1
|
Prieto-Fernández L, Menéndez ST, Otero-Rosales M, Montoro-Jiménez I, Hermida-Prado F, García-Pedrero JM, Álvarez-Teijeiro S. Pathobiological functions and clinical implications of annexin dysregulation in human cancers. Front Cell Dev Biol 2022; 10:1009908. [PMID: 36247003 PMCID: PMC9554710 DOI: 10.3389/fcell.2022.1009908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Annexins are an extensive superfamily of structurally related calcium- and phospholipid-binding proteins, largely conserved and widely distributed among species. Twelve human annexins have been identified, referred to as Annexin A1-13 (A12 remains as of yet unassigned), whose genes are spread throughout the genome on eight different chromosomes. According to their distinct tissue distribution and subcellular localization, annexins have been functionally implicated in a variety of biological processes relevant to both physiological and pathological conditions. Dysregulation of annexin expression patterns and functions has been revealed as a common feature in multiple cancers, thereby emerging as potential biomarkers and molecular targets for clinical application. Nevertheless, translation of this knowledge to the clinic requires in-depth functional and mechanistic characterization of dysregulated annexins for each individual cancer type, since each protein exhibits varying expression levels and phenotypic specificity depending on the tumor types. This review specifically and thoroughly examines the current knowledge on annexin dysfunctions in carcinogenesis. Hence, available data on expression levels, mechanism of action and pathophysiological effects of Annexin A1-13 among different cancers will be dissected, also further discussing future perspectives for potential applications as biomarkers for early diagnosis, prognosis and molecular-targeted therapies. Special attention is devoted to head and neck cancers (HNC), a complex and heterogeneous group of aggressive malignancies, often lately diagnosed, with high mortality, and scarce therapeutic options.
Collapse
Affiliation(s)
- Llara Prieto-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Sofía T. Menéndez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - María Otero-Rosales
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Irene Montoro-Jiménez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Juana M. García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Leandro MP, Almeida ND, Hocevar LS, Sá CKCD, Souza AJD, Matos MA. Polimorfismos e necrose avascular em pacientes com doença falciforme – Uma revisão sistemática. REVISTA PAULISTA DE PEDIATRIA 2022. [DOI: 10.1590/1984-0462/2022/40/2021013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resumo Objetivo: Estabelecer, de modo sistemático, se existe associação entre polimorfismos e a necrose avascular em pacientes com doença falciforme. Fontes de dados: A revisão, conduzida segundo as diretrizes Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) e registrada no International Prospective Register of Systematic Reviews (PROSPERO), foi baseada na busca de estudos nas bases de dados PubMed, Scientific Electronic Library Online (SciELO), Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS), Biblioteca Virtual em Saúde (BVS) e na literatura cinza (Google Scholar e Open Gray) até junho de 2020. A análise da qualidade dos artigos foi baseada nos critérios do Strengthening the Reporting of Observational Studies in Epidemiology (STROBE). Síntese dos dados: Dez artigos foram selecionados nas bases de dados e dois incluídos por meio da busca manual, totalizando 12 estudos elencados. As amostras resultaram em 2.362 pacientes incluídos. Com base na iniciativa STROBE, sete estudos atenderam total e/ou parcialmente mais de 70% dos itens essenciais e dois atingiram menos que 60% deles, com variação geral de 86,4–54,5%. Os resultados mostram que os polimorfismos nos genes da proteína morfogenética óssea 6 (BMP6), da Klotho (KL) e da Anexina A2 (ANXA2) podem ter associação com osteonecrose no contexto da doença falciforme. Seis artigos estudaram o polimorfismo no gene da enzima MTHFR, mas apenas um obteve associação positiva. Os polimorfismos associados ao receptor DARC, ao gene ITGA4, ao CD36 e aos genes de proteínas trombofílicas não demonstraram associação em nenhum dos estudos. Conclusões: Os polimorfismos nos genes BMP6, KL e ANXA2 estão possivelmente associados com a necrose avascular em indivíduos com doença falciforme. Entretanto, para a confirmação dessas alterações genéticas como fatores de risco, é necessário que mais estudos com maior poder estatístico e com maior rigor metodológico sejam realizados.
Collapse
|
3
|
Leandro MP, Almeida ND, Hocevar LS, Sá CKCD, Souza AJD, Matos MA. Polymorphisms and avascular necrosis in patients with sickle cell disease – A systematic review. REVISTA PAULISTA DE PEDIATRIA 2022; 40:e2021013. [PMID: 35584416 PMCID: PMC9113627 DOI: 10.1590/1984-0462/2022/40/2021013in] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/06/2021] [Indexed: 11/28/2022]
Abstract
Objective: To systematically establish whether there is an association between polymorphisms and avascular necrosis in patients with sickle cell disease. Data source: The review, conducted according to PRISMA guidelines and registered with PROSPERO, was based on research of studies in PubMed, SciELO, LILACS, BVS databases and in the gray literature (Google Scholar and Open Gray) published until June 2020. The STROBE initiative was used to analyze the articles’ quality. Data synthesis: Ten articles were selected from the databases and two were included through manual search, totaling 12 studies. All samples gathered 2,362 patients. According to STROBE, seven studies fully and/or partially covered more than 70% of the essential items and two studies reached less than 60%, with an overall variation of 86.4–54.5%. The results indicate that polymorphisms in the genes of the bone morphogenetic protein 6 (BMP6), Klotho (KL) and Annexin A2 (ANXA2) may be associated with osteonecrosis in the context of sickle cell disease. Six articles addressed the polymorphism in the MTHFR enzyme gene, but only one found a positive association. Polymorphisms associated with the DARC receptor, the ITGA4 gene, CD36 and thrombophilia protein genes were not associated in any of the studies. Conclusions: The results indicate that the polymorphisms in BMP6, Klotho and ANXA2 genes may be associated with avascular necrosis in patients with sickle cell disease. However, in order to confirm these genetic changes as risk factors, further studies with greater statistical power and methodological rigor are needed.
Collapse
|
4
|
Grewal T, Rentero C, Enrich C, Wahba M, Raabe CA, Rescher U. Annexin Animal Models-From Fundamental Principles to Translational Research. Int J Mol Sci 2021; 22:ijms22073439. [PMID: 33810523 PMCID: PMC8037771 DOI: 10.3390/ijms22073439] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Routine manipulation of the mouse genome has become a landmark in biomedical research. Traits that are only associated with advanced developmental stages can now be investigated within a living organism, and the in vivo analysis of corresponding phenotypes and functions advances the translation into the clinical setting. The annexins, a family of closely related calcium (Ca2+)- and lipid-binding proteins, are found at various intra- and extracellular locations, and interact with a broad range of membrane lipids and proteins. Their impacts on cellular functions has been extensively assessed in vitro, yet annexin-deficient mouse models generally develop normally and do not display obvious phenotypes. Only in recent years, studies examining genetically modified annexin mouse models which were exposed to stress conditions mimicking human disease often revealed striking phenotypes. This review is the first comprehensive overview of annexin-related research using animal models and their exciting future use for relevant issues in biology and experimental medicine.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Mohamed Wahba
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Carsten A. Raabe
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
| | - Ursula Rescher
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| |
Collapse
|
5
|
Weisz J, Uversky VN. Zooming into the Dark Side of Human Annexin-S100 Complexes: Dynamic Alliance of Flexible Partners. Int J Mol Sci 2020; 21:ijms21165879. [PMID: 32824294 PMCID: PMC7461550 DOI: 10.3390/ijms21165879] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Annexins and S100 proteins form two large families of Ca2+-binding proteins. They are quite different both structurally and functionally, with S100 proteins being small (10–12 kDa) acidic regulatory proteins from the EF-hand superfamily of Ca2+-binding proteins, and with annexins being at least three-fold larger (329 ± 12 versus 98 ± 7 residues) and using non-EF-hand-based mechanism for calcium binding. Members of both families have multiple biological roles, being able to bind to a large cohort of partners and possessing a multitude of functions. Furthermore, annexins and S100 proteins can interact with each other in either a Ca2+-dependent or Ca2+-independent manner, forming functional annexin-S100 complexes. Such functional polymorphism and binding indiscrimination are rather unexpected, since structural information is available for many annexins and S100 proteins, which therefore are considered as ordered proteins that should follow the classical “one protein–one structure–one function” model. On the other hand, the ability to be engaged in a wide range of interactions with multiple, often unrelated, binding partners and possess multiple functions represent characteristic features of intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs); i.e., functional proteins or protein regions lacking unique tertiary structures. The aim of this paper is to provide an overview of the functional roles of human annexins and S100 proteins, and to use the protein intrinsic disorder perspective to explain their exceptional multifunctionality and binding promiscuity.
