1
|
Lin Y, Wang Y, Li H, Liu T, Zhang J, Guo X, Guo W, Wang Y, Liu X, Huang S, Liao H, Wang X. A platform for the rapid screening of equine immunoglobins F (ab)2 derived from single equine memory B cells able to cross-neutralize to influenza virus. Emerg Microbes Infect 2024; 13:2396864. [PMID: 39331815 PMCID: PMC11441081 DOI: 10.1080/22221751.2024.2396864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
Single B cells-based antibody platforms offer an effective approach for the discovery of useful antibodies for therapeutic or research purposes. Here we present a method for screening equine immunoglobins F(ab)2, which offers the potential advantage of reacting with multiple epitopes on the virus. Using equine influenza virus (EIV) as model, a hemagglutinin (HA) trimer was constructed to bait B cells in vaccinated horses. We screened 370 HA-specific B cells from 1 × 106 PBMCs and identified a diverse set of equine variable region gene sequences of heavy and light chains and then recombined with humanized Ig Fc. Recombinant equine Ig was then self-assembled in co-transfected 293 T cells, and subsequently optimized to obtain HA binding B-cell receptor (s). The recombinant antibodies exhibited a high binding affinity to the HA protein. Antibody H81 exhibited the highest cross neutralizing activities against EIV strains in vitro. Furthermore, it effectively protected EIV-challenged mice, resulting in significantly improved survival, reduced pulmonary inflammation and decreased viral titers. In silico predication identified a functional region of H81 comprising 27 key amino acids cross the main circulating EIV strains. The 12 amino acid residues in this region with the highest binding affinities were screened. Notably, the predicted epitopes of H81 encompassed the documented equine HA receptor binding site, validating its cross-neutralization. In summary, a rapid platform was successfully established to investigate the profiling of equine antigen-recognizing receptors (BCRs) following infection. This platform has the potential to optimize the screening of virus-neutralizing antibodies and aid in vaccine design.
Collapse
Affiliation(s)
- Yuezhi Lin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yayu Wang
- Zhuhai Trinomab Pharmaceutical Co., Ltd, Zhuhai, People’s Republic of China
| | - Hongxin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Tong Liu
- Zhuhai Trinomab Pharmaceutical Co., Ltd, Zhuhai, People’s Republic of China
| | - Jiaqi Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xing Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Wei Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- Institute of Western Agriculture, the Chinese Academy of Agricultural sciences, Changji, People’s Republic of China
| | - Yaoxin Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xiangning Liu
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
- Department of Stomatology, College of Stomatology, Jinan University, Guangzhou, People’s Republic of China
| | - Shaoli Huang
- The Hong Kong University of Science and Technology, School of Engineering, Hong Kong, People’s Republic of China
| | - Huaxin Liao
- Zhuhai Trinomab Pharmaceutical Co., Ltd, Zhuhai, People’s Republic of China
| | - XiaoJun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- Institute of Western Agriculture, the Chinese Academy of Agricultural sciences, Changji, People’s Republic of China
| |
Collapse
|
2
|
Raposo-Gutiérrez I, Rodríguez-Ronchel A, Ramiro AR. Atherosclerosis antigens as targets for immunotherapy. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1129-1147. [PMID: 39196152 DOI: 10.1038/s44161-023-00376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/18/2023] [Indexed: 08/29/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arteries that can lead to thrombosis, infarction and stroke, underlying the first cause of mortality worldwide. Adaptive immunity plays critical roles in atherosclerosis, and numerous studies have ascribed both atheroprotective and atherogenic functions to specific subsets of T and B cells. However, less is known on how antigen specificity determines the protective or adverse outcome of such adaptive responses. Understanding antigen triggers in atherosclerosis is crucial to delve deeper into mechanisms of disease initiation and progression and to implement specific immunotherapeutic approaches, including vaccination strategies. Here we review the role of adaptive immunity in atherosclerosis and the insights that single-cell technology has provided into the function of distinct immune cell subsets. We outline the most relevant atherosclerosis antigens and antibodies reported to date and examine their immunotherapeutic potential. Finally, we review the most promising vaccination-based clinical trials targeting the adaptive immune system.
