1
|
Yan XY, Kang YY, Zhang ZY, Huang P, Yang C, Naranmandura H. Therapeutic approaches targeting oncogenic proteins in myeloid leukemia: challenges and perspectives. Expert Opin Ther Targets 2024; 28:1131-1148. [PMID: 39679536 DOI: 10.1080/14728222.2024.2443577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Leukemia is typically categorized into myeloid leukemia and lymphoblastic leukemia based on the origins of leukemic cells. Myeloid leukemia is a group of clonal malignancies characterized by the presence of increased immature myeloid cells in both the bone marrow and peripheral blood. Of note, the aberrant expression of specific proteins or the generation of fusion proteins due to chromosomal abnormalities are well established drivers in various forms of myeloid leukemia. Therefore, these oncoproteins represent promising targets for drug development. AREAS COVERED In this review, we comprehensively discussed the pathogenesis of typical leukemia oncoproteins and the current landscape of small molecule drugs targeting these oncogenic proteins. Additionally, we elucidated novel strategies, including proteolysis-targeting chimeras (PROTACs), hyperthermia, and genomic editing, which specifically degrade oncogenic proteins in myeloid malignancies. EXPERT OPINION Although small molecule drugs have significantly improved the prognosis of oncoprotein-driven myeloid leukemia patients, drug resistance due to the mutations in oncoproteins is still a great challenge in the clinic. New approaches such as PROTACs, hyperthermia, and genomic editing are considered promising approaches for the treatment of oncoprotein-driven leukemia, especially for drug-resistant mutants.
Collapse
Affiliation(s)
- Xing Yi Yan
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Yuan Kang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ze Yan Zhang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Huang
- Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Chang Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Harris EL, Roy V, Montagne M, Rose AMS, Livesey H, Reijnders MRF, Hobson E, Sansbury FH, Willemsen MH, Pfundt R, Warren D, Long V, Carr IM, Brunner HG, Sheridan EG, Firth HV, Lavigne P, Poulter JA. A recurrent de novo MAX p.Arg60Gln variant causes a syndromic overgrowth disorder through differential expression of c-Myc target genes. Am J Hum Genet 2024; 111:119-132. [PMID: 38141607 PMCID: PMC10806738 DOI: 10.1016/j.ajhg.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023] Open
Abstract
Cyclin D2 (CCND2) stabilization underpins a range of macrocephaly-associated disorders through mutation of CCND2 or activating mutations in upstream genes encoding PI3K-AKT pathway components. Here, we describe three individuals with overlapping macrocephaly-associated phenotypes who carry the same recurrent de novo c.179G>A (p.Arg60Gln) variant in Myc-associated factor X (MAX). The mutation, located in the b-HLH-LZ domain, causes increased intracellular CCND2 through increased transcription but it does not cause stabilization of CCND2. We show that the purified b-HLH-LZ domain of MAXArg60Gln (Max∗Arg60Gln) binds its target E-box sequence with a lower apparent affinity. This leads to a more efficient heterodimerization with c-Myc resulting in an increase in transcriptional activity of c-Myc in individuals carrying this mutation. The recent development of Omomyc-CPP, a cell-penetrating b-HLH-LZ-domain c-Myc inhibitor, provides a possible therapeutic option for MAXArg60Gln individuals, and others carrying similar germline mutations resulting in dysregulated transcriptional c-Myc activity.
Collapse
Affiliation(s)
- Erica L Harris
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Vincent Roy
- Département de Biochimie et Génomique Fonctionnelle, PROTÉO et Institut de Pharmacologie de Sherbrooke. University of Sherbrooke, Sherbrooke, QC, Canada
| | - Martin Montagne
- Département de Biochimie et Génomique Fonctionnelle, PROTÉO et Institut de Pharmacologie de Sherbrooke. University of Sherbrooke, Sherbrooke, QC, Canada
| | - Ailsa M S Rose
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Helen Livesey
- Leeds Teaching Hospitals NHS Trust, Leeds, UK; All Wales Medical Genomics Service, NHS Wales Cardiff and Vale University Health Board, Cardiff, UK
| | - Margot R F Reijnders
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Emma Hobson
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Francis H Sansbury
- All Wales Medical Genomics Service, NHS Wales Cardiff and Vale University Health Board, Cardiff, UK
| | - Marjolein H Willemsen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Vernon Long
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Ian M Carr
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eamonn G Sheridan
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK; Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Helen V Firth
- Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Pierre Lavigne
- Département de Biochimie et Génomique Fonctionnelle, PROTÉO et Institut de Pharmacologie de Sherbrooke. University of Sherbrooke, Sherbrooke, QC, Canada.
| | - James A Poulter
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
| |
Collapse
|