1
|
Liu HH, Lin TT, Zhang QJ, Zhang L, Fang JY, Hu L. Effect of Helicobacter pylori-related chronic gastritis on gastrointestinal microorganisms and brain neurotransmitters in mice. Front Pharmacol 2024; 15:1472437. [PMID: 39712493 PMCID: PMC11659015 DOI: 10.3389/fphar.2024.1472437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
The effects of Helicobacter pylori (Hp)-related chronic gastritis on gastrointestinal microorganisms or brain neurotransmitters are not fully understood. Here, this study selected SPF C57BL/6 mice to set up a Hp-related chronic gastritis experiment group and a blank control group, and used omics to explore the specific effects of Hp-related chronic gastritis on gastrointestinal microorganisms and brain neurotransmitters in mice. The Tyramine (TyrA) content in the female experiment group's brain was considerably reduced compared to the female control group (p < 0.01), and TyrA was strongly correlated with 13 gastrointestinal microorganisms with significant differences, such as Acinetobacter_baumannii (p < 0.05). The His content in the male experiment group's brain was significantly higher than that in the male control group (p < 0.05), and His was strongly correlated with four gastrointestinal microorganisms with significant differences, such as Acinetobacter_baumannii (p < 0.05). The Levodopa (DOPA) content in the female control group's brain was significantly lower than that in the male control group (p < 0.05), and DOPA was strongly correlated with 19 gastrointestinal microorganisms with significant differences, such as Achromobacter_xylosoxidans (p < 0.05). The contents of L-Glutamine (Gln), L-Glutamine (GABA), Noradrenaline hydrochloride (NE), and Adrenaline hydrochloride (E) in the female experiment group's brain were significantly lower than those in the male experiment group (p < 0.05), and Gln, GABA, NE, and E were strongly correlated with 41, 28, 40, and 33 gastrointestinal microorganisms with significant differences (p < 0.05), respectively. These results indicate that Hp-related chronic gastritis could affect gastrointestinal microorganisms and brain neurotransmitters in mice with certain gender differences, and the changes in brain neurotransmitters might be related to the changes in gastrointestinal microorganisms.
Collapse
Affiliation(s)
- Hai-Hua Liu
- First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Tang-Tang Lin
- First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Qi-Jia Zhang
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Zhang
- The Second Affiliated Hospital of Zunyi Medical University, Zunyi Medical University, Zunyi, China
| | - Jin-Ying Fang
- First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Ling Hu
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Jinling X, Guoan L, Chuxi C, Qiaoyuan L, Yinzhong C, Shihao C, Huaquan L, Yunxuan H, Yunshan N, Yan L. NOTCH1 is positively correlated with IL17F in Helicobacter pylori infection and a biomarker for mucosal injury. iScience 2024; 27:110323. [PMID: 39055908 PMCID: PMC11269956 DOI: 10.1016/j.isci.2024.110323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/26/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
Our study previously showed the involvement of Notch1 in Th1 differentiation in H. pylori-infected patients. However, the role of Notch1 in Th17 or Treg differentiation during H. pylori infection and the potential diagnostic value of its associated genes remain unclear. Here, we found that NOTCH1 was positively correlated with Th17-related genes RORγt (r = 0.616, p < 0.001) and IL17F (r = 0.523, p < 0.01), but not with Treg-related genes FOXP3 and IL10. The mRNA levels of aforementioned genes were upregulated at different stages of mucosal injury except for upper gastrointestinal ulcers. A combiROC analysis of NOTCH1 and IL17F discriminated H. pylori-infected gastritis from healthy controls with high accuracy (AUC of 0.952, sensitivity of 0.929, and specificity of 0.893). This study is the first to show that Notch1 is correlated with Th17-associated gene expression during H. pylori infection. Additionally, NOTCH1 and IL17F are potential diagnostic markers.
