1
|
Yang A, Poholek AC. Systems immunology approaches to study T cells in health and disease. NPJ Syst Biol Appl 2024; 10:117. [PMID: 39384819 PMCID: PMC11464710 DOI: 10.1038/s41540-024-00446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
T cells are dynamically regulated immune cells that are implicated in a variety of diseases ranging from infection, cancer and autoimmunity. Recent advancements in sequencing methods have provided valuable insights in the transcriptional and epigenetic regulation of T cells in various disease settings. In this review, we identify the key sequencing-based methods that have been applied to understand the transcriptomic and epigenomic regulation of T cells in diseases.
Collapse
Affiliation(s)
- Aaron Yang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Weerakoon H, Mohamed A, Wong Y, Chen J, Senadheera B, Haigh O, Watkins TS, Kazakoff S, Mukhopadhyay P, Mulvenna J, Miles JJ, Hill MM, Lepletier A. Integrative temporal multi-omics reveals uncoupling of transcriptome and proteome during human T cell activation. NPJ Syst Biol Appl 2024; 10:21. [PMID: 38418561 PMCID: PMC10901835 DOI: 10.1038/s41540-024-00346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024] Open
Abstract
Engagement of the T cell receptor (TCR) triggers molecular reprogramming leading to the acquisition of specialized effector functions by CD4 helper and CD8 cytotoxic T cells. While transcription factors, chemokines, and cytokines are known drivers in this process, the temporal proteomic and transcriptomic changes that regulate different stages of human primary T cell activation remain to be elucidated. Here, we report an integrative temporal proteomic and transcriptomic analysis of primary human CD4 and CD8 T cells following ex vivo stimulation with anti-CD3/CD28 beads, which revealed major transcriptome-proteome uncoupling. The early activation phase in both CD4 and CD8 T cells was associated with transient downregulation of the mRNA transcripts and protein of the central glucose transport GLUT1. In the proliferation phase, CD4 and CD8 T cells became transcriptionally more divergent while their proteome became more similar. In addition to the kinetics of proteome-transcriptome correlation, this study unveils selective transcriptional and translational metabolic reprogramming governing CD4 and CD8 T cell responses to TCR stimulation. This temporal transcriptome/proteome map of human T cell activation provides a reference map exploitable for future discovery of biomarkers and candidates targeting T cell responses.
Collapse
Affiliation(s)
- Harshi Weerakoon
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - Ahmed Mohamed
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Yide Wong
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Jinjin Chen
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | | | - Oscar Haigh
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Thomas S Watkins
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Stephen Kazakoff
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - Jason Mulvenna
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - John J Miles
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Ailin Lepletier
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
- Institute for Glycomics, Griffith Univeristy, Gold Coast, QLD, Australia.
| |
Collapse
|
3
|
Barboy O, Katzenelenbogen Y, Shalita R, Amit I. In Synergy: Optimizing CAR T Development and Personalizing Patient Care Using Single-Cell Technologies. Cancer Discov 2023; 13:1546-1555. [PMID: 37219074 DOI: 10.1158/2159-8290.cd-23-0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/02/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023]
Abstract
Chimeric antigen receptor (CAR) T therapies hold immense promise to revolutionize cancer treatment. Nevertheless, key challenges, primarily in solid tumor settings, continue to hinder the application of this technology. Understanding CAR T-cell mechanism of action, in vivo activity, and clinical implications is essential for harnessing its full therapeutic potential. Single-cell genomics and cell engineering tools are becoming increasingly effective for the comprehensive research of complex biological systems. The convergence of these two technologies can accelerate CAR T-cell development. Here, we examine the potential of applying single-cell multiomics for the development of next-generation CAR T-cell therapies. SIGNIFICANCE Although CAR T-cell therapies have demonstrated remarkable clinical results in treating cancer, their effectiveness in most patients and tumor types remains limited. Single-cell technologies, which are transforming our understanding of molecular biology, provide new opportunities to overcome the challenges of CAR T-cell therapies. Given the potential of CAR T-cell therapy to tip the balance in the fight against cancer, it is important to understand how single-cell multiomic approaches can be leveraged to develop the next generations of more effective and less toxic CAR T-cell products and to provide powerful decision-making tools for clinicians to optimize treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Oren Barboy
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Rotem Shalita
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|