Collapse
Affiliation(s)
- Irene Raposo-Gutiérrez
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain
| | - Ana Rodríguez-Ronchel
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain
| | - Almudena R Ramiro
- B Lymphocyte Lab, Novel Mechanisms of Atherosclerosis Program, Spanish National Center for Cardiovascular Research, Madrid, Spain.
| |
Collapse
|
3
|
Vallejo J, Saigusa R, Gulati R, Armstrong Suthahar SS, Suryawanshi V, Alimadadi A, Durant CP, Ghosheh Y, Roy P, Ehinger E, Pattarabanjird T, Hanna DB, Landay AL, Tracy RP, Lazar JM, Mack WJ, Weber KM, Adimora AA, Hodis HN, Tien PC, Ofotokun I, Heath SL, Shemesh A, McNamara CA, Lanier LL, Hedrick CC, Kaplan RC, Ley K. Combined protein and transcript single-cell RNA sequencing in human peripheral blood mononuclear cells. BMC Biol 2022; 20:193. [PMID: 36045343 PMCID: PMC9434837 DOI: 10.1186/s12915-022-01382-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Cryopreserved peripheral blood mononuclear cells (PBMCs) are frequently collected and provide disease- and treatment-relevant data in clinical studies. Here, we developed combined protein (40 antibodies) and transcript single-cell (sc)RNA sequencing (scRNA-seq) in PBMCs. RESULTS Among 31 participants in the Women's Interagency HIV Study (WIHS), we sequenced 41,611 cells. Using Boolean gating followed by Seurat UMAPs (tool for visualizing high-dimensional data) and Louvain clustering, we identified 50 subsets among CD4+ T, CD8+ T, B, NK cells, and monocytes. This resolution was superior to flow cytometry, mass cytometry, or scRNA-seq without antibodies. Combined protein and transcript scRNA-seq allowed for the assessment of disease-related changes in transcriptomes and cell type proportions. As a proof-of-concept, we showed such differences between healthy and matched individuals living with HIV with and without cardiovascular disease. CONCLUSIONS In conclusion, combined protein and transcript scRNA sequencing is a suitable and powerful method for clinical investigations using PBMCs.
Collapse
Affiliation(s)
- Jenifer Vallejo
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Ryosuke Saigusa
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Rishab Gulati
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | | | | | - Ahmad Alimadadi
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | | | - Yanal Ghosheh
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Payel Roy
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Erik Ehinger
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Tanyaporn Pattarabanjird
- Carter Immunology Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Russell P Tracy
- Departments of Pathology & Laboratory Medicine and Biochemistry, University of Vermont Larner College of Medicine, Colchester, VT, USA
| | - Jason M Lazar
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Wendy J Mack
- Department of Medicine and Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, CA, USA
| | - Kathleen M Weber
- Cook County Health/Hektoen Institute of Medicine, Chicago, IL, USA
| | - Adaora A Adimora
- Department of Medicine, University of North Carolina School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Howard N Hodis
- Department of Medicine and Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, CA, USA
| | - Phyllis C Tien
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Igho Ofotokun
- Department of Medicine, Infectious Disease Division and Grady Health Care System, Emory University School of Medicine, Atlanta, GA, USA
| | - Sonya L Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Avishai Shemesh
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Coleen A McNamara
- Carter Immunology Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Lewis L Lanier
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Catherine C Hedrick
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Fred Hutchinson Cancer Research Center, Public Health Sciences Division, Seattle, WA, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA.
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
4
|
Sex Differences in Coronary Artery Disease and Diabetes Revealed by scRNA-Seq and CITE-Seq of Human CD4+ T Cells. Int J Mol Sci 2022; 23:ijms23179875. [PMID: 36077273 PMCID: PMC9456056 DOI: 10.3390/ijms23179875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
Despite the decades-old knowledge that males and people with diabetes mellitus (DM) are at increased risk for coronary artery disease (CAD), the reasons for this association are only partially understood. Among the immune cells involved, recent evidence supports a critical role of T cells as drivers and modifiers of CAD. CD4+ T cells are commonly found in atherosclerotic plaques. We aimed to understand the relationship of CAD with sex and DM by single-cell RNA (scRNA-Seq) and antibody sequencing (CITE-Seq) of CD4+ T cells. Peripheral blood mononuclear cells (PBMCs) of 61 men and women who underwent cardiac catheterization were interrogated by scRNA-Seq combined with 49 surface markers (CITE-Seq). CAD severity was quantified using Gensini scores, with scores above 30 considered CAD+ and below 6 considered CAD-. Four pairs of groups were matched for clinical and demographic parameters. To test how sex and DM changed cell proportions and gene expression, we compared matched groups of men and women, as well as diabetic and non-diabetic subjects. We analyzed 41,782 single CD4+ T cell transcriptomes for sex differences in 16 women and 45 men with and without coronary artery disease and with and without DM. We identified 16 clusters in CD4+ T cells. The proportion of cells in CD4+ effector memory cluster 8 (CD4T8, CCR2+ Em) was significantly decreased in CAD+, especially among DM+ participants. This same cluster, CD4T8, was significantly decreased in female participants, along with two other CD4+ T cell clusters. In CD4+ T cells, 31 genes showed significant and coordinated upregulation in both CAD and DM. The DM gene signature was partially additive to the CAD gene signature. We conclude that (1) CAD and DM are clearly reflected in PBMC transcriptomes, and (2) significant differences exist between women and men and (3) between subjects with DM and non-DM.
Collapse
|