Collapse
Affiliation(s)
- Judith Weisz
- Departments of Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Vladimir N. Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow, Russia
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-5816 (ext. 123); Fax: +1-813-974-7357
| |
Collapse
|
6
|
Salom C, Álvarez-Teijeiro S, Fernández MP, Morgan RO, Allonca E, Vallina A, Lorz C, de Villalaín L, Fernández-García MS, Rodrigo JP, García-Pedrero JM. Frequent Alteration of Annexin A9 and A10 in HPV-Negative Head and Neck Squamous Cell Carcinomas: Correlation with the Histopathological Differentiation Grade. J Clin Med 2019; 8:jcm8020229. [PMID: 30744186 PMCID: PMC6406441 DOI: 10.3390/jcm8020229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
The annexin protein superfamily has been implicated in multiple physiological and pathological processes, including carcinogenesis. Altered expression of various annexins has frequently been observed and linked to the development and progression of various human malignancies. However, information is lacking on the expression and clinical significance of annexin A9 (ANXA9) and A10 (ANXA10) in head and neck squamous cell carcinomas (HNSCC). ANXA9 and ANXA10 expression was evaluated in a large cohort of 372 surgically treated HPV-negative HNSCC patients and correlated with the clinicopathologic parameters and disease outcomes. Down-regulation of ANXA9 expression was found in 42% of HNSCC tissue samples, compared to normal epithelia. ANXA9 expression in tumors was significantly associated with oropharyngeal location and histological differentiation grade (P < 0.001). In marked contrast, ANXA10 expression was absent in normal epithelium, but variably detected in the cytoplasm of cancer cells. Positive ANXA10 expression was found in 64% of tumors, and was significantly associated with differentiation grade (P < 0.001), being also more frequent in oropharyngeal tumors (P = 0.019). These results reveal that the expression of both ANXA9 and ANXA10 is frequently altered in HNSCC and associated to the tumor differentiation grade, suggesting that they could be implicated in the pathogenesis of these cancers.
Collapse
Affiliation(s)
- Cecilia Salom
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, University of Oviedo, Avda. Roma, 33011, Oviedo, Spain.
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, University of Oviedo, Avda. Roma, 33011, Oviedo, Spain.
- CIBERONC, Av. Monforte de Lemos, 3-5. 28029, Madrid, Spain.
| | - M Pilar Fernández
- Department of Biochemistry and Molecular Biology and Institute of Biotechnology of Asturias, University of Oviedo, Julian Clavería, 33006, Oviedo, Spain.
| | - Reginald O Morgan
- Department of Biochemistry and Molecular Biology and Institute of Biotechnology of Asturias, University of Oviedo, Julian Clavería, 33006, Oviedo, Spain.
| | - Eva Allonca
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, University of Oviedo, Avda. Roma, 33011, Oviedo, Spain.
- CIBERONC, Av. Monforte de Lemos, 3-5. 28029, Madrid, Spain.
| | - Aitana Vallina
- Department of Pathology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Avda. Roma, 33011, Oviedo, Spain.
| | - Corina Lorz
- CIBERONC, Av. Monforte de Lemos, 3-5. 28029, Madrid, Spain.
- Molecular Oncology Unit, CIEMAT (ed 70A), Av. Complutense 40, 28040 Madrid, Spain.
| | - Lucas de Villalaín
- Department of Oral Surgery, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, University of Oviedo, Avda. Roma, 33011, Oviedo, Spain.
| | - M Soledad Fernández-García
- Department of Pathology, Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Avda. Roma, 33011, Oviedo, Spain.
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, University of Oviedo, Avda. Roma, 33011, Oviedo, Spain.
- CIBERONC, Av. Monforte de Lemos, 3-5. 28029, Madrid, Spain.
| | - Juana M García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, University of Oviedo, Avda. Roma, 33011, Oviedo, Spain.
- CIBERONC, Av. Monforte de Lemos, 3-5. 28029, Madrid, Spain.
| |
Collapse
|
7
|
Annexin A6 regulates catabolic events in articular chondrocytes via the modulation of NF-κB and Wnt/ß-catenin signaling. PLoS One 2018; 13:e0197690. [PMID: 29771996 PMCID: PMC5957413 DOI: 10.1371/journal.pone.0197690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/07/2018] [Indexed: 12/22/2022] Open
Abstract
Annexin A6 (AnxA6) is expressed in articular chondrocytes at levels higher than in other mesenchymal cell types. However, the role of AnxA6 in articular chondrocytes is not known. Here we show that complete lack of AnxA6 functions resulted in increased ß-catenin activation in Wnt3a-treated murine articular chondrocytes, whereas AnxA6 expressing articular chondrocytes showed decreased ß-catenin activation. High expression of AnxA6 in human articular chondrocytes showed the highest inhibition of Wnt/ß-catenin signaling. Inhibition of Wnt/ß-catenin signaling activity by AnxA6 together with cytosolic Ca2+ was achieved by interfering with the plasma membrane association of the Wnt signaling complex. AnxA6 also affected the cross-talk between Wnt/ß-catenin signaling and NF-κB signaling by decreasing ß-catenin activity and increasing NF-κB activity in Wnt3a-, interleukin-1beta (IL-1ß)-, and combined Wnt3a/IL-1ß-treated cells. Wnt3a treatment increased the mRNA levels of catabolic markers (cyclooxygenase-2, interleukin-6, inducible nitric oxide synthase) to a much lesser degree than IL-1ß treatment in human articular chondrocytes, and decreased the mRNA levels of matrix metalloproteinase-13 (MMP-13) and articular cartilage markers (aggrecan, type II collagen). Furthermore, Wnt3a decreased the mRNA levels of catabolic markers and MMP-13 in IL-1ß-treated human articular chondrocytes. High expression of AnxA6 resulted in decreased mRNA levels of catabolic markers, and increased MMP-13 and articular cartilage marker mRNA levels in Wnt3a-treated human articular chondrocytes, whereas leading to increased mRNA levels of catabolic markers and MMP-13 in human articular chondrocytes treated with IL-1ß, or combined Wnt3a and IL-1ß. Our findings define a novel role for AnxA6 in articular chondrocytes via its modulation of Wnt/ß-catenin and NF-κB signaling activities and the cross-talk between these two signaling pathways.
