1
|
Goldman SA, Franklin RJM, Osorio J. Stem and progenitor cell-based therapy of myelin disorders. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:283-295. [PMID: 39341659 DOI: 10.1016/b978-0-323-90120-8.00015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Much of clinical neurology is concerned with diseases of-or involving-the brain's subcortical white matter. Common to these disorders is the loss of myelin, reflecting the elimination or dysfunction of oligodendrocytes and fibrous astrocytes. As such, the introduction of glial progenitor cells, which can give rise to new oligodendrocytes and astrocytes alike, may be a feasible strategy for treating a broad variety of conditions in which white matter loss is causally involved. This review first covers the sourcing and production of human glial progenitor cells, and the preclinical evidence for their efficacy in achieving myelin restoration in vivo. It then discusses both pediatric and adult disease targets for which transplanted glial progenitors may prove of therapeutic value, those challenges that remain in the clinical application of a glial cell replacement strategy, and the clinical endpoints by which the efficacy of this approach may be assessed.
Collapse
Affiliation(s)
- Steven A Goldman
- Sana Biotechnology, Cambridge, MA, United States; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, United States; University of Copenhagen Faculty of Medicine, Copenhagen, Denmark.
| | | | - Joana Osorio
- Sana Biotechnology, Cambridge, MA, United States; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
2
|
Giordano C, Albani D, Gloria A, Tunesi M, Batelli S, Russo T, Forloni G, Ambrosio L, Cigada A. Multidisciplinary Perspectives for Alzheimer's and Parkinson's Diseases: Hydrogels for Protein Delivery and Cell-Based Drug Delivery as Therapeutic Strategies. Int J Artif Organs 2018; 32:836-50. [DOI: 10.1177/039139880903201202] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review presents two intriguing multidisciplinary strategies that might make the difference in the treatment of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The first proposed strategy is based on the controlled delivery of recombinant proteins known to play a key role in these neurodegenerative disorders that are released in situ by optimized polymer-based systems. The second strategy is the use of engineered cells, encapsulated and delivered in situ by suitable polymer-based systems, that act as drug reservoirs and allow the delivery of selected molecules to be used in the treatment of Alzheimer's and Parkinson's diseases. In both these scenarios, the design and development of optimized polymer-based drug delivery and cell housing systems for central nervous system applications represent a key requirement. Materials science provides suitable hydrogel-based tools to be optimized together with suitably designed recombinant proteins or drug delivering-cells that, once in situ, can provide an effective treatment for these neurodegenerative disorders. In this scenario, only interdisciplinary research that fully integrates biology, biochemistry, medicine and materials science can provide a springboard for the development of suitable therapeutic tools, not only for the treatment of Alzheimer's and Parkinson's diseases but also, prospectively, for a wide range of severe neurodegenerative disorders.
Collapse
Affiliation(s)
- Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan - Italy
| | - Diego Albani
- Department of Neuroscience, Institute for Pharmacological Research “Mario Negri”, Milan - Italy
| | - Antonio Gloria
- Institute of Composite and Biomedical Materials, National Research Council, Naples - Italy
| | - Marta Tunesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan - Italy
| | - Sara Batelli
- Department of Neuroscience, Institute for Pharmacological Research “Mario Negri”, Milan - Italy
| | - Teresa Russo
- Department of Materials and Production Engineering, University of Naples “Federico II”, Naples - Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Institute for Pharmacological Research “Mario Negri”, Milan - Italy
| | - Luigi Ambrosio
- Institute of Composite and Biomedical Materials, National Research Council, Naples - Italy
| | - Alberto Cigada
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan - Italy
| |
Collapse
|
3
|
Sorting the wheat from the chaff in dopamine neuron-based cell therapies. Proc Natl Acad Sci U S A 2015; 112:4512-3. [PMID: 25848026 DOI: 10.1073/pnas.1503859112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
4
|
Transcriptome analysis reveals transmembrane targets on transplantable midbrain dopamine progenitors. Proc Natl Acad Sci U S A 2015; 112:E1946-55. [PMID: 25775569 DOI: 10.1073/pnas.1501989112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An important challenge for the continued development of cell therapy for Parkinson's disease (PD) is the establishment of procedures that better standardize cell preparations for use in transplantation. Although cell sorting has been an anticipated strategy, its application has been limited by lack of knowledge regarding transmembrane proteins that can be used to target and isolate progenitors for midbrain dopamine (mDA) neurons. We used a "FACS-array" approach to identify 18 genes for transmembrane proteins with high expression in mDA progenitors and describe the utility of four of these targets (Alcam, Chl1, Gfra1, and Igsf8) for isolating mDA progenitors from rat primary ventral mesencephalon through flow cytometry. Alcam and Chl1 facilitated a significant enrichment of mDA neurons following transplantation, while targeting of Gfra1 allowed for robust separation of dopamine and serotonin neurons. Importantly, we also show that mDA progenitors isolated on the basis of transmembrane proteins are capable of extensive, functional innervation of the host striatum and correction of motor impairment in a unilateral model of PD. These results are highly relevant for current efforts to establish safe and effective stem cell-based procedures for PD, where clinical translation will almost certainly require safety and standardization measures in order to deliver well-characterized cell preparations.
