1
|
Tran PN, Ray S, Lemma L, Li Y, Sweeney R, Baskaran A, Dogic Z, Hong P, Hagan MF. Deep-learning optical flow for measuring velocity fields from experimental data. SOFT MATTER 2024; 20:7246-7257. [PMID: 39225732 DOI: 10.1039/d4sm00483c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Deep learning-based optical flow (DLOF) extracts features in adjacent video frames with deep convolutional neural networks. It uses those features to estimate the inter-frame motions of objects. We evaluate the ability of optical flow to quantify the spontaneous flows of microtubule (MT)-based active nematics under different labeling conditions, and compare its performance to particle image velocimetry (PIV). We obtain flow velocity ground truths either by performing semi-automated particle tracking on samples with sparsely labeled filaments, or from passive tracer beads. DLOF produces more accurate velocity fields than PIV for densely labeled samples. PIV cannot reliably distinguish contrast variations at high densities, particularly along the nematic director. DLOF overcomes this limitation. For sparsely labeled samples, DLOF and PIV produce comparable results, but DLOF gives higher-resolution fields. Our work establishes DLOF as a versatile tool for measuring fluid flows in a broad class of active, soft, and biophysical systems.
Collapse
Affiliation(s)
- Phu N Tran
- Department of Physics, Brandeis University, Waltham, MA 02453, USA.
| | - Sattvic Ray
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Linnea Lemma
- Department of Physics, Brandeis University, Waltham, MA 02453, USA.
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Yunrui Li
- Department of Computer Science, Brandeis University, Waltham, MA 02453, USA.
| | - Reef Sweeney
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Aparna Baskaran
- Department of Physics, Brandeis University, Waltham, MA 02453, USA.
| | - Zvonimir Dogic
- Department of Physics, Brandeis University, Waltham, MA 02453, USA.
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
- Biomolecular and Engineering Science, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Pengyu Hong
- Department of Computer Science, Brandeis University, Waltham, MA 02453, USA.
| | - Michael F Hagan
- Department of Physics, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
2
|
Xu J, Brown NJS, Seol Y, Neuman KC. Heterogeneous distribution of kinesin-streptavidin complexes revealed by mass photometry. SOFT MATTER 2024; 20:5509-5515. [PMID: 38832814 PMCID: PMC11254546 DOI: 10.1039/d3sm01702h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Kinesin-streptavidin complexes are widely used in microtubule-based active-matter studies. The stoichiometry of the complexes is empirically tuned but experimentally challenging to determine. Here, mass photometry measurements reveal heterogenous distributions of kinesin-streptavidin complexes. Our binding model indicates that heterogeneity arises from both the kinesin-streptavidin mixing ratio and the kinesin-biotinylation efficiency.
Collapse
Affiliation(s)
- Jing Xu
- Department of Physics, University of California, Merced, CA 95343, USA.
| | - Nathaniel J S Brown
- Department of Quantitative and Systems Biology, University of California, Merced, CA 95343, USA
| | - Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Xu J, Brown NJS, Seol Y, Neuman KC. Heterogeneous distribution of kinesin-streptavidin complexes revealed by Mass Photometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572878. [PMID: 38187562 PMCID: PMC10769409 DOI: 10.1101/2023.12.21.572878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Kinesin-streptavidin complexes are widely used in microtubule-based active-matter studies. The stoichiometry of the complexes is empirically tuned but experimentally challenging to determine. Here, mass photometry measurements reveal heterogenous distributions of kinesin-streptavidin complexes. Our binding model indicates that heterogeneity arises from both the kinesin-streptavidin mixing ratio and the kinesin-biotinylation efficiency.
Collapse
Affiliation(s)
- Jing Xu
- Department of Physics, University of California, Merced, CA 95343, USA
| | - Nathaniel J. S. Brown
- Department of Quantitative and Systems Biology, University of California, Merced, CA 95343, USA
| | - Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Vélez-Cerón I, Guillamat P, Sagués F, Ignés-Mullol J. Probing active nematics with in situ microfabricated elastic inclusions. Proc Natl Acad Sci U S A 2024; 121:e2312494121. [PMID: 38451942 PMCID: PMC10945829 DOI: 10.1073/pnas.2312494121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/27/2024] [Indexed: 03/09/2024] Open
Abstract
In this work, we report a direct measurement of the forces exerted by a tubulin/kinesin active nematic gel as well as its complete rheological characterization, including the quantification of its shear viscosity, η, and its activity parameter, α. For this, we develop a method that allows us to rapidly photo-polymerize compliant elastic inclusions in the continuously remodeling active system. Moreover, we quantitatively settle long-standing theoretical predictions, such as a postulated relationship encoding the intrinsic time scale of the active nematic in terms of η and α. In parallel, we infer a value for the nematic elasticity constant, K, by combining our measurements with the theorized scaling of the active length scale. On top of the microrheology capabilities, we demonstrate strategies for defect encapsulation, quantification of defect mechanics, and defect interactions, enabled by the versatility of the microfabrication strategy that allows to combine elastic motifs of different shapes and stiffnesses that are fabricated in situ.
