1
|
Wang W, Liu R, Zhong Q, Cao Y, Qi J, Li Y, Yang Q. Single-cell analysis of nasal epithelial cell development in domestic pigs. Vet Res 2024; 55:140. [PMID: 39478588 PMCID: PMC11523856 DOI: 10.1186/s13567-024-01403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/28/2024] [Indexed: 11/03/2024] Open
Abstract
The nasal mucosa forms a critical barrier against the invasion of respiratory pathogens. Composed of a heterogeneous assortment of cell types, the nasal mucosa relies on the unique characteristics and complex intercellular dynamics of these cells to maintain their structural integrity and functional efficacy. In this study, single-cell RNA sequencing (scRNA-seq) of porcine nasal mucosa was performed, and nineteen distinct nasal cell types, including nine epithelial cell types, five stromal cell types, and five immune cell types, were identified. The distribution patterns of three representative types of epithelial cells (basal cells, goblet cells, and ciliated cells) were subsequently detected by immunofluorescence. We conducted a comparative analysis of these data with published human single-cell data, revealing consistent differentiation trajectories among porcine and human nasal epithelial cells. Specifically, basal cells serve as the initial stage in the differentiation process of nasal epithelial cells, which then epithelial cells. This research not only enhances our understanding of the composition and transcriptional signature of porcine nasal mucosal cells but also offers a theoretical foundation for developing alternative models for human respiratory diseases.
Collapse
Affiliation(s)
- Wenqian Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ruiling Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qiu Zhong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yunlei Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiaxin Qi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Li XX, Fung JN, Clark RJ, Lee JD, Woodruff TM. Cell-intrinsic C5a synergizes with Dectin-1 in macrophages to mediate fungal killing. Proc Natl Acad Sci U S A 2024; 121:e2314627121. [PMID: 38252818 PMCID: PMC10835034 DOI: 10.1073/pnas.2314627121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The complement factor C5a is a core effector product of complement activation. C5a, acting through its receptors C5aR1 and C5aR2, exerts pleiotropic immunomodulatory functions in myeloid cells, which is vital for host defense against pathogens. Pattern-recognition receptors (PRRs) are similarly expressed by immune cells as detectors of pathogen-associated molecular patterns. Although there is evidence of cross talk between complement and PRR signaling pathways, knowledge of the full potential for C5a-PRR interaction is limited. In this study, we comprehensively investigated how C5a signaling through C5a receptors can modulate diverse PRR-mediated cytokine responses in human primary monocyte-derived macrophages and observed a powerful, concentration-dependent bidirectional effect of C5a on PRR activities. Unexpectedly, C5a synergized with Dectin-1, Mincle, and STING in macrophages to a much greater extent than TLRs. Notably, we also identified that selective Dectin-1 activation using depleted zymosan triggered macrophages to generate cell-intrinsic C5a, which acted on intracellular and cell surface C5aR1, to help sustain mitochondrial ROS generation, up-regulate TNFα production, and enhance fungal killing. This study adds further evidence to the holistic functions of C5a as a central immunomodulator and important orchestrator of pathogen sensing and killing by phagocytes.
Collapse
Affiliation(s)
- Xaria X. Li
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| | - Jenny N. Fung
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| | - Richard J. Clark
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| | - John D. Lee
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD4072, Australia
| |
Collapse
|
3
|
Arrè V, Scialpi R, Centonze M, Giannelli G, Scavo MP, Negro R. The 'speck'-tacular oversight of the NLRP3-pyroptosis pathway on gastrointestinal inflammatory diseases and tumorigenesis. J Biomed Sci 2023; 30:90. [PMID: 37891577 PMCID: PMC10612184 DOI: 10.1186/s12929-023-00983-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023] Open
Abstract
The NLRP3 inflammasome is an intracellular sensor and an essential component of the innate immune system involved in danger recognition. An important hallmark of inflammasome activation is the formation of a single supramolecular punctum, known as a speck, per cell, which is the site where the pro-inflammatory cytokines IL-1β and IL-18 are converted into their bioactive form. Speck also provides the platform for gasdermin D protein activation, whose N-terminus domain perforates the plasma membrane, allowing the release of mature cytokines alongside with a highly inflammatory form of cell death, namely pyroptosis. Although controlled NLRP3 inflammasome-pyroptosis pathway activation preserves mucosal immunity homeostasis and contributes to host defense, a prolonged trigger is deleterious and could lead, in genetically predisposed subjects, to the onset of inflammatory bowel disease, including Crohn's disease and ulcerative colitis, as well as to gastrointestinal cancer. Experimental evidence shows that the NLRP3 inflammasome has both protective and pathogenic abilities. In this review we highlight the impact of the NLRP3-pyroptosis axis on the pathophysiology of the gastrointestinal tract at molecular level, focusing on newly discovered features bearing pro- and anti-inflammatory and neoplastic activity, and on targeted therapies tested in preclinical and clinical trials.
