1
|
Lin H, Zhou J, Ding T, Zhu Y, Wang L, Zhong T, Wang X. Therapeutic potential of extracellular vesicles from diverse sources in cancer treatment. Eur J Med Res 2024; 29:350. [PMID: 38943222 PMCID: PMC11212438 DOI: 10.1186/s40001-024-01937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024] Open
Abstract
Cancer, a prevalent and complex disease, presents a significant challenge to the medical community. It is characterized by irregular cell differentiation, excessive proliferation, uncontrolled growth, invasion of nearby tissues, and spread to distant organs. Its progression involves a complex interplay of several elements and processes. Extracellular vesicles (EVs) serve as critical intermediaries in intercellular communication, transporting critical molecules such as lipids, RNA, membrane, and cytoplasmic proteins between cells. They significantly contribute to the progression, development, and dissemination of primary tumors by facilitating the exchange of information and transmitting signals that regulate tumor growth and metastasis. However, EVs do not have a singular impact on cancer; instead, they play a multifaceted dual role. Under specific circumstances, they can impede tumor growth and influence cancer by delivering oncogenic factors or triggering an immune response. Furthermore, EVs from different sources demonstrate distinct advantages in inhibiting cancer. This research examines the biological characteristics of EVs and their involvement in cancer development to establish a theoretical foundation for better understanding the connection between EVs and cancer. Here, we discuss the potential of EVs from various sources in cancer therapy, as well as the current status and future prospects of engineered EVs in developing more effective cancer treatments.
Collapse
Affiliation(s)
- Haihong Lin
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Jun Zhou
- Department of Laboratory Medicine, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550000, China
| | - Tao Ding
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Yifan Zhu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China.
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China.
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
2
|
Tan M, Ge Y, Wang X, Wang Y, Liu Y, He F, Teng H. Extracellular Vesicles (EVs) in Tumor Diagnosis and Therapy. Technol Cancer Res Treat 2023; 22:15330338231171463. [PMID: 37122245 PMCID: PMC10134167 DOI: 10.1177/15330338231171463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
In recent years, extracellular vesicles (EVs) have gained significant attention due to their tremendous potential for clinical applications. EVs play a crucial role in various aspects, including tumorigenesis, drug resistance, immune escape, and reconstruction of the tumor microenvironment. Despite the growing interest in EVs, many questions still need to be addressed before they can be practically applied in clinical settings. This paper aims to review EVs' isolation methods, structure research, the roles of EVs in tumorigenesis and their mechanisms in multiple types of tumors, their potential application in drug delivery, and the expectations for their future in clinical research.
Collapse
Affiliation(s)
- Mingdian Tan
- School of Medicine, Asian Liver Center, Stanford, CA, USA
| | - Yizhi Ge
- The Affiliated Cancer Hospital of Nanjing Medical University (Jiangsu Cancer Hospital) and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xiaogang Wang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yan Wang
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford University School of Medicine, Stanford, CA, USA
| | - Yi Liu
- School of Medicine, Asian Liver Center, Stanford, CA, USA
| | - Feng He
- Stanford University School of Medicine, Stanford, CA, USA
| | - Hongqi Teng
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Eguchi T, Csizmadia E, Kawai H, Sheta M, Yoshida K, Prince TL, Wegiel B, Calderwood SK. SCAND1 Reverses Epithelial-to-Mesenchymal Transition (EMT) and Suppresses Prostate Cancer Growth and Migration. Cells 2022; 11:cells11243993. [PMID: 36552758 PMCID: PMC9777339 DOI: 10.3390/cells11243993] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a reversible cellular program that transiently places epithelial (E) cells into pseudo-mesenchymal (M) cell states. The malignant progression and resistance of many carcinomas depend on EMT activation, partial EMT, or hybrid E/M status in neoplastic cells. EMT is activated by tumor microenvironmental TGFβ signal and EMT-inducing transcription factors, such as ZEB1/2, in tumor cells. However, reverse EMT factors are less studied. We demonstrate that prostate epithelial transcription factor SCAND1 can reverse the cancer cell mesenchymal and hybrid E/M phenotypes to a more epithelial, less invasive status and inhibit their proliferation and migration in DU-145 prostate cancer cells. SCAND1 is a SCAN domain-containing protein and hetero-oligomerizes with SCAN-zinc finger transcription factors, such as MZF1, for accessing DNA and the transcriptional co-repression of target genes. We found that SCAND1 expression correlated with maintaining epithelial features, whereas the loss of SCAND1 was associated with mesenchymal phenotypes of tumor cells. SCAND1 and MZF1 were mutually inducible and coordinately included in chromatin with hetero-chromatin protein HP1γ. The overexpression of SCAND1 reversed hybrid E/M status into an epithelial phenotype with E-cadherin and β-catenin relocation. Consistently, the co-expression analysis in TCGA PanCancer Atlas revealed that SCAND1 and MZF1 expression was negatively correlated with EMT driver genes, including CTNNB1, ZEB1, ZEB2 and TGFBRs, in prostate adenocarcinoma specimens. In addition, SCAND1 overexpression suppressed tumor cell proliferation by reducing the MAP3K-MEK-ERK signaling pathway. Of note, in a mouse tumor xenograft model, SCAND1 overexpression significantly reduced Ki-67(+) and Vimentin(+) tumor cells and inhibited migration and lymph node metastasis of prostate cancer. Kaplan-Meier analysis showed high expression of SCAND1 and MZF1 to correlate with better prognoses in pancreatic cancer and head and neck cancers, although with poorer prognosis in kidney cancer. Overall, these data suggest that SCAND1 induces expression and coordinated heterochromatin-binding of MZF1 to reverse the hybrid E/M status into an epithelial phenotype and, inhibits tumor cell proliferation, migration, and metastasis, potentially by repressing the gene expression of EMT drivers and the MAP3K-MEK-ERK signaling pathway.
Collapse
Affiliation(s)
- Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Correspondence: (T.E.); (S.K.C.); Tel.: +81-86-235-6661 (T.E.); +1-617-667-4240 (S.K.C.); Fax: +81-86-235-6664 (T.E.); +1-617-667-4245 (S.K.C.)
| | - Eva Csizmadia
- Division of Surgical Sciences, Department of Surgery, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Mona Sheta
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Kunihiro Yoshida
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Department of Oral and Craniofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | | | - Barbara Wegiel
- Division of Surgical Sciences, Department of Surgery, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (T.E.); (S.K.C.); Tel.: +81-86-235-6661 (T.E.); +1-617-667-4240 (S.K.C.); Fax: +81-86-235-6664 (T.E.); +1-617-667-4245 (S.K.C.)
| |
Collapse
|