Collapse
Affiliation(s)
- Xie Jinling
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
- Xinhui District People’s Hospital, Affiliated with the Southern Medical University, Jiangmen 529100, China
| | - Liu Guoan
- Xinhui District People’s Hospital, Affiliated with the Southern Medical University, Jiangmen 529100, China
| | - Chen Chuxi
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Liu Qiaoyuan
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Chen Yinzhong
- Xinhui District People’s Hospital, Affiliated with the Southern Medical University, Jiangmen 529100, China
| | - Chen Shihao
- Xinhui District People’s Hospital, Affiliated with the Southern Medical University, Jiangmen 529100, China
| | - Long Huaquan
- Xinhui District People’s Hospital, Affiliated with the Southern Medical University, Jiangmen 529100, China
| | - He Yunxuan
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Ning Yunshan
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Li Yan
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Wei YF, Xie SA, Zhang ST. Current research on the interaction between Helicobacter pylori and macrophages. Mol Biol Rep 2024; 51:497. [PMID: 38598010 DOI: 10.1007/s11033-024-09395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/28/2024] [Indexed: 04/11/2024]
Abstract
Helicobacter pylori (H. pylori) is a gram-negative bacteria with a worldwide infection rate of 50%, known to induce gastritis, ulcers and gastric cancer. The interplay between H. pylori and immune cells within the gastric mucosa is pivotal in the pathogenesis of H. pylori-related disease. Following H. pylori infection, there is an observed increase in gastric mucosal macrophages, which are associated with the progression of gastritis. H. pylori elicits macrophage polarization, releases cytokines, reactive oxygen species (ROS) and nitric oxide (NO) to promote inflammatory response and eliminate H. pylori. Meanwhile, H. pylori has developed mechanisms to evade the host immune response in order to maintain the persistent infection, including interference with macrophage phagocytosis and antigen presentation, as well as induction of macrophage apoptosis. Consequently, the interaction between H. pylori and macrophages can significantly impact the progression, pathogenesis, and resolution of H. pylori infection. Moreover, macrophages are emerging as potential therapeutic targets for H. pylori-associated gastritis. Therefore, elucidating the involvement of macrophages in H. pylori infection may provide novel insights into the pathogenesis, progression, and management of H. pylori-related disease.
Collapse
Affiliation(s)
- Yan-Fei Wei
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Si-An Xie
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing, 100050, China.
| | - Shu-Tian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
4
|
Chaleshtori ZA, Rastegari AA, Nayeri H, Doosti A. Chitosan-LeoA-DNA Nanoparticles Promoted the Efficacy of Novel LeoA-DNA Vaccination on Mice Against Helicobacter pylori. Curr Microbiol 2024; 81:125. [PMID: 38558085 DOI: 10.1007/s00284-024-03642-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/18/2024] [Indexed: 04/04/2024]
Abstract
More than half of the world's population is infected with Helicobacter pylori (H. pylori), which may lead to chronic gastritis, peptic ulcers, and stomach cancer. LeoA, a conserved antigen of H. pylori, aids in preventing this infection by triggering specific CD3+ T-cell responses. In this study, recombinant plasmids containing the LeoA gene of H. pylori are created and conjugated with chitosan nanoparticle (CSNP) to immunize BALB/c mice against the H. pylori infection. We used the online Vaxign tool to analyze the genomes of five distinct strains of H. pylori, and we chose the outer membrane as a prospective vaccine candidate. Afterward, the proteins' immunogenicity was evaluated. The DNA vaccine was constructed and then encapsulated in CSNPs. The effectiveness of the vaccine's immunoprotective effects was evaluated in BALB/c mice. Purified activated splenic CD3+ T cells are used to test the anticancer effects in vitro. Nanovaccines had apparent spherical forms, were small (mean size, 150-250 nm), and positively charged (41.3 ± 3.11 mV). A consistently delayed release pattern and an entrapment efficiency (73.35 ± 3.48%) could be established. Compared to the non-encapsulated DNA vaccine, vaccinated BALB/c mice produced higher amounts of LeoA-specific IgG in plasma and TNF-α in splenocyte lysate. Moreover, BALB/c mice inoculated with nanovaccine demonstrated considerable immunity (87.5%) against the H. pylori challenge and reduced stomach injury and bacterial burdens in the stomach. The immunological state in individuals with GC with chronic infection with H. pylori is mimicked by the H. pylori DNA nanovaccines by inducing a shift from Th1 to Th2 in the response. In vitro human GC cell development is inhibited by activated CD3+ T lymphocytes. According to our findings, the H. pylori vaccine-activated CD3+ has potential immunotherapeutic benefits.