Collapse
Affiliation(s)
- Valentina Arrè
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Rosanna Scialpi
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Matteo Centonze
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Roberto Negro
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| |
Collapse
|
4
|
Li X, Zhu X, Wei Y. Autophagy in Atherosclerotic Plaque Cells: Targeting NLRP3 Inflammasome for Self-Rescue. Biomolecules 2022; 13:15. [PMID: 36671400 PMCID: PMC9855815 DOI: 10.3390/biom13010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis (AS) is a lipid-driven disorder of the artery intima characterized by the equilibrium between inflammatory and regressive processes. A protein complex called NLRP3 inflammasome is involved in the release of mature interleukin-1β (IL-1β), which is connected to the initiation and progression of atherosclerosis. Autophagy, which includes macroautophagy, chaperone-mediated autophagy (CMA), and microautophagy, is generally recognized as the process by which cells transfer their constituents to lysosomes for digestion. Recent studies have suggested a connection between vascular inflammation and autophagy. This review summarizes the most recent studies and the underlying mechanisms associated with different autophagic pathways and NLRP3 inflammasomes in vascular inflammation, aiming to provide additional evidence for atherosclerosis research.
Collapse
Affiliation(s)
- Xuelian Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianjie Zhu
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao 266011, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
5
|
Structural Characterization of Polysaccharide Derived from Gastrodia elata and Its Immunostimulatory Effect on RAW264.7 Cells. Molecules 2022; 27:molecules27228059. [PMID: 36432165 PMCID: PMC9694387 DOI: 10.3390/molecules27228059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
A polysaccharide from Gastrodia elata (named GEP-1) was isolated with a DEAE-52 column and Sephadex G-100 column. The structural characteristics showed that GEP-1 was mainly composed of glucose (92.04%), galactose (4.79%) and arabinose (2.19%) with a molecular weight of 76.444 kDa. The polydispersity (Mw/Mn) of GEP-1 was 1.25, indicating that the distribution of molar mass (Mw) was relatively narrow, which suggested that GEP-1 was a homogeneous polysaccharide. Moreover, the molecular conformation plot of the root mean square (RMS) radius (<rg2> 1/2) versus Mw yielded a line with a slope less than 0.33 (0.15 ± 0.02), displaying that GEP-1 is a compact and curly spherical molecule in NaNO3 aqueous solution. NMR and methylation analyses revealed that the main chain structure of GEP-1 was α-(1→4)-glucans. Furthermore, it was proven that GEP-1 possessed cytoproliferative and enhancing phagocytic activities and induced cytokine (TNF-α, IL1-β) and nitric oxide (NO) release in macrophages by upregulating the related gene expression. In addition, the RNA-seq results suggested that the GEP-1-induced immunomodulatory effect was mainly caused by activation of the NF-κB signaling pathway, which was further verified by NF-κB ELISA and pathway inhibition assays. As a result, GEP-1 exhibits the potential to be developed as a novel cheap immunostimulant without obvious toxicity.