Collapse
|
8
|
Protein phosphorylation and its role in the regulation of Annexin A2 function. Biochim Biophys Acta Gen Subj 2017; 1861:2515-2529. [PMID: 28867585 DOI: 10.1016/j.bbagen.2017.08.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/17/2017] [Accepted: 08/30/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Annexin A2 (AnxA2) is a multifunctional protein involved in endocytosis, exocytosis, membrane domain organisation, actin remodelling, signal transduction, protein assembly, transcription and mRNA transport, as well as DNA replication and repair. SCOPE OF REVIEW The current knowledge of the role of phosphorylation in the functional regulation of AnxA2 is reviewed. To provide a more comprehensive treatment of this topic, we also address in depth the phosphorylation process in general and discuss its possible conformational effects. Furthermore, we discuss the apparent limitations of the methods used to investigate phosphoproteins, as exemplified by the study of AnxA2. MAJOR CONCLUSIONS AnxA2 is subjected to complex regulation by post-translational modifications affecting its cellular functions, with Ser11, Ser25 and Tyr23 representing important phosphorylation sites. Thus, Ser phosphorylation of AnxA2 is involved in the recruitment and docking of secretory granules, the regulation of its association with S100A10, and sequestration of perinuclear, translationally inactive mRNP complexes. By contrast, Tyr phosphorylation of AnxA2 regulates its role in actin dynamics and increases its association with endosomal compartments. Modification of its three main phosphorylation sites is not sufficient to discriminate between its numerous functions. Thus, fine-tuning of AnxA2 function is mediated by the joint action of several post-translational modifications. GENERAL SIGNIFICANCE AnxA2 participates in malignant cell transformation, and its overexpression and/or phosphorylation is associated with cancer progression and metastasis. Thus, tight regulation of AnxA2 function is an integral aspect of cellular homeostasis. The presence of AnxA2 in cancer cell-derived exosomes, as well as the potential regulation of exosomal AnxA2 by phosphorylation or other PTMs, are topics of great interest.
Collapse
|
9
|
Rihan K, Antoine E, Maurin T, Bardoni B, Bordonné R, Soret J, Rage F. A new cis-acting motif is required for the axonal SMN-dependent Anxa2 mRNA localization. RNA (NEW YORK, N.Y.) 2017; 23:899-909. [PMID: 28258160 PMCID: PMC5435863 DOI: 10.1261/rna.056788.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
Spinal muscular atrophy (SMA) is caused by mutations and/or deletions of the survival motor neuron gene (SMN1). Besides its function in the biogenesis of spliceosomal snRNPs, SMN might possess a motor neuron specific role and could function in the transport of axonal mRNAs and in the modulation of local protein translation. Accordingly, SMN colocalizes with axonal mRNAs of differentiated NSC-34 motor neuron-like cells. We recently showed that SMN depletion gives rise to a decrease in the axonal transport of the mRNAs encoding Annexin A2 (Anxa2). In this work, we have characterized the structural features of the Anxa2 mRNA required for its axonal targeting by SMN. We found that a G-rich motif located near the 3'UTR is essential for axonal localization of the Anxa2 transcript. We also show that mutations in the motif sequence abolish targeting of Anxa2 reporter mRNAs in axon-like structures of differentiated NSC-34 cells. Finally, localization of both wild-type and mutated Anxa2 reporters is restricted to the cell body in SMN-depleted cells. Altogether, our studies show that this G-motif represents a novel and essential determinant for axonal localization of the Anxa2 mRNA mediated by the SMN complex.
Collapse
Affiliation(s)
- Khalil Rihan
- IGMM, CNRS, Université Montpellier, Montpellier, France
| | | | - Thomas Maurin
- Institut de Pharmacologie Moléculaire et Cellulaire, Physiopathologie du Retard Mental, 06560 Valbonne, France
| | - Barbara Bardoni
- Institut de Pharmacologie Moléculaire et Cellulaire, Physiopathologie du Retard Mental, 06560 Valbonne, France
| | - Rémy Bordonné
- IGMM, CNRS, Université Montpellier, Montpellier, France
| | - Johann Soret
- IGMM, CNRS, Université Montpellier, Montpellier, France
| | - Florence Rage
- IGMM, CNRS, Université Montpellier, Montpellier, France
| |
Collapse
|
10
|
Pompa A, De Marchis F, Pallotta MT, Benitez-Alfonso Y, Jones A, Schipper K, Moreau K, Žárský V, Di Sansebastiano GP, Bellucci M. Unconventional Transport Routes of Soluble and Membrane Proteins and Their Role in Developmental Biology. Int J Mol Sci 2017; 18:ijms18040703. [PMID: 28346345 PMCID: PMC5412289 DOI: 10.3390/ijms18040703] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/30/2022] Open
Abstract
Many proteins and cargoes in eukaryotic cells are secreted through the conventional secretory pathway that brings proteins and membranes from the endoplasmic reticulum to the plasma membrane, passing through various cell compartments, and then the extracellular space. The recent identification of an increasing number of leaderless secreted proteins bypassing the Golgi apparatus unveiled the existence of alternative protein secretion pathways. Moreover, other unconventional routes for secretion of soluble or transmembrane proteins with initial endoplasmic reticulum localization were identified. Furthermore, other proteins normally functioning in conventional membrane traffic or in the biogenesis of unique plant/fungi organelles or in plasmodesmata transport seem to be involved in unconventional secretory pathways. These alternative pathways are functionally related to biotic stress and development, and are becoming more and more important in cell biology studies in yeast, mammalian cells and in plants. The city of Lecce hosted specialists working on mammals, plants and microorganisms for the inaugural meeting on “Unconventional Protein and Membrane Traffic” (UPMT) during 4–7 October 2016. The main aim of the meeting was to include the highest number of topics, summarized in this report, related to the unconventional transport routes of protein and membranes.
Collapse
Affiliation(s)
- Andrea Pompa
- Institute of Biosciences and Bioresources-Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128 Perugia, Italy.
| | - Francesca De Marchis
- Institute of Biosciences and Bioresources-Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128 Perugia, Italy.
| | | | | | - Alexandra Jones
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Kerstin Schipper
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany.
| | - Kevin Moreau
- Clinical Biochemistry, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 1TN, UK.
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844, Prague 2, Czech Republic.
- Institute of Experimental Botany, v.v.i., the Czech Academy of Sciences, 16502, Prague 6, Czech Republic.
| | - Gian Pietro Di Sansebastiano
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, S.P. 6, 73100 Lecce, Italy.
| | - Michele Bellucci
- Institute of Biosciences and Bioresources-Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128 Perugia, Italy.
| |
Collapse
|
11
|
TNF-alpha and annexin A2: inflammation in thrombotic primary antiphospholipid syndrome. Rheumatol Int 2016; 36:1649-1656. [PMID: 27704162 DOI: 10.1007/s00296-016-3569-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 12/22/2022]
Abstract
Antiphospholipid syndrome (APS) is characterized by thromboses and/or pregnancy losses. Laboratory criterion for the diagnosis of APS is the presence of antiphospholipid antibodies (anticardiolipin, anti-beta2-glycoprotein I (aβ2gpI) and lupus anticoagulant). On the one hand, the latest classification criteria for the diagnosis of APS emphasized that thrombotic manifestations of the syndrome should be without any signs of an inflammatory process, while on the other hand, some recent reports have suggested that APS is a "pro-inflammatory state." This article is focused on the importance of TNF-alpha and annexin A2 (anxA2) for patients with vascular (thrombotic) manifestations of the primary APS. The classic antithrombotic and antiplatelet therapy does not protect APS patients from the development of recurrent thrombosis. Therefore, an urgent need for the introduction of new therapeutic approaches in the treatment of APS patients is obvious. This review provides a rationale for the necessity for the use of immunomodulatory medications that could interfere with β2gpI binding to its receptor(s), such as anxA2, and/or inhibit TNF-alpha activity.
Collapse
|
12
|
Abstract
Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these "calcium sensors" are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death.