Collapse
|
5
|
Menon V, Thomas R, Ghale AR, Reinhard C, Pruszak J. Flow cytometry protocols for surface and intracellular antigen analyses of neural cell types. J Vis Exp 2014:52241. [PMID: 25549236 PMCID: PMC4396953 DOI: 10.3791/52241] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Flow cytometry has been extensively used to define cell populations in immunology, hematology and oncology. Here, we provide a detailed description of protocols for flow cytometric analysis of the cluster of differentiation (CD) surface antigens and intracellular antigens in neural cell types. Our step-by-step description of the methodological procedures include: the harvesting of neural in vitro cultures, an optional carboxyfluorescein succinimidyl ester (CFSE)-labeling step, followed by surface antigen staining with conjugated CD antibodies (e.g., CD24, CD54), and subsequent intracellar antigen detection via primary/secondary antibodies or fluorescently labeled Fab fragments (Zenon labeling). The video demonstrates the most critical steps. Moreover, principles of experimental planning, the inclusion of critical controls, and fundamentals of flow cytometric analysis (identification of target population and exclusion of debris; gating strategy; compensation for spectral overlap) are briefly explained in order to enable neurobiologists with limited prior knowledge or specific training in flow cytometry to assess its utility and to better exploit this powerful methodology.
Collapse
Affiliation(s)
- Vishal Menon
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg
| | - Ria Thomas
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg; Spemann Graduate School of Biology and Medicine and Faculty of Biology, University of Freiburg
| | - Arun R Ghale
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg; School of Life Sciences, Keele University
| | - Christina Reinhard
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg
| | - Jan Pruszak
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg; Center for Biological Signaling Studies (BIOSS), University of Freiburg;
| |
Collapse
|
6
|
Pruszak J. A brief perspective on neural cell therapy. MOLECULAR AND CELLULAR THERAPIES 2014; 2:2. [PMID: 26056571 PMCID: PMC4452046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/18/2013] [Indexed: 11/21/2023]
Abstract
For a range of nervous system disorders current treatment options remain limited. Focusing on Parkinson's disease as a neurodegenerative entity that affects an increasing quantity of people in our aging societies, we briefly discuss remaining challenges and opportunities that neural stem cell therapy might be able to offer. Providing a snapshot of neural transplantation paradigms, we contemplate possible imminent translational scenarios and discuss critical requirements to be considered before clinical implementation.
Collapse
Affiliation(s)
- Jan Pruszak
- Emmy Noether-Group for Stem Cell Biology, Institute of Anatomy and Cell Biology, University of Freiburg, Albertstr. 17, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Pruszak J. A brief perspective on neural cell therapy. MOLECULAR AND CELLULAR THERAPIES 2014; 2:2. [PMID: 26056571 PMCID: PMC4452046 DOI: 10.1186/2052-8426-2-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/18/2013] [Indexed: 11/25/2022]
Abstract
For a range of nervous system disorders current treatment options remain limited. Focusing on Parkinson’s disease as a neurodegenerative entity that affects an increasing quantity of people in our aging societies, we briefly discuss remaining challenges and opportunities that neural stem cell therapy might be able to offer. Providing a snapshot of neural transplantation paradigms, we contemplate possible imminent translational scenarios and discuss critical requirements to be considered before clinical implementation.