Collapse
Affiliation(s)
| | - Ali Asghar Rastegari
- Department of Molecular and Cell Biochemistry, Islamic Azad University, Falavarjan Branch, Isfahan, Iran.
| | - Hashem Nayeri
- Department of Biochemistry, Islamic Azad University, Falavarjan Branch, Isfahan, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran
| |
Collapse
|
5
|
Nguyen TKC, Do HDK, Nguyen TLP, Pham TT, Mach BN, Nguyen TC, Pham TL, Katsande PM, Hong HA, Duong HT, Phan AN, Cutting SM, Vu MT, Nguyen VD. Genomic and vaccine preclinical studies reveal a novel mouse-adapted Helicobacter pylori model for the hpEastAsia genotype in Southeast Asia. J Med Microbiol 2024; 73. [PMID: 38235783 DOI: 10.1099/jmm.0.001786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Introduction. Helicobacter pylori infection is a major global health concern, linked to the development of various gastrointestinal diseases, including gastric cancer. To study the pathogenesis of H. pylori and develop effective intervention strategies, appropriate animal pathogen models that closely mimic human infection are essential.Gap statement. This study focuses on the understudied hpEastAsia genotype in Southeast Asia, a region marked by a high H. pylori infection rate. No mouse-adapted model strains has been reported previously. Moreover, it recognizes the urgent requirement for vaccines in developing countries, where overuse of antimicrobials is fuelling the emergence of resistance.Aim. This study aims to establish a novel mouse-adapted H. pylori model specific to the hpEastAsia genotype prevalent in Southeast Asia, focusing on comparative genomic and histopathological analysis of pathogens coupled with vaccine preclinical studies.Methodology. We collected and sequenced the whole genome of clinical strains of H. pylori from infected patients in Vietnam and performed comparative genomic analyses of H. pylori strains in Southeast Asia. In parallel, we conducted preclinical studies to assess the pathogenicity of the mouse-adapted H. pylori strain and the protective effect of a new spore-vectored vaccine candidate on male Mlac:ICR mice and the host immune response in a female C57BL/6 mouse model.Results. Genome sequencing and comparison revealed unique and common genetic signatures, antimicrobial resistance genes and virulence factors in strains HP22 and HP34; and supported clarithromycin-resistant HP34 as a representation of the hpEastAsia genotype in Vietnam and Southeast Asia. HP34-infected mice exhibited gastric inflammation, epithelial erosion and dysplastic changes that closely resembled the pathology observed in human H. pylori infection. Furthermore, comprehensive immunological characterization demonstrated a robust host immune response, including both mucosal and systemic immune responses. Oral vaccination with candidate vaccine formulations elicited a significant reduction in bacterial colonization in the model.Conclusion. Our findings demonstrate the successful development of a novel mouse-adapted H. pylori model for the hpEastAsia genotype in Vietnam and Southeast Asia. Our research highlights the distinctive genotype and pathogenicity of clinical H. pylori strains in the region, laying the foundation for targeted interventions to address this global health burden.