Collapse
|
6
|
Implication of the IL-10-Expression Signature in the Pathogenicity of Leptospira-Infected Macrophages. Microbiol Spectr 2022; 10:e0259521. [PMID: 35638785 PMCID: PMC9241676 DOI: 10.1128/spectrum.02595-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leptospirosis, an emerging infectious disease caused by pathogenic Leptospira spp., occurs in ecoregions with heavy rainfall and has public health implications. Macrophages are the major anti-Leptospira phagocytes that infiltrate the kidneys during renal leptospirosis, which is caused by leptospires residing in the renal tubules. The pathogenicity of Leptospira spp. in immune effector cells such as macrophages is not well understood. To evaluate this pathogenesis, we characterized and compared the transcriptome-wide alterations in macrophages infected with pathogenic and nonpathogenic Leptospira spp. Using transcriptome data and quantitative reverse transcription PCR analysis, at 2 h postinfection, the hypoxia-inducible factor-1α-dependent glycolysis pathway was implicated in pathogenic Leptospira-infected macrophages but not in nonpathogenic leptospiral infections. Immune-related biological processes were mostly activated in pathogenic Leptospira-infected macrophages, and flow cytometry investigations revealed that classically activated macrophages represent the predominant polarization status. At 24 h after infection, biological pathways associated with interleukin-10, IL-10, signaling the induction of macrophage tolerance, as well as higher levels of IL-10 mRNA and protein expression, were observed in nonpathogenic Leptospira-infected macrophages compared to in pathogenic leptospiral infection. Following leptospiral infection of macrophages, strong IL-10-expressing transcriptome signatures were observed following nonpathogenic leptospiral infection. The transcriptional programs generated in Leptospira-infected macrophages revealed an inflammatory milieu following the production of a critical anti-inflammatory cytokine, IL-10, which is implicated in controlling the pathogenicity of activated macrophages. These findings imply that IL-10-mediated anti-inflammatory responses and tolerance in activated macrophages induced by nonpathogenic Leptospira spp. infection reduce inflammation and tissue damage, thus providing a potential therapeutic target for leptospirosis. IMPORTANCE Activation of macrophages by Leptospira spp. infection is thought to be involved in the pathogenesis of leptospirosis. To evaluate the innate macrophage responses to Leptospira spp., specifically pathogenic versus nonpathogenic Leptospira spp., we characterized the entire transcriptome-wide alterations in infected macrophages. We showed that hypoxia-inducible factor-1α and immune-related pathways are activated in pathogenic leptospiral-infected macrophages. We confirmed the significantly high levels of IL-10-expressing signatures and tolerance in activated macrophages caused by nonpathogenic Leptospira infection. Furthermore, nonpathogenic leptospiral infections attenuated macrophage activation responses. These findings suggest a potential therapeutic strategy for the immune microenvironment caused by macrophage activation driven by IL-10 overexpression, which may contribute to regulating inflammation in leptospirosis.
Collapse
|
7
|
Baos S, Cremades-Jimeno L, López-Ramos M, de Pedro MÁ, Uriarte SA, Sastre J, González-Mangado N, Rodríguez-Nieto MJ, Peces-Barba G, Cárdaba B. Expression of Macrophage Scavenger Receptor (MSR1) in Peripheral Blood Cells from Patients with Different Respiratory Diseases: Beyond Monocytes. J Clin Med 2022; 11:jcm11051439. [PMID: 35268530 PMCID: PMC8910889 DOI: 10.3390/jcm11051439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Macrophage scavenger receptor 1 (MSR1) has mostly been described in macrophages, but we previously found a significant gene expression increase in peripheral blood mononuclear cells (PBMCs) of asthmatic patients. Objective: To confirm those results and to define its cellular origin in PBMCs. Methods: Four groups of subjects were studied: healthy controls (C), nonallergic asthmatic (NA), allergic asthmatic (AA), and chronic obstructive pulmonary disease (COPD) patients. RNA was extracted from PBMCs. MSR1 gene expression was analyzed by RT-qPCR. The presence of MSR1 on the cellular surface of PBMC cellular subtypes was analyzed by confocal microscopy and flow cytometry. Results: MSR1 gene expression was significantly increased in the three clinical conditions compared to the healthy control group, with substantial variations according to disease type and severity. MSR1 expression on T cells (CD4+ and CD8+), B cells, and monocytes was confirmed by confocal microscopy and flow cytometry. In all clinical groups, the four immune cell subtypes studied expressed MSR1, with a greater expression on B lymphocytes and monocytes, exhibiting differences according to disease and severity. Conclusions: This is the first description of MSR1’s presence on lymphocytes’ surfaces and reinforces the potential role of MSR1 as a player in asthma and COPD.