Collapse
Affiliation(s)
- Ernesto Carafoli
- From the Venetian Institute of Molecular Medicine, University of Padova, 35131 Padova, Italy and
| | - Joachim Krebs
- the Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| |
Collapse
|
13
|
Bećarević M. The IgG and IgM isotypes of anti-annexin A5 antibodies: relevance for primary antiphospholipid syndrome. J Thromb Thrombolysis 2016; 42:552-7. [DOI: 10.1007/s11239-016-1389-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Li DW, Li JH, Wang YD, Li GR. Atorvastatin protects endothelial colony‑forming cells against H2O2‑induced oxidative damage by regulating the expression of annexin A2. Mol Med Rep 2015; 12:7941-8. [PMID: 26497173 PMCID: PMC4758293 DOI: 10.3892/mmr.2015.4440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 09/10/2015] [Indexed: 12/24/2022] Open
Abstract
Endothelial dysfunction and injury are central events in the pathogenesis of ischemic vascular disorders. Endothelial progenitor cells (EPCs) are mobilized from the bone marrow into the peripheral circulation, where they locate to sites of injured endothelium and are involved in endothelial repair and vascular regeneration. During these processes, EPCs are exposed to oxidative stress, a crucial pathological condition, which occurs during vascular injury and limits the efficacy of EPCs in the repair of injured endothelium. Statins are effective inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, and are commonly used to manage and prevent ischemic vascular disease by reducing plasma cholesterol levels. In addition to lowering cholesterol, statins have also been reported to exert pleiotropic actions, including anti-inflammatory and anti-oxidative activities. The present study aimed to investigate the ability of atorvastatin to protect endothelial colony-forming cells (ECFCs), a homogeneous subtype of EPCs, from hydrogen peroxide (H2O2)-induced oxidative damage, and to determine the mechanism underlying this protective action. MTT assay, acridine orange/ethidium bromide staining, reactive oxygen species assay, western blot analysis and tube formation assay were employed. The results demonstrated that H2O2 induced cell death and decreased the tube-forming ability of the ECFCs, in a concentration-dependent manner; however, these effects were partially attenuated following administration of atorvastatin. The reversion of the quantitative and qualitative impairment of the H2O2-treated ECFCs appeared to be mediated by the regulation of annexin A2, as the expression levels of annexin A2 were decreased following treatment with H2O2 and increased following treatment with atorvastatin. These results indicated that annexin A2 may be involved in the H2O2-induced damage of ECFCs, and in the protective activities of atorvastatin in response to oxidative stress.
Collapse
Affiliation(s)
- Da-Wei Li
- Department of Neurology, Affiliated Hospital of Beihua University, Jilin, Jilin 132000, P.R. China
| | - Ji-Hua Li
- Department of Ultrasonography, The Third Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ying-Di Wang
- Department of Urinary Surgery, The Tumor Hospital of Jilin, Changchun, Jilin 130012, P.R. China
| | - Guang-Ren Li
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
15
|
Caron D, Boutchueng-Djidjou M, Tanguay RM, Faure RL. Annexin A2 is SUMOylated on its N-terminal domain: regulation by insulin. FEBS Lett 2015; 589:985-91. [PMID: 25775977 DOI: 10.1016/j.febslet.2015.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/17/2023]
Abstract
Insulin receptor (IR) endocytosis requires a remodelling of the actin cytoskeleton. We show here that ANXA2 is SUMOylated at the K10 located in a non-consensus SUMOylation motif in the N-terminal domain. The Y24F mutation decreased the SUMOylation signal, whereas insulin stimulation increased ANXA2 SUMOylation. A survey of protein SUMOylation in hepatic Golgi/endosome (G/E) fractions after insulin injections revealed the presence of a SUMOylation pattern and confirmed the SUMOylation of ANXA2. The construction of an IR/ANXA2/SUMO network (IRASGEN) in the G/E context reveals the presence of interacting nodes whereby SUMO1 connects ANXA2 to actin and microtubule-mediated changes in membrane topology. Heritable variants associated with type 2 diabetes represent 41% of the IRASGEN thus pointing out the physio-pathological importance of this subnetwork.
Collapse
Affiliation(s)
- Danielle Caron
- Département de Pédiatrie, Laboratoire de biologie cellulaire Centre de recherche du CHU de Québec, Université Laval, Québec, PQ, Canada
| | - Martial Boutchueng-Djidjou
- Département de Pédiatrie, Laboratoire de biologie cellulaire Centre de recherche du CHU de Québec, Université Laval, Québec, PQ, Canada
| | - Robert M Tanguay
- Institut de Biologie Intégrative et des Système (IBIS), Université Laval, Québec, PQ, Canada; Laboratory of Cellular and Developmental Genetics, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, PQ, Canada; PROTEO, Université Laval, Québec, PQ, Canada
| | - Robert L Faure
- Département de Pédiatrie, Laboratoire de biologie cellulaire Centre de recherche du CHU de Québec, Université Laval, Québec, PQ, Canada.
| |
Collapse
|
16
|
Zhao W, Zhang C, Shi M, Zhang J, Li M, Xue X, Zhang Z, Shu Z, Zhu J, Mu N, Li W, Hao Q, Wang Z, Gong L, Zhang W, Zhang Y. The discoidin domain receptor 2/annexin A2/matrix metalloproteinase 13 loop promotes joint destruction in arthritis through promoting migration and invasion of fibroblast-like synoviocytes. Arthritis Rheumatol 2014; 66:2355-67. [PMID: 24819400 DOI: 10.1002/art.38696] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 05/02/2014] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Discoidin domain receptor 2 (DDR-2)/matrix metalloproteinase (MMP) signaling is an important pathway involved in cartilage destruction in rheumatoid arthritis (RA). However, the molecular mechanisms of this pathway have not been clearly identified. This study was undertaken to screen key molecules involved in this pathway and evaluate their biologic functions in synovium invasion of RA. METHODS DDR-2-interacting proteins were examined in vitro by immunoprecipitation and mass spectrometry, and annexin A2 was acquired. The effects of annexin A2 on fibroblast-like synoviocyte (FLS) migration were evaluated using a Transwell invasion assay and an Erasion trace test. In Ddr2(-/-) mice with collagen-induced arthritis (CIA), hematoxylin and eosin (H&E) staining, immunohistochemical analysis, and Western blot analysis were used to assess expression of DDR-2, annexin A2, and MMP-13, as well as synovial hyperplasia. Rats with CIA were treated with lentivirus annexin A2 small interfering RNA (siRNA), and annexin A2 siRNA effects on joint damage were analyzed based upon arthritis index scores and results of micro-computed tomography and H&E staining. The differences between annexin A2 expression in clinical samples from RA and osteoarthritis patients were compared using Western blotting. RESULTS Annexin 2 was identified for the first time as a DDR-2 binding protein. It may be phosphorylated by phospho-DDR-2, leading to MMP-13 secretion. The annexin A2 phosphorylation level and MMP-13 expression level were decreased and collagen-induced joint damage greatly reduced in Ddr2(-/-) mice. Joint damage in rats with CIA was significantly ameliorated when annexin A2 was down-regulated. Annexin A2 expression and phosphorylation were elevated in human RA synovial tissue. CONCLUSION Annexin A2 is a key molecule in the DDR-2/annexin A2/MMP-13 loop, the activation of which contributes to joint destruction in RA, mainly through promoting invasion of FLS. Annexin A2 might therefore become a novel clinical target for RA treatment.
