1
|
England H, Herdean A, Matthews J, Hughes DJ, Roper CD, Suggett DJ, Voolstra CR, Camp EF. A portable multi-taxa phenotyping device to retrieve physiological performance traits. Sci Rep 2024; 14:21826. [PMID: 39294209 PMCID: PMC11411053 DOI: 10.1038/s41598-024-71972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024] Open
Abstract
Organismal phenotyping to identify fitness traits is transforming our understanding of adaptive responses and ecological interactions of species within changing environments. Here we present a portable Multi-Taxa Phenotyping (MTP) system that can retrieve a suite of metabolic and photophysiological parameter across light, temperature, and/or chemical gradients, using real time bio-optical (oxygen and chlorophyll a fluorescence) measurements. The MTP system integrates three well-established technologies for the first time: an imaging Pulse Amplitude Modulated (PAM) chlorophyll a fluorometer, custom-designed well plates equipped with optical oxygen sensors, and a thermocycler. We demonstrate the ability of the MTP system to distinguish phenotypic performance characteristics of diverse aquatic taxa spanning corals, mangroves and algae based on metabolic parameters and Photosystem II dynamics, in a high-throughput capacity and accounting for interactions of different environmental gradients on performance. Extracted metrics from the MTP system can not only provide information on the performance of aquatic taxa exposed to differing environmental gradients, but also provide predicted phenotypic responses of key aquatic organisms to environmental change. Further work validating how rapid phenotyping tools such as the MTP system predict phenotypic responses to long term environmental changes in situ are urgently required to best inform how these tools can support management efforts.
Collapse
Affiliation(s)
- Hadley England
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW, 2007, Australia.
| | - Andrei Herdean
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW, 2007, Australia
| | - Jennifer Matthews
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW, 2007, Australia
| | - David J Hughes
- National Sea Simulator, Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Christine D Roper
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW, 2007, Australia
| | - David J Suggett
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW, 2007, Australia
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, 23955, Thuwal, Saudi Arabia
| | | | - Emma F Camp
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
2
|
Chen S, Liu H, Yan C, Li Y, Xiao J, Zhao X. Fecal microbiota transplantation provides insights into the consequences of transcriptome profiles and cell energy in response to circadian misalignment of chickens. Poult Sci 2024; 103:103926. [PMID: 38964253 PMCID: PMC11278332 DOI: 10.1016/j.psj.2024.103926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
The circadian misalignment (CM) disordered circadian rhythms exert adverse effects on animals. Poultry as one of animals suffers health and welfare problems due to long-term lighting photoperiods caused by CM. However, the roles of CM on organ development, cell growth, metabolism and immune are still unclear in chickens. In this study, a Chinese dual-purpose native breed, was used to explore the effects of CM on transcriptomic pattern of brain and cell energy biogenesis, and further fecal microbiota transplantation (FMT) was applied to investigate its "therapy" effect from CM suffering. Our results showed that the CM led to stunting in brain and small intestine of chicken. CM decreased of cell proliferation, and energy production, mtDNA copies and expression of genes related to cell cycle or mitochondrial biogenetics, while it upregulated the reactive oxygen species (ROS) level and the sensitivity to inflammation. Interestingly, FMT rescued the organ developmental defects and cell dysfunctions induced by CM. Circadian misalignment brought about abnormal tissue and cell developments, energy biogenesis, and immune response in birds. This study provided a comprehensive perspective on understanding the regulation of CM and FMT on bird development and welfare.
Collapse
Affiliation(s)
- Siyu Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528000, China; State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Hao Liu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Chao Yan
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yushan Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528000, China
| | - Jinlong Xiao
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Xingbo Zhao
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Zhou H, Wang J, Zhu Z, Hu L, An E, Lu J, Zhao H. A New Perspective on Stroke Research: Unraveling the Role of Brain Oxygen Dynamics in Stroke Pathophysiology. Aging Dis 2024:AD.2024.0548. [PMID: 39226161 DOI: 10.14336/ad.2024.0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
Stroke, a leading cause of death and disability, often results from ischemic events that cut off the brain blood flow, leading to neuron death. Despite treatment advancements, survivors frequently endure lasting impairments. A key focus is the ischemic penumbra, the area around the stroke that could potentially recover with prompt oxygenation; yet its monitoring is complex. Recent progress in bioluminescence-based oxygen sensing, particularly through the Green enhanced Nano-lantern (GeNL), offers unprecedented views of oxygen fluctuations in vivo. Utilized in awake mice, GeNL has uncovered hypoxic pockets within the cerebral cortex, revealing the brain's oxygen environment as a dynamic landscape influenced by physiological states and behaviors like locomotion and wakefulness. These findings illuminate the complexity of oxygen dynamics and suggest the potential impact of hypoxic pockets on ischemic injury and recovery, challenging existing paradigms and highlighting the importance of microenvironmental oxygen control in stroke resilience. This review examines the implications of these novel findings for stroke research, emphasizing the criticality of understanding pre-existing oxygen dynamics for addressing brain ischemia. The presence of hypoxic pockets in non-stroke conditions indicates a more intricate hypoxic scenario in ischemic brains, suggesting strategies to alleviate hypoxia could lead to more effective treatments and rehabilitation. By bridging gaps in our knowledge, especially concerning microenvironmental changes post-stroke, and leveraging new technologies like GeNL, we can pave the way for therapeutic innovations that significantly enhance outcomes for stroke survivors, promising a future where an understanding of cerebral oxygenation dynamics profoundly informs stroke therapy.
Collapse
Affiliation(s)
- Hongmei Zhou
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jialing Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Zhipeng Zhu
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Li Hu
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Erdan An
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jian Lu
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Heng Zhao
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Zilio E, Piano V, Wirth B. Mitochondrial Dysfunction in Spinal Muscular Atrophy. Int J Mol Sci 2022; 23:10878. [PMID: 36142791 PMCID: PMC9503857 DOI: 10.3390/ijms231810878] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder caused by recessive mutations in the SMN1 gene, globally affecting ~8-14 newborns per 100,000. The severity of the disease depends on the residual levels of functional survival of motor neuron protein, SMN. SMN is a ubiquitously expressed RNA binding protein involved in a plethora of cellular processes. In this review, we discuss the effects of SMN loss on mitochondrial functions in the neuronal and muscular systems that are the most affected in patients with spinal muscular atrophy. Our aim is to highlight how mitochondrial defects may contribute to disease progression and how restoring mitochondrial functionality may be a promising approach to develop new therapies. We also collected from previous studies a list of transcripts encoding mitochondrial proteins affected in various SMA models. Moreover, we speculate that in adulthood, when motor neurons require only very low SMN levels, the natural deterioration of mitochondria associated with aging may be a crucial triggering factor for adult spinal muscular atrophy, and this requires particular attention for therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Zilio
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Valentina Piano
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|