Collapse
Affiliation(s)
- Selene Baos
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (S.B.); (L.C.-J.); (M.L.-R.); (M.Á.d.P.)
| | - Lucía Cremades-Jimeno
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (S.B.); (L.C.-J.); (M.L.-R.); (M.Á.d.P.)
| | - María López-Ramos
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (S.B.); (L.C.-J.); (M.L.-R.); (M.Á.d.P.)
| | - María Ángeles de Pedro
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (S.B.); (L.C.-J.); (M.L.-R.); (M.Á.d.P.)
| | - Silvia A. Uriarte
- Allergy Department, University Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain; (S.A.U.); (J.S.)
| | - Joaquín Sastre
- Allergy Department, University Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain; (S.A.U.); (J.S.)
- Ciber de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (N.G.-M.); (M.J.R.-N.); (G.P.-B.)
| | - Nicolás González-Mangado
- Ciber de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (N.G.-M.); (M.J.R.-N.); (G.P.-B.)
- Pulmonology Department, University Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - María Jesús Rodríguez-Nieto
- Ciber de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (N.G.-M.); (M.J.R.-N.); (G.P.-B.)
- Pulmonology Department, University Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Germán Peces-Barba
- Ciber de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (N.G.-M.); (M.J.R.-N.); (G.P.-B.)
- Pulmonology Department, University Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Blanca Cárdaba
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (S.B.); (L.C.-J.); (M.L.-R.); (M.Á.d.P.)
- Ciber de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (N.G.-M.); (M.J.R.-N.); (G.P.-B.)
- Correspondence:
| |
Collapse
|
8
|
Huang Y, Xu W, Zhou R. NLRP3 inflammasome activation and cell death. Cell Mol Immunol 2021; 18:2114-2127. [PMID: 34321623 PMCID: PMC8429580 DOI: 10.1038/s41423-021-00740-6] [Citation(s) in RCA: 622] [Impact Index Per Article: 207.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
The NLRP3 inflammasome is a cytosolic multiprotein complex composed of the innate immune receptor protein NLRP3, adapter protein ASC, and inflammatory protease caspase-1 that responds to microbial infection, endogenous danger signals, and environmental stimuli. The assembled NLRP3 inflammasome can activate the protease caspase-1 to induce gasdermin D-dependent pyroptosis and facilitate the release of IL-1β and IL-18, which contribute to innate immune defense and homeostatic maintenance. However, aberrant activation of the NLRP3 inflammasome is associated with the pathogenesis of various inflammatory diseases, such as diabetes, cancer, and Alzheimer's disease. Recent studies have revealed that NLRP3 inflammasome activation contributes to not only pyroptosis but also other types of cell death, including apoptosis, necroptosis, and ferroptosis. In addition, various effectors of cell death have been reported to regulate NLRP3 inflammasome activation, suggesting that cell death is closely related to NLRP3 inflammasome activation. In this review, we summarize the inextricable link between NLRP3 inflammasome activation and cell death and discuss potential therapeutics that target cell death effectors in NLRP3 inflammasome-associated diseases.