Collapse
Affiliation(s)
- Wei Zhao
- Fourth Military Medical University, Xi'an, China, and Ningxia Medical University, Yinchuan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fhit delocalizes annexin a4 from plasma membrane to cytosol and sensitizes lung cancer cells to paclitaxel. PLoS One 2013; 8:e78610. [PMID: 24223161 PMCID: PMC3819369 DOI: 10.1371/journal.pone.0078610] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 09/14/2013] [Indexed: 11/29/2022] Open
Abstract
Fhit protein is lost or reduced in a large fraction of human tumors, and its restoration triggers apoptosis and suppresses tumor formation or progression in preclinical models. Here, we describe the identification of candidate Fhit-interacting proteins with cytosolic and plasma membrane localization. Among these, Annexin 4 (ANXA4) was validated by co-immunoprecipitation and confocal microscopy as a partner of this novel Fhit protein complex. Here we report that overexpression of Fhit prevents Annexin A4 translocation from cytosol to plasma membrane in A549 lung cancer cells treated with paclitaxel. Moreover, paclitaxel administration in combination with AdFHIT acts synergistically to increase the apoptotic rate of tumor cells both in vitro and in vivo experiments.
Collapse
|
18
|
Dong Z, Yao M, Zhang H, Wang L, Huang H, Yan M, Wu W, Yao D. Inhibition of Annexin A2 gene transcription is a promising molecular target for hepatoma cell proliferation and metastasis. Oncol Lett 2013; 7:28-34. [PMID: 24348815 PMCID: PMC3861549 DOI: 10.3892/ol.2013.1663] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 10/29/2013] [Indexed: 01/07/2023] Open
Abstract
Hepatocyte Annexin A2 (ANXA2) expression is associated with the progression and metastasis of hepatocellular carcinoma (HCC). Circulating ANXA2 levels in HCC patients are significantly higher compared with that of patients with benign liver disease. ANXA2 levels have been found to correlate with hepatitis B virus infection, extrahepatic metastasis and portal vein thrombus. By contrast, ANXA2 levels do not correlate with tumour size and AFP levels. However, the underlying mechanisms of ANXA2 remain obscure. The results of the current study identified that abnormalities in hepatic ANXA2 expression were localised to the cell membrane and cytoplasm of HCC tissues and mainly in the cytoplasm of para-cancerous tissues. ANXA2 was overexpressed in MHCC97-H cells which have high metastatic potential. Following specific ANXA2-small hairpin RNA (shRNA) transfection in vitro, ANXA-2 was effectively inhibited and the S phase ratio of cells was 27.76%, compared with 36.14% in mock-treated cells. In addition, the invading cell ratio was reduced in the shRNA-treated group (52.16%) compared with the mock-treated group (86.14%). The growth and volume of xenograft tumours in vivo was significantly suppressed (P<0.05) in the shRNA group compared with that of the mock group, indicating that ANXA2 may be a novel and useful target for elucidating molecular mechanisms involving the proliferation and metastasis of HCC.
Collapse
Affiliation(s)
- Zhizhen Dong
- Research Centre of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Min Yao
- Research Centre of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China ; Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Haijian Zhang
- Research Centre of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Li Wang
- Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Meijuan Yan
- Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wei Wu
- Research Centre of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Dengfu Yao
- Research Centre of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
19
|
Chugh S, Ouzounian M, Lu Z, Mohamed S, Li W, Bousette N, Liu PP, Gramolini AO. Pilot study identifying myosin heavy chain 7, desmin, insulin-like growth factor 7, and annexin A2 as circulating biomarkers of human heart failure. Proteomics 2013; 13:2324-34. [PMID: 23713052 DOI: 10.1002/pmic.201200455] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 12/25/2022]
Abstract
In-depth proteomic analyses offer a systematic way to investigate protein alterations in disease and, as such, can be a powerful tool for the identification of novel biomarkers. Here, we analyzed proteomic data from a transgenic mouse model with cardiac-specific overexpression of activated calcineurin (CnA), which results in severe cardiac hypertrophy. We applied statistically filtering and false discovery rate correction methods to identify 52 proteins that were significantly different in the CnA hearts compared to controls. Subsequent informatic analysis consisted of comparison of these 52 CnA proteins to another proteomic dataset of heart failure, three available independent microarray datasets, and correlation of their expression with the human plasma and urine proteome. Following this filtering strategy, four proteins passed these selection criteria, including myosin heavy chain 7, insulin-like growth factor-binding protein 7, annexin A2, and desmin. We assessed expression levels of these proteins in mouse plasma by immunoblotting, and observed significantly different levels of expression between healthy and failing mice for all four proteins. We verified antibody cross-reactivity by examining human cardiac explant tissue by immunoblotting. Finally, we assessed protein levels in plasma samples obtained from four unaffected and four heart failure patients and demonstrated that all four proteins increased between twofold and 150-fold in heart failure. We conclude that MYH7, IGFBP7, ANXA2, and DESM are all excellent candidate plasma biomarkers of heart failure in mouse and human.
Collapse
Affiliation(s)
- Shaan Chugh
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Heart and Stroke/Richard Lewar Centre of Cardiovascular Excellence, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Annexin A2 (A2) is a multicompartmental, multifunctional protein that orchestrates a growing spectrum of biologic processes. At the endothelial cell surface, A2 and S100A10 (p11) form a heterotetramer, which accelerates tissue plasminogen activator-dependent activation of the fibrinolytic protease, plasmin. In antiphospholipid syndrome, anti-A2 antibodies are associated with clinical thrombosis, whereas overexpression of A2 in acute promyelocytic leukemia promotes hyperfibrinolytic bleeding. A2 is upregulated in hypoxia, and mice deficient in A2 are resistant to oxygen-induced retinal neovascularization, suggesting a role for A2 in human retinal vascular proliferation. In solid malignancies, the (A2•p11)(2) tetramer may promote cancer cell invasion, whereas in multiple myeloma A2 enables malignant plasmacyte growth and predicts prognosis. In the central nervous system, the p11 enables membrane insertion of serotonin receptors that govern mood. In the peripheral nervous system, p11 directs sodium channels to the plasma membrane, enabling pain perception. In cerebral cortex neurons, A2 stabilizes the microtubule-associated tau protein, which, when mutated, is associated with frontotemporal dementia. In inflammatory dendritic cells, A2 maintains late endosomal/lysosomal membrane integrity, thus modulating inflammasome activation and cytokine secretion in a model of aseptic arthritis. Together, these findings suggest an emerging, multifaceted role for A2 in human health and disease.
Collapse
Affiliation(s)
- Min Luo
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York
| | - Katherine A. Hajjar
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
21
|
Loss of maternal annexin A5 increases the likelihood of placental platelet thrombosis and foetal loss. Sci Rep 2012; 2:827. [PMID: 23145320 PMCID: PMC3494014 DOI: 10.1038/srep00827] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 10/02/2012] [Indexed: 01/22/2023] Open
Abstract
Antiphospholipid syndrome is associated with an increased risk of thrombosis and pregnancy loss. Annexin A5 (Anxa5) is a candidate autoantigen. It is not known, however, whether endogenous Anxa5 prevents foetal loss during normal pregnancy. We found significant reductions in litter size and foetal weight in Anxa5-null mice (Anxa5-KO). These changes occurred even when only the mother was Anxa5-KO. A small amount of placental fibrin deposition was observed in the decidual tissues, but did not noticeably differ between wild-type and Anxa5-KO mice. However, immunoreactivity for integrin beta 3/CD61, a platelet marker, was demonstrated within thrombi in the arterial canals only in Anxa5-KO mothers. Subcutaneous administration of the anticoagulant heparin to pregnant Anxa5-KO mice significantly reduced pregnancy loss, suggesting that maternal Anxa5 is crucial for maintaining intact placental circulation. Hence, the presence of maternal Anxa5 minimises the risk of thrombosis in the placental circulation and reduces the risk of foetal loss.