Collapse
Affiliation(s)
- Ignasi Vélez-Cerón
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Barcelona08028, Spain
- Institute of Nanoscience and Nanotechnology, IN2UB, Universitat de Barcelona, Barcelona08028, Spain
| | - Pau Guillamat
- Institute for Bioengineering of Catalonia, The Barcelona Institute for Science and Technology, Barcelona08028, Spain
| | - Francesc Sagués
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Barcelona08028, Spain
- Institute of Nanoscience and Nanotechnology, IN2UB, Universitat de Barcelona, Barcelona08028, Spain
| | - Jordi Ignés-Mullol
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Barcelona08028, Spain
- Institute of Nanoscience and Nanotechnology, IN2UB, Universitat de Barcelona, Barcelona08028, Spain
| |
Collapse
|
5
|
Tayar AM, Caballero F, Anderberg T, Saleh OA, Cristina Marchetti M, Dogic Z. Controlling liquid-liquid phase behaviour with an active fluid. NATURE MATERIALS 2023; 22:1401-1408. [PMID: 37679525 DOI: 10.1038/s41563-023-01660-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/02/2023] [Indexed: 09/09/2023]
Abstract
Demixing binary liquids is a ubiquitous transition explained using a well-established thermodynamic formalism that requires the equality of intensive thermodynamics parameters across phase boundaries. Demixing transitions also occur when binary fluid mixtures are driven away from equilibrium, but predicting and designing such out-of-equilibrium transitions remains a challenge. Here we study the liquid-liquid phase separation of attractive DNA nanostars driven away from equilibrium using a microtubule-based active fluid. We find that activity lowers the critical temperature and narrows the range of coexistence concentrations, but only in the presence of mechanical bonds between the liquid droplets and reconfiguring active fluid. Similar behaviours are observed in numerical simulations, suggesting that the activity suppression of the critical point is a generic feature of active liquid-liquid phase separation. Our work describes a versatile platform for building soft active materials with feedback control and providing an insight into self-organization in cell biology.
Collapse
Affiliation(s)
- Alexandra M Tayar
- Department of Physics, University of California, Santa Barbara, CA, USA.
| | | | - Trevor Anderberg
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - Omar A Saleh
- Department of Physics, University of California, Santa Barbara, CA, USA
- Materials Department, University of California, Santa Barbara, CA, USA
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
| | - M Cristina Marchetti
- Department of Physics, University of California, Santa Barbara, CA, USA
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
| | - Zvonimir Dogic
- Department of Physics, University of California, Santa Barbara, CA, USA.
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
6
|
Zarei Z, Berezney J, Hensley A, Lemma L, Senbil N, Dogic Z, Fraden S. Light-activated microtubule-based two-dimensional active nematic. SOFT MATTER 2023; 19:6691-6699. [PMID: 37609884 DOI: 10.1039/d3sm00270e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
We assess the ability of two light responsive kinesin motor clusters to drive dynamics of microtubule-based active nematics: opto-K401, a processive motor, and opto-K365, a non-processive motor. Measurements reveal an order of magnitude improvement in the contrast of nematic flow speeds between maximally- and minimally-illuminated states for opto-K365 motors when compared to opto-K401 construct. For opto-K365 nematics, we characterize both the steady-state flow and defect density as a function of applied light. We also examine the transient behavior as the system switches between steady-states upon changes in light intensities. Although nematic flows reach a steady state within tens of seconds, the defect density exhibits transient behavior for up to 10 minutes, showing a separation between small-scale active flows and system-scale structural states. Our work establishes an experimental platform that can exploit spatiotemporally-heterogeneous patterns of activity to generate targeted dynamical states.