Collapse
Affiliation(s)
- Yi Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen Xu
- Neurology Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
9
|
Saxena Y, Routh S, Mukhopadhaya A. Immunoporosis: Role of Innate Immune Cells in Osteoporosis. Front Immunol 2021; 12:687037. [PMID: 34421899 PMCID: PMC8374941 DOI: 10.3389/fimmu.2021.687037] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis or porous bone disorder is the result of an imbalance in an otherwise highly balanced physiological process known as 'bone remodeling'. The immune system is intricately involved in bone physiology as well as pathologies. Inflammatory diseases are often correlated with osteoporosis. Inflammatory mediators such as reactive oxygen species (ROS), and pro-inflammatory cytokines and chemokines directly or indirectly act on the bone cells and play a role in the pathogenesis of osteoporosis. Recently, Srivastava et al. (Srivastava RK, Dar HY, Mishra PK. Immunoporosis: Immunology of Osteoporosis-Role of T Cells. Frontiers in immunology. 2018;9:657) have coined the term "immunoporosis" to emphasize the role of immune cells in the pathology of osteoporosis. Accumulated pieces of evidence suggest both innate and adaptive immune cells contribute to osteoporosis. However, innate cells are the major effectors of inflammation. They sense various triggers to inflammation such as pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), cellular stress, etc., thus producing pro-inflammatory mediators that play a critical role in the pathogenesis of osteoporosis. In this review, we have discussed the role of the innate immune cells in great detail and divided these cells into different sections in a systemic manner. In the beginning, we talked about cells of the myeloid lineage, including macrophages, monocytes, and dendritic cells. This group of cells explicitly influences the skeletal system by the action of production of pro-inflammatory cytokines and can transdifferentiate into osteoclast. Other cells of the myeloid lineage, such as neutrophils, eosinophils, and mast cells, largely impact osteoporosis via the production of pro-inflammatory cytokines. Further, we talked about the cells of the lymphoid lineage, including natural killer cells and innate lymphoid cells, which share innate-like properties and play a role in osteoporosis. In addition to various innate immune cells, we also discussed the impact of classical pro-inflammatory cytokines on osteoporosis. We also highlighted the studies regarding the impact of physiological and metabolic changes in the body, which results in chronic inflammatory conditions such as ageing, ultimately triggering osteoporosis.
Collapse
Affiliation(s)
- Yogesh Saxena
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Sanjeev Routh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| |
Collapse
|
10
|
Alam Z, Devalaraja S, Li M, To TKJ, Folkert IW, Mitchell-Velasquez E, Dang MT, Young P, Wilbur CJ, Silverman MA, Li X, Chen YH, Hernandez PT, Bhattacharyya A, Bhattacharya M, Levine MH, Haldar M. Counter Regulation of Spic by NF-κB and STAT Signaling Controls Inflammation and Iron Metabolism in Macrophages. Cell Rep 2021; 31:107825. [PMID: 32610126 PMCID: PMC8944937 DOI: 10.1016/j.celrep.2020.107825] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/27/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022] Open
Abstract
Activated macrophages must carefully calibrate their inflammatory responses to balance efficient pathogen control with inflammation-mediated tissue damage, but the molecular underpinnings of this "balancing act" remain unclear. Using genetically engineered mouse models and primary macrophage cultures, we show that Toll-like receptor (TLR) signaling induces the expression of the transcription factor Spic selectively in patrolling monocytes and tissue macrophages by a nuclear factor κB (NF-κB)-dependent mechanism. Functionally, Spic downregulates pro-inflammatory cytokines and promotes iron efflux by regulating ferroportin expression in activated macrophages. Notably, interferon-gamma blocks Spic expression in a STAT1-dependent manner. High levels of interferon-gamma are indicative of ongoing infection, and in its absence, activated macrophages appear to engage a "default" Spic-dependent anti-inflammatory pathway. We also provide evidence for the engagement of this pathway in sterile inflammation. Taken together, our findings uncover a pathway wherein counter-regulation of Spic by NF-κB and STATs attune inflammatory responses and iron metabolism in macrophages.
Collapse
Affiliation(s)
- Zahidul Alam
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Samir Devalaraja
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Minghong Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Tsun Ki Jerrick To
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Ian W Folkert
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Erick Mitchell-Velasquez
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Mai T Dang
- Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Patricia Young
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Christopher J Wilbur
- Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Michael A Silverman
- Department of Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Xinyuan Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Paul T Hernandez
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Aritra Bhattacharyya
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Mallar Bhattacharya
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew H Levine
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Malay Haldar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA.