Collapse
|
22
|
Patterson KC, Hogarth K, Husain AN, Sperling AI, Niewold TB. The clinical and immunologic features of pulmonary fibrosis in sarcoidosis. Transl Res 2012; 160:321-31. [PMID: 22683422 PMCID: PMC3910531 DOI: 10.1016/j.trsl.2012.03.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
Abstract
Sarcoidosis is a multisystem, granulomatous disease that most often affects the lungs. The clinical course is highly variable; many patients undergo spontaneous remission, but up to a third of patients progresses to a chronic disease course. The development of pulmonary fibrosis (PF) in a subset of patients with chronic disease has a negative impact on morbidity and mortality. While sarcoidosis-associated PF can be progressive, it is often referred to as "burnt out" disease, a designation reflecting inactive granulomatous inflammation. The immune mechanisms of sarcoidosis-associated PF are not well understood. It is not clear if fibrotic processes are active from the onset of sarcoidosis in predisposed individuals, or whether a profibrotic state develops as a response to ongoing inflammation. Transforming growth factor β (TGF-β) is an important profibrotic cytokine, and in sarcoidosis, distinct genotypes of TGF-β have been identified in those with PF. The overall cytokine profile in sarcoidosis-associated PF has not been well characterized, although a transition from a T helper 1 to a T helper 2 signature has been proposed. Macrophages have important regulatory interactions with fibroblasts, and the role of alveolar macrophages in sarcoidosis-associated PF is a compelling target for further study. Elucidating the natural history of sarcoidosis-associated PF will inform our understanding of the fundamental derangements, and will enhance prognostication and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Karen C Patterson
- Section of Pulmonary and Critical Care, University of Chicago, Chicago, Ill.
| | | | | | | | | |
Collapse
|
23
|
Maruo T, Ichikawa T, Kanzaki H, Inoue S, Kurozumi K, Onishi M, Yoshida K, Kambara H, Ouchida M, Shimizu K, Tamaru S, Chiocca EA, Date I. Proteomics-based analysis of invasion-related proteins in malignant gliomas. Neuropathology 2012; 33:264-75. [PMID: 23116197 DOI: 10.1111/j.1440-1789.2012.01361.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 12/25/2022]
Abstract
One of the insidious biological features of gliomas is their potential to extensively invade normal brain tissue, yet molecular mechanisms that dictate this locally invasive behavior remain poorly understood. To investigate the molecular basis of invasion by malignant gliomas, proteomic analysis was performed using a pair of canine glioma subclones - J3T-1 and J3T-2 - that show different invasion phenotypes in rat brains but have similar genetic backgrounds. Two-dimensional protein electrophoresis of whole-cell lysates of J3T-1 (angiogenesis-dependent invasion phenotype) and J3T-2 (angiogenesis-independent invasion phenotype) was performed. Twenty-two distinct spots were recognized when significant alteration was defined as more than 1.5-fold change in spot intensity between J3T-1 and J3T-2. Four proteins that demonstrated increased expression in J3T-1, and 14 proteins that demonstrated increased expression in J3T-2 were identified using liquid chromatography-mass spectrometry analysis. One of the proteins identified was annexin A2, which was expressed at higher levels in J3T-1 than in J3T-2. The higher expression of annexin A2 in J3T-1 was corroborated by quantitative RT-PCR of the cultured cells and immunohistochemical staining of the rat brain tumors. Moreover, immunohistochemical analysis of human glioblastoma specimens showed that annexin A2 was expressed at high levels in the tumor cells that formed clusters around dilated vessels. These results reveal differences in the proteomic profiles between these two cell lines that might correlate with their different invasion profiles. Thus, annexin A2 may be related to angiogenesis-dependent invasion.
Collapse
Affiliation(s)
- Tomoko Maruo
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
The annexin A2/S100A10 system in health and disease: emerging paradigms. J Biomed Biotechnol 2012; 2012:406273. [PMID: 23193360 PMCID: PMC3496855 DOI: 10.1155/2012/406273] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/15/2012] [Indexed: 12/31/2022] Open
Abstract
Since its discovery as a src kinase substrate more than three decades ago, appreciation for the physiologic functions of annexin A2 and its associated proteins has increased dramatically. With its binding partner S100A10 (p11), A2 forms a cell surface complex that regulates generation of the primary fibrinolytic protease, plasmin, and is dynamically regulated in settings of hemostasis and thrombosis. In addition, the complex is transcriptionally upregulated in hypoxia and promotes pathologic neoangiogenesis in the tissues such as the retina. Dysregulation of both A2 and p11 has been reported in examples of rodent and human cancer. Intracellularly, A2 plays a critical role in endosomal repair in postarthroplastic osteolysis, and intracellular p11 regulates serotonin receptor activity in psychiatric mood disorders. In human studies, the A2 system contributes to the coagulopathy of acute promyelocytic leukemia, and is a target of high-titer autoantibodies in patients with antiphospholipid syndrome, cerebral thrombosis, and possibly preeclampsia. Polymorphisms in the human ANXA2 gene have been associated with stroke and avascular osteonecrosis of bone, two severe complications of sickle cell disease. Together, these new findings suggest that manipulation of the annexin A2/S100A10 system may offer promising new avenues for treatment of a spectrum of human disorders.
Collapse
|
25
|
Abstract
Sarcoidosis is a chronic granulomatous disease with a wide spectrum of symptoms. Genome-wide association studies in European populations have reported significant associations between sarcoidosis and single nucleotide polymorphisms (SNPs) located in the inter-genic region between the C10ORF67 and OTUD1 genes on chromosome 10p12, and the ANXA11 gene (chromosome 10q22). We carried out fine-mapping at 10p12 and 10q22 to assess associations of genetic variants in those regions with sarcoidosis risk in African American women, based on 486 sarcoidosis cases and 943 age- and geography-matched controls in a nested case-control study within the Black Women’s Health Study. There were no significant associations with variants of the ANXA11 gene (P=0.17). Haplotypic analyses of the C10ORF67-OTUD1 inter-genic region revealed a strong inverse association of the variants rs1398024 and rs11013452 with sarcoidosis (OR=0.52; P=0.01). Both SNPs are located inside a ~300 kb low recombination region of chromosome 10p12, suggesting that both SNPs are tagging the same causal variant. Our top SNP (rs11013452) is located inside a smaller LD block in HapMap YRI, further narrowing the position of the causal SNP to a region of ~ 8kb on chromosome 10p12. The present findings confirm the potential importance of the 10p12 locus in the etiology of sarcoidosis.
Collapse
|
26
|
Bandorowicz-Pikula J, Wos M, Pikula S. Do annexins participate in lipid messenger mediated intracellular signaling? A question revisited. Mol Membr Biol 2012; 29:229-42. [PMID: 22694075 DOI: 10.3109/09687688.2012.693210] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Annexins are physiologically important proteins that play a role in calcium buffering but also influence membrane structure, participate in Ca²⁺-dependent membrane repair events and in remodelling of the cytoskeleton. Thirty years ago several peptides isolated from lung perfusates, peritoneal leukocytes, neutrophiles and renal cells were proven inhibitory to the activity of phospholipase A₂. Those peptides were found to derive from structurally related proteins: annexins AnxA1 and AnxA2. These findings raised the question whether annexins may participate in regulation of the production of lipid second messengers and, therefore, modulate numerous lipid mediated signaling pathways in the cell. Recent advances in the field of annexins made also with the use of knock-out animal models revealed that these proteins are indeed important constituents of specific signaling pathways. In this review we provide evidence supporting the hypothesis that annexins, as membrane-binding proteins and organizers of the membrane lateral heterogeneity, may participate in lipid mediated signaling pathways by affecting the distribution and activity of lipid metabolizing enzymes (most of the reports point to phospholipase A₂) and of protein kinases regulating activity of these enzymes. Moreover, some experimental data suggest that annexins may directly interact with lipid metabolizing enzymes and, in a calcium-dependent or independent manner, with some of their substrates and products. On the basis of these observations, many investigators suggest that annexins are capable of linking Ca²⁺, redox and lipid signaling to coordinate vital cellular responses to the environmental stimuli.