Collapse
Affiliation(s)
- Thi Kim Cuc Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, 2 Nguyen Dinh Chieu Street, Khanh Hoa, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ho Chi Minh City, Vietnam
| | - Thi Lan Phuong Nguyen
- Institute of Vaccines and Biological Medicals (IVAC), 9 Pasteur Street, Nha Trang, Khanh Hoa, Vietnam
| | - Thu Thuy Pham
- Institute of Biotechnology and Environment, Nha Trang University, 2 Nguyen Dinh Chieu Street, Khanh Hoa, Vietnam
| | - Bao Ngoc Mach
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ho Chi Minh City, Vietnam
| | - Thi Chinh Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, 2 Nguyen Dinh Chieu Street, Khanh Hoa, Vietnam
| | - Thi Lan Pham
- Institute of Biotechnology and Environment, Nha Trang University, 2 Nguyen Dinh Chieu Street, Khanh Hoa, Vietnam
| | - Paidamoyo M Katsande
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Huynh Anh Hong
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Huu Thai Duong
- Institute of Vaccines and Biological Medicals (IVAC), 9 Pasteur Street, Nha Trang, Khanh Hoa, Vietnam
| | - Anh N Phan
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Simon M Cutting
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Minh Thiet Vu
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ho Chi Minh City, Vietnam
| | - Van Duy Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, 2 Nguyen Dinh Chieu Street, Khanh Hoa, Vietnam
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
6
|
Wang X, Hong F, Li H, Wang Y, Zhang M, Lin S, Liang H, Zhou H, Liu Y, Chen YG. Cross-species single-cell transcriptomic analysis of animal gastric antrum reveals intense porcine mucosal immunity. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:27. [PMID: 37525021 PMCID: PMC10390400 DOI: 10.1186/s13619-023-00171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023]
Abstract
As an important part of the stomach, gastric antrum secretes gastrin which can regulate acid secretion and gastric emptying. Although most cell types in the gastric antrum are identified, the comparison of cell composition and gene expression in the gastric antrum among different species are not explored. In this study, we collected antrum epithelial tissues from human, pig, rat and mouse for scRNA-seq and compared cell types and gene expression among species. In pig antral epithelium, we identified a novel cell cluster, which is marked by high expression of AQP5, F3, CLCA1 and RRAD. We also discovered that the porcine antral epithelium has stronger immune function than the other species. Further analysis revealed that this may be due to the insufficient function of porcine immune cells. Together, our results replenish the information of multiple species of gastric antral epithelium at the single cell level and provide resources for understanding the homeostasis maintenance and regeneration of gastric antrum epithelium.
Collapse
Affiliation(s)
- Xiaodan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fan Hong
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Haonan Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yalong Wang
- Guangzhou Laboratory, Guangzhou, 510005, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Mengxian Zhang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shibo Lin
- The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Hui Liang
- The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Hongwen Zhou
- The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Guangzhou Laboratory, Guangzhou, 510005, China.
- School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
7
|
Amalia R, Panenggak NSR, Doohan D, Rezkitha YAA, Waskito LA, Syam AF, Lubis M, Yamaoka Y, Miftahussurur M. A comprehensive evaluation of an animal model for Helicobacter pylori-associated stomach cancer: Fact and controversy. Helicobacter 2023; 28:e12943. [PMID: 36627714 DOI: 10.1111/hel.12943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 01/12/2023]
Abstract
Even though Helicobacter pylori infection was the most causative factor of gastric cancer, numerous in vivo studies failed to induce gastric cancer using H. pylori infection only. The utilization of established animal studies in cancer research is crucial as they aim to investigate the coincidental association between suspected oncogenes and pathogenesis as well as generate models for the development and testing of potential treatments. The methods to establish gastric cancer using infected animal models remain limited, diverse in methods, and showed different results. This study investigates the differences in animal models, which highlight different pathological results in gaster by literature research. Electronic databases searched were performed in PubMed, Science Direct, and Cochrane, without a period filter. A total of 135 articles were used in this study after a full-text assessment was conducted. The most frequent animal models used for gastric cancer were Mice, while Mongolian gerbils and Transgenic mice were the most susceptible model for gastric cancer associated with H. pylori infection. Additionally, transgenic mice showed that the susceptibility to gastric cancer progression was due to genetic and epigenetic factors. These studies showed that in Mongolian gerbil models, H. pylori could function as a single agent to trigger stomach cancer. However, most gastric cancer susceptibilities were not solely relying on H. pylori infection, and numerous factors are involved in cancer progression. Further study using Mongolian gerbils and Transgenic mice is crucial to conduct and establish the best models for gastric cancer associated H. pylori.
