1
|
Lanciano S, Philippe C, Sarkar A, Pratella D, Domrane C, Doucet AJ, van Essen D, Saccani S, Ferry L, Defossez PA, Cristofari G. Locus-level L1 DNA methylation profiling reveals the epigenetic and transcriptional interplay between L1s and their integration sites. CELL GENOMICS 2024; 4:100498. [PMID: 38309261 PMCID: PMC10879037 DOI: 10.1016/j.xgen.2024.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Long interspersed element 1 (L1) retrotransposons are implicated in human disease and evolution. Their global activity is repressed by DNA methylation, but deciphering the regulation of individual copies has been challenging. Here, we combine short- and long-read sequencing to unveil L1 methylation heterogeneity across cell types, families, and individual loci and elucidate key principles involved. We find that the youngest primate L1 families are specifically hypomethylated in pluripotent stem cells and the placenta but not in most tumors. Locally, intronic L1 methylation is intimately associated with gene transcription. Conversely, the L1 methylation state can propagate to the proximal region up to 300 bp. This phenomenon is accompanied by the binding of specific transcription factors, which drive the expression of L1 and chimeric transcripts. Finally, L1 hypomethylation alone is typically insufficient to trigger L1 expression due to redundant silencing pathways. Our results illuminate the epigenetic and transcriptional interplay between retrotransposons and their host genome.
Collapse
Affiliation(s)
- Sophie Lanciano
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Claude Philippe
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Arpita Sarkar
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - David Pratella
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Cécilia Domrane
- University Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | - Aurélien J Doucet
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Dominic van Essen
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Simona Saccani
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Laure Ferry
- University Paris Cité, CNRS, Epigenetics and Cell Fate, Paris, France
| | | | - Gael Cristofari
- University Cote d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France.
| |
Collapse
|
2
|
Yang L, Metzger GA, Padilla Del Valle R, Delgadillo Rubalcaba D, McLaughlin RN. Evolutionary insights from profiling LINE-1 activity at allelic resolution in a single human genome. EMBO J 2024; 43:112-131. [PMID: 38177314 PMCID: PMC10883270 DOI: 10.1038/s44318-023-00007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/18/2023] [Accepted: 11/10/2023] [Indexed: 01/06/2024] Open
Abstract
Transposable elements have created the majority of the sequence in many genomes. In mammals, LINE-1 retrotransposons have been expanding for more than 100 million years as distinct, consecutive lineages; however, the drivers of this recurrent lineage emergence and disappearance are unknown. Most human genome assemblies provide a record of this ancient evolution, but fail to resolve ongoing LINE-1 retrotranspositions. Utilizing the human CHM1 long-read-based haploid assembly, we identified and cloned all full-length, intact LINE-1s, and found 29 LINE-1s with measurable in vitro retrotransposition activity. Among individuals, these LINE-1s varied in their presence, their allelic sequences, and their activity. We found that recently retrotransposed LINE-1s tend to be active in vitro and polymorphic in the population relative to more ancient LINE-1s. However, some rare allelic forms of old LINE-1s retain activity, suggesting older lineages can persist longer than expected. Finally, in LINE-1s with in vitro activity and in vivo fitness, we identified mutations that may have increased replication in ancient genomes and may prove promising candidates for mechanistic investigations of the drivers of LINE-1 evolution and which LINE-1 sequences contribute to human disease.
Collapse
Affiliation(s)
- Lei Yang
- Pacific Northwest Research Institute, Seattle, WA, USA
| | | | - Ricky Padilla Del Valle
- Pacific Northwest Research Institute, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | | | - Richard N McLaughlin
- Pacific Northwest Research Institute, Seattle, WA, USA.
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA.
| |
Collapse
|