Collapse
Affiliation(s)
- Joanna Bandorowicz-Pikula
- Laboratory of Cellular Metabolism, Department of Biochemistry, Nencki Institute of Experimental Biology, PL 02-093 Warsaw, Poland.
| | | | | |
Collapse
|
27
|
Domon M, Nasir MN, Matar G, Pikula S, Besson F, Bandorowicz-Pikula J. Annexins as organizers of cholesterol- and sphingomyelin-enriched membrane microdomains in Niemann-Pick type C disease. Cell Mol Life Sci 2012; 69:1773-85. [PMID: 22159585 PMCID: PMC11114673 DOI: 10.1007/s00018-011-0894-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 01/22/2023]
Abstract
Growing evidence suggests that membrane microdomains enriched in cholesterol and sphingomyelin are sites for numerous cellular processes, including signaling, vesicular transport, interaction with pathogens, and viral infection, etc. Recently some members of the annexin family of conserved calcium and membrane-binding proteins have been recognized as cholesterol-interacting molecules and suggested to play a role in the formation, stabilization, and dynamics of membrane microdomains to affect membrane lateral organization and to attract other proteins and signaling molecules onto their territory. Furthermore, annexins were implicated in the interactions between cytosolic and membrane molecules, in the turnover and storage of cholesterol and in various signaling pathways. In this review, we focus on the mechanisms of interaction of annexins with lipid microdomains and the role of annexins in membrane microdomains dynamics including possible participation of the domain-associated forms of annexins in the etiology of human lysosomal storage disease called Niemann-Pick type C disease, related to the abnormal storage of cholesterol in the lysosome-like intracellular compartment. The involvement of annexins and cholesterol/sphingomyelin-enriched membrane microdomains in other pathologies including cardiac dysfunctions, neurodegenerative diseases, obesity, diabetes mellitus, and cancer is likely, but is not supported by substantial experimental observations, and therefore awaits further clarification.
Collapse
Affiliation(s)
- Magdalena Domon
- Laboratory of Lipid Biochemistry, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
28
|
Cao Z, Han Z, Shao Y, Liu X, Sun J, Yu D, Kong X, Liu S. Proteomics analysis of differentially expressed proteins in chicken trachea and kidney after infection with the highly virulent and attenuated coronavirus infectious bronchitis virus in vivo. Proteome Sci 2012; 10:24. [PMID: 22463732 PMCID: PMC3342233 DOI: 10.1186/1477-5956-10-24] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/31/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Infectious bronchitis virus (IBV) is first to be discovered coronavirus which is probably endemic in all regions with intensive impact on poultry production. In this study, we used two-dimensional gel electrophoresis (2-DE) and two-dimensional fluorescence difference gel electrophoresis (2-DIGE), coupled with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS), to explore the global proteome profiles of trachea and kidney tissues from chicken at different stages infected in vivo with the highly virulent ck/CH/LDL/97I P5 strain of infectious bronchitis virus (IBV) and the embryo-passaged, attenuated ck/CH/LDL/97I P115 strain. RESULTS Fifty-eight differentially expressed proteins were identified. Results demonstrated that some proteins which had functions in cytoskeleton organization, anti-oxidative stress, and stress response, showed different change patterns in abundance from chicken infected with the highly virulent ck/CH/LDL/97I P5 strain and those given the embryo-passaged, attenuated P115 stain. In addition, the dynamic transcriptional alterations of 12 selected proteins were analyzed by the real-time RT-PCR, and western blot analysis confirmed the change in abundance of heat shock proteins (HSP) beta-1, annexin A2, and annexin A5. CONCLUSIONS The proteomic alterations described here may suggest that these changes to protein expression correlate with IBV virus' virulence in chicken, hence provides valuable insights into the interactions of IBV with its host and may also assist with investigations of the pathogenesis of IBV and other coronavirus infections.
Collapse
Affiliation(s)
- Zhongzan Cao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Grieve AG, Moss SE, Hayes MJ. Annexin A2 at the interface of actin and membrane dynamics: a focus on its roles in endocytosis and cell polarization. Int J Cell Biol 2012; 2012:852430. [PMID: 22505935 PMCID: PMC3296266 DOI: 10.1155/2012/852430] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/16/2011] [Accepted: 12/13/2011] [Indexed: 12/15/2022] Open
Abstract
Annexins are a family of calcium- and phospholipid-binding proteins found in nearly all eukaryotes. They are structurally highly conserved and have been implicated in a wide range of cellular activities. In this paper, we focus on Annexin A2 (AnxA2). Altered expression of this protein has been identified in a wide variety of cancers, has also been found on the HIV particle, and has been implicated in the maturation of the virus. Recently, it has also been shown to have an important role in the establishment of normal apical polarity in epithelial cells. We synthesize here the known biochemical properties of this protein and the extensive literature concerning its involvement in the endocytic pathway. We stress the importance of AnxA2 as a platform for actin remodeling in the vicinity of dynamic cellular membranes, in the hope that this may shed light on the normal functions of the protein and its contribution to disease.
Collapse
Affiliation(s)
- Adam G. Grieve
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Stephen E. Moss
- Division of Cell Biology, UCL Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL London, UK
| | - Matthew J. Hayes
- Division of Cell Biology, UCL Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL London, UK
| |
Collapse
|
30
|
Kamada T, Kurokawa MS, Kato T, Takenouchi K, Takahashi K, Yoshioka T, Uchida T, Mitsui H, Suematsu N, Okamoto K, Yudo K, Katayama Y, Nakamura H. Proteomic analysis of bone marrow-adherent cells in rheumatoid arthritis and osteoarthritis. Int J Rheum Dis 2012; 15:169-78. [DOI: 10.1111/j.1756-185x.2012.01702.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Kazuo Yudo
- Department of Frontier Medicine; Institute of Medical Science; St. Marianna University Graduate School of Medicine; Kawasaki
| | - Yasuo Katayama
- Department of Frontier Medicine; Institute of Medical Science; St. Marianna University Graduate School of Medicine; Kawasaki
| | | |
Collapse
|
31
|
Munksgaard PP, Mansilla F, Brems Eskildsen AS, Fristrup N, Birkenkamp-Demtröder K, Ulhøi BP, Borre M, Agerbæk M, Hermann GG, Orntoft TF, Dyrskjøt L. Low ANXA10 expression is associated with disease aggressiveness in bladder cancer. Br J Cancer 2011; 105:1379-87. [PMID: 21979422 PMCID: PMC3241563 DOI: 10.1038/bjc.2011.404] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Markers for outcome prediction in bladder cancer are urgently needed. We have previously identified a molecular signature for predicting progression in non-muscle-invasive bladder cancer. ANXA10 was one of the markers included in the signature and we now validated the prognostic relevance of ANXA10 at the protein level. Methods: We investigated ANXA10 expression by immunohistochemistry using a tissue microarray with 249 Ta and T1 urothelial carcinomas. The expression of ANXA10 was also investigated in an additional set of 97 more advanced tumours. The functional role of ANXA10 in cell lines was investigated by siRNA-mediated ANXA10 knockdown using wound-healing assays, proliferation assays, and ingenuity pathway analysis. Results: Low expression of ANXA10 correlated with shorter progression-free survival in patients with stage Ta and T1 tumours (P<0.00001). Furthermore, patients with more advanced tumours and low ANXA10 expression had an unfavourable prognosis (P<0.00001). We found that ANXA10 siRNA transfected cells grew significantly faster compared with control siRNA transfected cells. Furthermore, a wound-healing assay showed that ANXA10 siRNA transfected cells spread along wound edges faster than control transfected cells. Conclusion: We conclude that ANXA10 may be a clinical relevant marker for predicting outcome in both early and advanced stages of bladder cancer.