Collapse
Affiliation(s)
- Rizki Amalia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Nur Syahadati Retno Panenggak
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Dalla Doohan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Anatomy, Histology and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Yudith Annisa Ayu Rezkitha
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Internal Medicine, Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Langgeng Agung Waskito
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ari Fahrial Syam
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Masrul Lubis
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan.,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Texas, Houston, USA
| | - Muhammad Miftahussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
8
|
Wang L, Yu Y, Tao Y, Zhao M, Zhang L, Xue J, Zhao Y, Zhan P, Sun Y. The Quinone-Derived Small Molecule M5N32 Is an Effective Anti-Helicobacter pylori Agent Both In Vivo and In Vitro. J Infect Dis 2022; 226:S493-S502. [PMID: 36478249 DOI: 10.1093/infdis/jiac401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Helicobacter pylori has become increasingly resistant to all commonly used clinical antibiotics. Therefore, new anti-H. pylori drugs need to be identified. Recently, quinones were found to inhibit growth of H. pylori with quinone-derived small-molecule compounds identified as having antitumor effects. METHODS The minimum inhibitory concentrations of the compounds against H. pylori were measured by agar plate dilution method. The inhibition of biofilm formation by the compounds was assessed by SYTO9-PI double staining. The reactive oxygen species induced by the compounds were detected by DCFH-DA stain. The clearance effects of the compounds for H. pylori in mouse were evaluated by counting colony-forming units and hematoxylin and eosin staining. RESULTS Our results revealed strong inhibition of M5N32 in vitro against H. pylori in both the planktonic and biofilm-forming states. Resistance to M5N32 was not developed in successive generations of the bacteria. In vivo, the combination of M5N32 and omeprazole showed enhanced effects in comparison to the standard triple therapy. M5N32 was nontoxic to normal tissues. CONCLUSIONS M5N32 is effective in the treatment of H. pylori infections, providing potential development of anti-H. pylori medicines in the treatment of H. pylori infections.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yucen Tao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingzhong Zhao
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lu Zhang
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Junyuan Xue
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yican Zhao
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yundong Sun
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
9
|
Yoshimura R, Nomura S. Co-ingestion of glutamine and leucine synergistically promotes mTORC1 activation. Sci Rep 2022; 12:15870. [PMID: 36151270 PMCID: PMC9508252 DOI: 10.1038/s41598-022-20251-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Leucine (Leu) regulates protein synthesis and degradation via activation of mammalian target of rapamycin complex 1 (mTORC1). Glutamine (Gln) synergistically promotes mTORC1 activation with Leu via glutaminolysis and Leu absorption via an antiporter. However, Gln has also been shown to inhibit mTORC1 activity. To resolve this paradox, we aimed to elucidate the effects of Gln on Leu-mediated mTORC1 activation. We administered Leu, Gln, tryptophan, Leu + Gln, or Leu + tryptophan to mice after 24-h fasting. The mice were then administered puromycin to evaluate protein synthesis and the gastrocnemius muscle was harvested 30 min later. Phosphorylated eukaryotic initiation factor 4E-binding protein 1, 70-kDa ribosomal protein S6 kinase 1, and Unc-51 like kinase 1 levels were the highest in the Leu + Gln group and significantly increased compared with those in the control group; however, Gln alone did not increase the levels of phosphorylated proteins. No difference in glutamate dehydrogenase activity was observed between the groups. Leu concentrations in the gastrocnemius muscle were similar in the Leu-intake groups. Our study highlights a novel mechanism underlying the promotive effect of Gln on Leu-mediated mTORC1 activation, providing insights into the pathway through which amino acids regulate muscle protein metabolism.