Collapse
Affiliation(s)
- Zahra Zarei
- The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
| | - John Berezney
- The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
| | - Alexander Hensley
- The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
| | - Linnea Lemma
- The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
- The Department of Chemical and Biological Engineering, Princeton, NJ 08544, USA
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Nesrin Senbil
- The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
| | - Zvonimir Dogic
- Department of Physics, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, USA
| | - Seth Fraden
- The Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
| |
Collapse
|
7
|
Foster PJ, Bae J, Lemma B, Zheng J, Ireland W, Chandrakar P, Boros R, Dogic Z, Needleman DJ, Vlassak JJ. Dissipation and energy propagation across scales in an active cytoskeletal material. Proc Natl Acad Sci U S A 2023; 120:e2207662120. [PMID: 37000847 PMCID: PMC10083585 DOI: 10.1073/pnas.2207662120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 02/22/2023] [Indexed: 04/03/2023] Open
Abstract
Living systems are intrinsically nonequilibrium: They use metabolically derived chemical energy to power their emergent dynamics and self-organization. A crucial driver of these dynamics is the cellular cytoskeleton, a defining example of an active material where the energy injected by molecular motors cascades across length scales, allowing the material to break the constraints of thermodynamic equilibrium and display emergent nonequilibrium dynamics only possible due to the constant influx of energy. Notwithstanding recent experimental advances in the use of local probes to quantify entropy production and the breaking of detailed balance, little is known about the energetics of active materials or how energy propagates from the molecular to emergent length scales. Here, we use a recently developed picowatt calorimeter to experimentally measure the energetics of an active microtubule gel that displays emergent large-scale flows. We find that only approximately one-billionth of the system's total energy consumption contributes to these emergent flows. We develop a chemical kinetics model that quantitatively captures how the system's total thermal dissipation varies with ATP and microtubule concentrations but that breaks down at high motor concentration, signaling an interference between motors. Finally, we estimate how energy losses accumulate across scales. Taken together, these results highlight energetic efficiency as a key consideration for the engineering of active materials and are a powerful step toward developing a nonequilibrium thermodynamics of living systems.
Collapse
Affiliation(s)
- Peter J. Foster
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Physics, Brandeis University, Waltham, MA02454
| | - Jinhye Bae
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Department of NanoEngineering, University of California San Diego, La Jolla, CA92093
| | - Bezia Lemma
- Department of Physics, Brandeis University, Waltham, MA02454
- Department of Physics, Harvard University, Cambridge, MA02138
- Department of Physics, University of California, Santa Barbara, CA93106
| | - Juanjuan Zheng
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - William Ireland
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Pooja Chandrakar
- Department of Physics, Brandeis University, Waltham, MA02454
- Department of Physics, University of California, Santa Barbara, CA93106
| | - Rémi Boros
- Department of Physics, University of California, Santa Barbara, CA93106
| | - Zvonimir Dogic
- Department of Physics, Brandeis University, Waltham, MA02454
- Department of Physics, University of California, Santa Barbara, CA93106
| | - Daniel J. Needleman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
- Center for Computational Biology, Flatiron Institute, New York, NY10010
| | - Joost J. Vlassak
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| |
Collapse
|
8
|
Adkins R, Kolvin I, You Z, Witthaus S, Marchetti MC, Dogic Z. Dynamics of active liquid interfaces. Science 2022; 377:768-772. [PMID: 35951710 DOI: 10.1126/science.abo5423] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Controlling interfaces of phase-separating fluid mixtures is key to the creation of diverse functional soft materials. Traditionally, this is accomplished with surface-modifying chemical agents. Using experiment and theory, we studied how mechanical activity shapes soft interfaces that separate an active and a passive fluid. Chaotic flows in the active fluid give rise to giant interfacial fluctuations and noninertial propagating active waves. At high activities, stresses disrupt interface continuity and drive droplet generation, producing an emulsion-like active state composed of finite-sized droplets. When in contact with a solid boundary, active interfaces exhibit nonequilibrium wetting transitions, in which the fluid climbs the wall against gravity. These results demonstrate the promise of mechanically driven interfaces for creating a new class of soft active matter.
Collapse
Affiliation(s)
- Raymond Adkins
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Itamar Kolvin
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Zhihong You
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Sven Witthaus
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - M Cristina Marchetti
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA.,Graduate program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Zvonimir Dogic
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA.,Graduate program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|