Collapse
Affiliation(s)
- P P Munksgaard
- Department of Molecular Medicine, Aarhus University Hospital, Skejby, Aarhus N, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Candidate genes involving in tumorigenesis of cholangiocarcinoma induced by Opisthorchis viverrini infection. Parasitol Res 2011; 109:657-73. [DOI: 10.1007/s00436-011-2298-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/17/2011] [Indexed: 01/21/2023]
|
33
|
The influence of PCSK9 polymorphisms on serum low-density lipoprotein cholesterol and risk of atherosclerosis. Curr Atheroscler Rep 2010; 12:308-15. [PMID: 20623344 DOI: 10.1007/s11883-010-0123-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pro-protein-convertase-subtilisin-kexin-9 (PCSK9) enhances the degradation of the low-density lipoprotein receptor (LDLR) that plays a major role in cholesterol homeostasis. Recent advances have revealed a large number of genetic variants of PCSK9 that may modulate plasma cholesterol levels either positively or negatively, therefore influencing the risk of atherosclerosis. Recognition of these mutants may have clinical implication in assessing severity of disease, prognosis, or response to drug therapy. PCSK9's expression, secretion, and plasma levels maybe modulated by the proprotein convertase furin, by natural inhibitors (annexin-A2), or influenced by lipid-altering agents such as statins, fibrates, ezetimibe, and berberine. It is now a prime target for therapy, prompting the development of various approaches to reduce its LDLR degrading activity, including antibody neutralization, anti-sense oligonucleotides such as phosphorothioates, locked nucleic acids, and RNA interference, and eventually small molecule inhibitors. Which one will be clinically applicable will depend on long-term effects, cost, and ease of administration.
Collapse
|
34
|
Identification, phylogenetic relationships, characterization and gene expression patterns of six different annexins of channel catfish (Ictalurus punctatus Rafinesque, 1818). Vet Immunol Immunopathol 2010; 136:176-83. [DOI: 10.1016/j.vetimm.2010.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/05/2010] [Accepted: 02/17/2010] [Indexed: 11/21/2022]
|
35
|
Monastyrskaya K, Babiychuk EB, Draeger A. The annexins: spatial and temporal coordination of signaling events during cellular stress. Cell Mol Life Sci 2009; 66:2623-42. [PMID: 19381436 PMCID: PMC11115530 DOI: 10.1007/s00018-009-0027-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/09/2009] [Accepted: 03/27/2009] [Indexed: 12/15/2022]
Abstract
Annexins are a family of structurally related, Ca2+-sensitive proteins that bind to negatively charged phospholipids and establish specific interactions with other lipids and lipid microdomains. They are present in all eukaryotic cells and share a common folding motif, the "annexin core", which incorporates Ca2+- and membrane-binding sites. Annexins participate in a variety of intracellular processes, ranging from the regulation of membrane dynamics to cell migration, proliferation, and apoptosis. Here we focus on the role of annexins in cellular signaling during stress. A chronic stress response triggers the activation of different intracellular pathways, resulting in profound changes in Ca2+ and pH homeostasis and the production of lipid second messengers. We review the latest data on how these changes are sensed by the annexins, which have the ability to simultaneously interact with specific lipid and protein moieties at the plasma membrane, contributing to stress adaptation via regulation of various signaling pathways.
Collapse
Affiliation(s)
- Katia Monastyrskaya
- Department of Cell Biology, Institute of Anatomy, University of Bern, 3000 Bern 9, Switzerland.
| | | | | |
Collapse
|
36
|
González-Reyes S, García-Manso A, Del Barrio G, Dalton KP, González-Molleda L, Arrojo-Fernández J, Nicieza I, Parra F. Role of annexin A2 in cellular entry of rabbit vesivirus. J Gen Virol 2009; 90:2724-2730. [PMID: 19605586 DOI: 10.1099/vir.0.013276-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanisms of calicivirus attachment and internalization are not well understood, mainly due to the lack of a reliable cell-culture system for most of its members. In this study, rabbit vesivirus (RaV) virions were shown to bind annexin A2 (ANXA2) in a membrane protein fraction from HEK293T cells, using a virus overlay protein-binding assay and matrix-assisted laser desorption/ionization time-of-flight analysis. A monoclonal anti-ANXA2 antibody and small interfering RNA-mediated knockdown of ANXA2 expression in HEK293T cells reduced virus infection significantly, further supporting the role of ANXA2 in RaV attachment and/or internalization.
Collapse
Affiliation(s)
- Salomé González-Reyes
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Alberto García-Manso
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Gloria Del Barrio
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Kevin P Dalton
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Lorenzo González-Molleda
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - José Arrojo-Fernández
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Inés Nicieza
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Francisco Parra
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
37
|
Law AL, Ling Q, Hajjar KA, Futter CE, Greenwood J, Adamson P, Wavre-Shapton ST, Moss SE, Hayes MJ. Annexin A2 regulates phagocytosis of photoreceptor outer segments in the mouse retina. Mol Biol Cell 2009; 20:3896-904. [PMID: 19587120 DOI: 10.1091/mbc.e08-12-1204] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The daily phagocytosis of shed photoreceptor outer segments by pigment epithelial cells is critical for the maintenance of the retina. In a subtractive polymerase chain reaction analysis, we found that functional differentiation of human ARPE19 retinal pigment epithelial (RPE) cells is accompanied by up-regulation of annexin (anx) A2, a major Src substrate and regulator of membrane-cytoskeleton dynamics. Here, we show that anx A2 is recruited to the nascent phagocytic cup in vitro and in vivo and that it fully dissociates once the phagosome is internalized. In ARPE19 cells depleted of anx A2 by using small interfering RNA and in ANX A2(-/-) mice the phagocytosis of outer segments was impaired, and in ANX A2(-/-) mice there was an accumulation of phagocytosed outer segments in the RPE apical processes, indicative of retarded phagosome transport. We show that anx A2 is tyrosine phosphorylated at the onset of phagocytosis and that the synchronized activation of focal adhesion kinase and c-Src is abnormal in ANX A2(-/-) mice. These findings reveal that anx A2 is involved in the circadian regulation of outer segment phagocytosis, and they provide new insight into the protein machinery that regulates phagocytic function in RPE cells.
Collapse
Affiliation(s)
- Ah-Lai Law
- Department of Cell Biology, University College London Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The annexins are a super-family of closely related calcium and membrane-binding proteins. They have a diverse range of cellular functions that include vesicle trafficking, cell division, apoptosis, calcium signalling and growth regulation. Many studies have shown the annexins to be among the genes whose expression are consistently differentially altered in neoplasia. Some annexins show increased expression in specific types of tumours, while others show loss of expression. Mechanistic studies relating the changes in annexin expression to tumour cell function, particularly tumour invasion and metastasis, angiogenesis and drug resistance, are now also emerging. Changes in the expression of individual annexins are associated with particular types of tumour and hence the annexins may also be useful biomarkers in the clinic.
Collapse
Affiliation(s)
- S Mussunoor
- Department of Pathology, University of Aberdeen, UK
| | | |
Collapse
|
39
|
Hofmann S, Franke A, Fischer A, Jacobs G, Nothnagel M, Gaede KI, Schürmann M, Müller-Quernheim J, Krawczak M, Rosenstiel P, Schreiber S. Genome-wide association study identifies ANXA11 as a new susceptibility locus for sarcoidosis. Nat Genet 2008; 40:1103-6. [DOI: 10.1038/ng.198] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|