Collapse
Affiliation(s)
- Jan Pruszak
- Emmy Noether-Group for Stem Cell Biology, Institute of Anatomy and Cell Biology, University of Freiburg, Albertstr. 17, 79104 Freiburg, Germany
| |
Collapse
|
8
|
Abstract
The nervous system is characterized by its complex network of highly specialized cells that enable us to perceive stimuli from the outside world and react accordingly. The computational integration enabled by these networks remains to be elucidated, but appropriate sensory input, processing, and motor control are certainly essential for survival. Consequently, loss of nervous tissue due to injury or disease represents a considerable biomedical challenge. Stem cell research offers the promise to provide cells for nervous system repair to replace lost and damaged neural tissue and alleviate disease. We provide a protocol-based chapter on fundamental principles and procedures of pluripotent stem cell (PSC) differentiation and neural transplantation. Rather than detailed methodological step-by-step descriptions of these procedures, we provide an overview and highlight the most critical aspects and key steps of PSC neural induction, subtype specification in different in vitro systems, as well as neural cell transplantation to the central nervous system. We conclude with a summary of suitable readout methods including in vitro phenotypic analysis, histology, and functional analysis in vivo.
Collapse
|
9
|
Lessons from the embryonic neural stem cell niche for neural lineage differentiation of pluripotent stem cells. Stem Cell Rev Rep 2012; 8:813-29. [PMID: 22628111 PMCID: PMC3412081 DOI: 10.1007/s12015-012-9381-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pluripotent stem cells offer an abundant and malleable source for the generation of differentiated cells for transplantation as well as for in vitro screens. Patterning and differentiation protocols have been developed to generate neural progeny from human embryonic or induced pluripotent stem cells. However, continued refinement is required to enhance efficiency and to prevent the generation of unwanted cell types. We summarize and interpret insights gained from studies of embryonic neuroepithelium. A multitude of factors including soluble molecules, interactions with the extracellular matrix and neighboring cells cooperate to control neural stem cell self-renewal versus differentiation. Applying these findings and concepts to human stem cell systems in vitro may yield more appropriately patterned cell types for biomedical applications.
Collapse
|
10
|
Kozlova EN, Berens C. Guiding Differentiation of Stem Cells in Vivo by Tetracycline-Controlled Expression of Key Transcription Factors. Cell Transplant 2012; 21:2537-54. [DOI: 10.3727/096368911x637407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transplantation of stem or progenitor cells is an attractive strategy for cell replacement therapy. However, poor long-term survival and insufficiently reproducible differentiation to functionally appropriate cells in vivo still present major obstacles for translation of this methodology to clinical applications. Numerous experimental studies have revealed that the expression of just a few transcription factors can be sufficient to drive stem cell differentiation toward a specific cell type, to transdifferentiate cells from one fate to another, or to dedifferentiate mature cells to pluripotent stem/progenitor cells (iPSCs). We thus propose here to apply the strategy of expressing the relevant key transcription factors to guide the differentiation of transplanted cells to the desired cell fate in vivo. To achieve this requires tools allowing us to control the expression of these genes in the transplant. Here, we describe drug-inducible systems that allow us to sequentially and timely activate gene expression from the outside, with a particular emphasis on the Tet system, which has been widely and successfully used in stem cells. These regulatory systems offer a tool for strictly limiting gene expression to the respective optimal stage after transplantation. This approach will direct the differentiation of the immature stem/progenitor cells in vivo to the desired cell type.
Collapse
Affiliation(s)
- Elena N Kozlova
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
11
|
Smith Y, Wichmann T, Factor SA, DeLong MR. Parkinson's disease therapeutics: new developments and challenges since the introduction of levodopa. Neuropsychopharmacology 2012; 37:213-46. [PMID: 21956442 PMCID: PMC3238085 DOI: 10.1038/npp.2011.212] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 12/13/2022]
Abstract
The demonstration that dopamine loss is the key pathological feature of Parkinson's disease (PD), and the subsequent introduction of levodopa have revolutionalized the field of PD therapeutics. This review will discuss the significant progress that has been made in the development of new pharmacological and surgical tools to treat PD motor symptoms since this major breakthrough in the 1960s. However, we will also highlight some of the challenges the field of PD therapeutics has been struggling with during the past decades. The lack of neuroprotective therapies and the limited treatment strategies for the nonmotor symptoms of the disease (ie, cognitive impairments, autonomic dysfunctions, psychiatric disorders, etc.) are among the most pressing issues to be addressed in the years to come. It appears that the combination of early PD nonmotor symptoms with imaging of the nigrostriatal dopaminergic system offers a promising path toward the identification of PD biomarkers, which, once characterized, will set the stage for efficient use of neuroprotective agents that could slow down and alter the course of the disease.
