1
|
The Effect of Mycorrhizal Inoculum and Phosphorus Treatment on Growth and Flowering of Ajania (Ajania pacifica (Nakai) Bremer et Humphries) Plant. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7070178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The influence of mycorrhizal inoculum in combination with different phosphorus treatments on growth and flowering parameters of Ajania (Ajania pacifica (Nakai) Bremer et Humphries) plants was investigated in two growing seasons (2015 and 2016). Plants of the cultivar ‘Silver and Gold’ were transplanted into pots either with added mycorrhizal inoculum or without inoculum and assigned to four phosphorus treatments. Mycorrhizal colonization was assessed by evaluating the frequency of colonization, intensity of colonization and density of fungal structures (arbuscules, vesicles, coils and microsclerotia) in the roots. During the growing season, the content of plant available phosphorus in the soil was analyzed, and shoot length, number of shoots, number of inflorescences, number of flowers and flowering time were evaluated. Inoculated Ajania plants were successfully colonized with arbuscular mycorrhizal fungi and dark septate endophytic fungi. In the root segments, hyphae were mainly observed, as well as vesicles, coils, arbuscules and microsclerotia, but in lower density. The density of fungal structures did not differ among phosphorus treatments, but did differ between years, with a higher density of fungal structures in 2016. Mycorrhizal plants developed higher number of shoots in 2016, higher number of inflorescences, higher number of flowers, and they flowered longer compared to uninoculated plants.
Collapse
|
2
|
Ingraffia R, Saia S, Giovino A, Amato G, Badagliacca G, Giambalvo D, Martinelli F, Ruisi P, Frenda AS. Addition of high C:N crop residues to a P-limited substrate constrains the benefits of arbuscular mycorrhizal symbiosis for wheat P and N nutrition. MYCORRHIZA 2021; 31:441-454. [PMID: 33893547 PMCID: PMC8266712 DOI: 10.1007/s00572-021-01031-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/07/2021] [Indexed: 05/18/2023]
Abstract
Many aspects concerning the role of arbuscular mycorrhizal (AM) fungi in plant nutrient uptake from organic sources remain unclear. Here, we investigated the contribution of AM symbiosis to N and P uptake by durum wheat after the addition of a high C:N biomass to a P-limited soil. Plants were grown in pots in the presence or absence of a multispecies AM inoculum, with (Org) or without (Ctr) the addition of 15N-labelled organic matter (OM). A further treatment, in which 15N was applied in mineral form (Ctr+N) in the same amount as that supplied in the Org treatment, was also included. Inoculation with AM had positive effects on plant growth in both control treatments (Ctr and Ctr+N), mainly linked to an increase in plant P uptake. The addition of OM, increasing the P available in the soil for the plants, resulted in a marked decrease in the contribution of AM symbiosis to plant growth and nutrient uptake, although the percentage of mycorrhization was higher in the Org treatment than in the controls. In addition, mycorrhization drastically reduced the recovery of 15N from the OM added to the soil whereas it slightly increased the N recovery from the mineral fertiliser. This suggests that plants and AM fungi probably exert a differential competition for different sources of N available in the soil. On the whole, our results provide a contribution to a better understanding of the conditions under which AM fungi can play an effective role in mitigating the negative effects of nutritional stresses in plants.
Collapse
Affiliation(s)
- Rosolino Ingraffia
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Sergio Saia
- Department of Veterinary Sciences, University of Pisa, Via delle Piagge 2, 56124, Pisa, Italy
| | - Antonio Giovino
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification (CREA-DC), SS 113 km 245.500, 90011, Bagheria (PA), Italy
| | - Gaetano Amato
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Giuseppe Badagliacca
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Feo di Vito, 89124, Reggio Calabria, Italy
| | - Dario Giambalvo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Federico Martinelli
- Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino (FI), Italy
| | - Paolo Ruisi
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy.
| | - Alfonso S Frenda
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| |
Collapse
|
3
|
Chan WF, Li WC, Wong MH. Uptake Kinetics of Arsenic in Upland Rice Cultivar Zhonghan 221 Inoculated with Arbuscular Mycorrhizal Fungi. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:1073-1080. [PMID: 25901895 DOI: 10.1080/15226514.2015.1021952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) appear to be highly associated with arsenic (As) uptake in host plants because arsenate (As(V)) and phosphorus (P) share the same transporter, whereby AMF can enhance P uptake. A short-term experiment was conducted for low- (0 to 0.05 mM As) and high-affinity (0 to 2.5 mM As) uptake systems, to investigate the AMF role on As uptake mechanism in plants, which may explain As uptake kinetics in upland rice cultivar: Zhonghan 221. When concentration of As ranged from 0 to 0.05 mM, Funneliformis geosporum (Fg) significantly decreased arsenite (As(III)) and monomethylarsonicacid (MMA) uptake when (p < 0.05) compared to non-mycorrhizal (NM) treatment, since the major route for (As(III)) in rice roots-rice silicon transporter Lsi1 would be influenced by Fg inoculation at high As concentrations. Fg can also reduce As(V) uptake significantly (p < 0.05) under both uptake systems relative to NM treatment, whereas, Funneliformis mosseae (Fm) increased As(V) and MMA uptake in rice roots, with MMA uptake rate generally lower than As(III) and As(V). Using suitable AMF species inoculation with rice, As uptake and accumulation in rice grains can be reduced and the risk to human health, once consumed, can be minimized.
Collapse
Affiliation(s)
- W F Chan
- a Croucher Institute for Environmental Sciences, and Department of Biology Hong Kong Baptist University , Hong Kong SAR
| | | | | |
Collapse
|
4
|
Saia S, Amato G, Frenda AS, Giambalvo D, Ruisi P. Influence of arbuscular mycorrhizae on biomass production and nitrogen fixation of berseem clover plants subjected to water stress. PLoS One 2014; 9:e90738. [PMID: 24595111 PMCID: PMC3940947 DOI: 10.1371/journal.pone.0090738] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/06/2014] [Indexed: 11/18/2022] Open
Abstract
Several studies, performed mainly in pots, have shown that arbuscular mycorrhizal symbiosis can mitigate the negative effects of water stress on plant growth. No information is available about the effects of arbuscular mycorrhizal symbiosis on berseem clover growth and nitrogen (N) fixation under conditions of water shortage. A field experiment was conducted in a hilly area of inner Sicily, Italy, to determine whether symbiosis with AM fungi can mitigate the detrimental effects of drought stress (which in the Mediterranean often occurs during the late period of the growing season) on forage yield and symbiotic N2 fixation of berseem clover. Soil was either left under water stress (i.e., rain-fed conditions) or the crop was well-watered. Mycorrhization treatments consisted of inoculation of berseem clover seeds with arbuscular mycorrhizal spores or suppression of arbuscular mycorrhizal symbiosis by means of fungicide treatments. Nitrogen biological fixation was assessed using the 15N-isotope dilution technique. Arbuscular mycorrhizal symbiosis was able to mitigate the negative effect of water stress on berseem clover grown in a typical semiarid Mediterranean environment. In fact, under water stress conditions, arbuscular mycorrhizal symbiosis resulted in increases in total biomass, N content, and N fixation, whereas no effect of crop mycorrhization was observed in the well-watered treatment.
Collapse
Affiliation(s)
- Sergio Saia
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Gaetano Amato
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | | | - Dario Giambalvo
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Paolo Ruisi
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Palermo, Italy
- * E-mail:
| |
Collapse
|