to mimic the native cardiac tissue. Here, we intend to cover key aspects of tissue engineering applied to cardiology and the consequent development of cardiac organoids. This review presents various facets of the construction of human cardiac 3D constructs, from the choice of the components to their patterning, the final geometry of generated tissues, and the subsequent readouts and applications to model and treat cardiac diseases.
Collapse
Affiliation(s)
- Magali Seguret
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
| | - Eva Vermersch
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
| | - Charlène Jouve
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
| | - Jean-Sébastien Hulot
- INSERM, PARCC, Université de Paris, F-75006 Paris, France; (M.S.); (E.V.); (C.J.)
- CIC1418 and DMU CARTE, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Européen Georges-Pompidou, F-75015 Paris, France
| |
Collapse
|