Collapse
Affiliation(s)
- Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
12
|
Stroh A, Tsai HC, Wang LP, Zhang F, Kressel J, Aravanis A, Santhanam N, Deisseroth K, Konnerth A, Schneider MB. Tracking stem cell differentiation in the setting of automated optogenetic stimulation. Stem Cells 2011; 29:78-88. [PMID: 21280159 DOI: 10.1002/stem.558] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Membrane depolarization has been shown to play an important role in the neural differentiation of stem cells and in the survival and function of mature neurons. Here, we introduce a microbial opsin into ESCs and develop optogenetic technology for stem cell engineering applications, with an automated system for noninvasive modulation of ESC differentiation employing fast optogenetic control of ion flux. Mouse ESCs were stably transduced with channelrhodopsin-2 (ChR2)-yellow fluorescent protein and purified by fluorescence activated cell sorting (FACS). Illumination of resulting ChR2-ESCs with pulses of blue light triggered inward currents. These labeled ESCs retained the capability to differentiate into functional mature neurons, assessed by the presence of voltage-gated sodium currents, action potentials, fast excitatory synaptic transmission, and expression of mature neuronal proteins and neuronal morphology. We designed and tested an apparatus for optically stimulating ChR2-ESCs during chronic neuronal differentiation, with high-speed optical switching on a custom robotic stage with environmental chamber for automated stimulation and imaging over days, with tracking for increased expression of neural and neuronal markers. These data point to potential uses of ChR2 technology for chronic and temporally precise noninvasive optical control of ESCs both in vitro and in vivo, ranging from noninvasive control of stem cell differentiation to causal assessment of the specific contribution of transplanted cells to tissue and network function.
Collapse
Affiliation(s)
- Albrecht Stroh
- Department of Bioengineering, Behavioral Sciences, Stanford University, Stanford, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dunnett SB, Rosser AE. Cell-based treatments for huntington's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 98:483-508. [PMID: 21907097 DOI: 10.1016/b978-0-12-381328-2.00017-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In experimental rats, mice, and monkeys, transplantation of embryonic striatal cells into the striatum can repair the damage and alleviate the functional deficits caused by striatal lesions. Such strategies have been translated to striatal repair by cell transplantation in small numbers of patients with progressive genetic striatal degeneration in Huntington's disease. In spite of some encouraging preliminary data, the clinical results are to date neither as reliable nor as compelling as the broad extend of recovery observed in the animal models across motor, cognitive, and skill and habit learning domains. Strategies to achieve immediate and long-term improvements in the clinical applications include identifying and limiting the causes of complications, standardization and quality control of preparation and delivery, appropriate patient selection to match the cellular repair to specific profiles of cell loss and degeneration in individual patients and different neurodegenerative diseases, and improving the availability of alternative sources of donor cells and tissues.
Collapse
Affiliation(s)
- Stephen B Dunnett
- Brain Repair Group, Schools of Biosciences and Medicine, Cardiff University, Cardiff, Wales, UK
| | | |
Collapse
|
14
|
Pruszak J, Just L, Isacson O, Nikkhah G. Isolation and culture of ventral mesencephalic precursor cells and dopaminergic neurons from rodent brains. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2009; Chapter 2:Unit 2D.5. [PMID: 19960452 DOI: 10.1002/9780470151808.sc02d05s11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ability to isolate ventral midbrain (VM) precursor cells and neurons provides a powerful means to characterize their differentiation properties and to study their potential for restoring dopamine (DA) neurons degenerated in Parkinson's disease (PD). Preparation and maintenance of DA VM in primary culture involves a number of critical steps to yield healthy cells and appropriate data. Here, we offer a detailed description of protocols to consistently prepare VM DA cultures from rat and mouse embryonic fetal-stage midbrain. We also present methods for organotypic culture of midbrain tissue, for differentiation as aggregate cultures, and for adherent culture systems of DA differentiation and maturation, followed by a synopsis of relevant analytical read-out options. Isolation and culture of rodent VM precursor cells and DA neurons can be exploited for studies of DA lineage development, of neuroprotection, and of cell therapeutic approaches in animal models of PD.
Collapse
Affiliation(s)
- Jan Pruszak
- Freiburg University Hospital, Freiburg, Germany
| | | | | | | |
Collapse
|