Collapse
Affiliation(s)
- Ryoji Yoshimura
- Department of Health and Nutrition, Faculty of Health Management, Nagasaki International University, 2825-7 Huis Ten Bosch Machi, Sasebo City, Nagasaki, Japan.
| | - Shuichi Nomura
- Department of Health and Nutrition, Faculty of Health Management, Nagasaki International University, 2825-7 Huis Ten Bosch Machi, Sasebo City, Nagasaki, Japan
| |
Collapse
|
10
|
Ansari S, Yamaoka Y. Animal Models and Helicobacter pylori Infection. J Clin Med 2022; 11:jcm11113141. [PMID: 35683528 PMCID: PMC9181647 DOI: 10.3390/jcm11113141] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori colonize the gastric mucosa of at least half of the world’s population. Persistent infection is associated with the development of gastritis, peptic ulcer disease, and an increased risk of gastric cancer and gastric-mucosa-associated lymphoid tissue (MALT) lymphoma. In vivo studies using several animal models have provided crucial evidence for understanding the pathophysiology of H. pylori-associated complications. Numerous animal models, such as Mongolian gerbils, transgenic mouse models, guinea pigs, and other animals, including non-human primates, are being widely used due to their persistent association in causing gastric complications. However, finding suitable animal models for in vivo experimentation to understand the pathophysiology of gastric cancer and MALT lymphoma is a complicated task. In this review, we summarized the most appropriate and latest information in the scientific literature to understand the role and importance of H. pylori infection animal models.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
- Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
- Correspondence: ; Tel.: +81-97-586-5740
| |
Collapse
|
11
|
Liu H, Zheng W, Zhang L, Lin T, Tang Y, Hu L. Effect of Helicobacter pylori-Associated Chronic Gastritis on Autonomous Activity and Sleep Quality in Mice. Front Pharmacol 2022; 13:785105. [PMID: 35185560 PMCID: PMC8856107 DOI: 10.3389/fphar.2022.785105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022] Open
Abstract
Many reports have shown that patients with Hp-associated chronic gastritis exhibit anxiety and poor sleep quality. However, less is known about the effects and specific manifestations of Hp-associated chronic gastritis on autonomous activity and sleep quality in animals. Here, we investigated the effect of Helicobacter pylori (Hp)-associated chronic gastritis on autonomous activity and sleep quality in mice. To do this, a Hp-associated chronic gastritis mouse model was first established, then analyzed for autonomous activity, relative to controls, for 15 min using an autonomous activity tester. Next, sleep quality of mice was detected by sodium pentobarbital-induced sleep experiment and results compared between groups. The results showed that male mice in the model group exhibited higher activity counts but lower forelimb lift counts, relative to those in the control group, although there were no significant differences (all p > .05). Conversely, female mice in the model group recorded lower activity counts, albeit at no significant difference (p > .05), and significantly lower counts of forelimb lift (p < .05), relative to those in the control group. Notably, male mice in the model group had longer sleep latency and shorter sleep duration than those in the control group, albeit at no significant differences (all p > .05). On the other hand, female mice in the model group recorded significantly longer sleep latency as well as shorter sleep duration compared to those in the control group (all p < .01). We conclude that Hp-associated chronic gastritis exerts certain effects on autonomous activity and sleep quality of mice in a gender-dependent manner. Notably, female mice with Hp-associated chronic gastritis had lower activity and forelimb lift counts, as well as prolonged sleep latency, and shortened sleep duration. These effects were all statistically significant except for activity counts.
Collapse
Affiliation(s)
- Haihua Liu
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Wenlong Zheng
- Shangyou Hospital of Traditional Chinese Medicine, Ganzhou, China
| | - Ling Zhang
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tangtang Lin
- First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Yang Tang
- First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Ling Hu
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Ling Hu,
| |
Collapse
|