| |
Collapse
|
11
|
Choudhuri S, Chowdhury IH, Garg NJ. Mitochondrial Regulation of Macrophage Response Against Pathogens. Front Immunol 2021; 11:622602. [PMID: 33679710 PMCID: PMC7925834 DOI: 10.3389/fimmu.2020.622602] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
Innate immune cells play the first line of defense against pathogens. Phagocytosis or invasion by pathogens can affect mitochondrial metabolism in macrophages by diverse mechanisms and shape the macrophage response (proinflammatory vs. immunomodulatory) against pathogens. Besides β-nicotinamide adenine dinucleotide 2'-phosphate, reduced (NADPH) oxidase, mitochondrial electron transport chain complexes release superoxide for direct killing of the pathogen. Mitochondria that are injured are removed by mitophagy, and this process can be critical for regulating macrophage activation. For example, impaired mitophagy can result in cytosolic leakage of mitochondrial DNA (mtDNA) that can lead to activation of cGAS-STING signaling pathway of macrophage proinflammatory response. In this review, we will discuss how metabolism, mtDNA, mitophagy, and cGAS-STING pathway shape the macrophage response to infectious agents.
Collapse
Affiliation(s)
- Subhadip Choudhuri
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, United States
| | - Imran Hussain Chowdhury
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, United States
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, United States
- Institute for Human Infections and Immunity, UTMB, Galveston, TX, United States
| |
Collapse
|
12
|
Lafuse WP, Wozniak DJ, Rajaram MVS. Role of Cardiac Macrophages on Cardiac Inflammation, Fibrosis and Tissue Repair. Cells 2020; 10:E51. [PMID: 33396359 PMCID: PMC7824389 DOI: 10.3390/cells10010051] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
The immune system plays a pivotal role in the initiation, development and resolution of inflammation following insult or damage to organs. The heart is a vital organ which supplies nutrients and oxygen to all parts of the body. Heart failure (HF) has been conventionally described as a disease associated with cardiac tissue damage caused by systemic inflammation, arrhythmia and conduction defects. Cardiac inflammation and subsequent tissue damage is orchestrated by the infiltration and activation of various immune cells including neutrophils, monocytes, macrophages, eosinophils, mast cells, natural killer cells, and T and B cells into the myocardium. After tissue injury, monocytes and tissue-resident macrophages undergo marked phenotypic and functional changes, and function as key regulators of tissue repair, regeneration and fibrosis. Disturbance in resident macrophage functions such as uncontrolled production of inflammatory cytokines, growth factors and inefficient generation of an anti-inflammatory response or unsuccessful communication between macrophages and epithelial and endothelial cells and fibroblasts can lead to aberrant repair, persistent injury, and HF. Therefore, in this review, we discuss the role of cardiac macrophages on cardiac inflammation, tissue repair, regeneration and fibrosis.
Collapse
Affiliation(s)
- William P. Lafuse
- Department of Microbial Infection and Immunity, College of Medicine, Ohio State University, Columbus, OH 43210, USA; (W.P.L.); (D.J.W.)
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, College of Medicine, Ohio State University, Columbus, OH 43210, USA; (W.P.L.); (D.J.W.)
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Murugesan V. S. Rajaram
- Department of Microbial Infection and Immunity, College of Medicine, Ohio State University, Columbus, OH 43210, USA; (W.P.L.); (D.J.W.)
| |
Collapse
|
13
|
Szulc-Dąbrowska L, Bossowska-Nowicka M, Struzik J, Toka FN. Cathepsins in Bacteria-Macrophage Interaction: Defenders or Victims of Circumstance? Front Cell Infect Microbiol 2020; 10:601072. [PMID: 33344265 PMCID: PMC7746538 DOI: 10.3389/fcimb.2020.601072] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages are the first encounters of invading bacteria and are responsible for engulfing and digesting pathogens through phagocytosis leading to initiation of the innate inflammatory response. Intracellular digestion occurs through a close relationship between phagocytic/endocytic and lysosomal pathways, in which proteolytic enzymes, such as cathepsins, are involved. The presence of cathepsins in the endo-lysosomal compartment permits direct interaction with and killing of bacteria, and may contribute to processing of bacterial antigens for presentation, an event necessary for the induction of antibacterial adaptive immune response. Therefore, it is not surprising that bacteria can control the expression and proteolytic activity of cathepsins, including their inhibitors – cystatins, to favor their own intracellular survival in macrophages. In this review, we summarize recent developments in defining the role of cathepsins in bacteria-macrophage interaction and describe important strategies engaged by bacteria to manipulate cathepsin expression and activity in macrophages. Particularly, we focus on specific bacterial species due to their clinical relevance to humans and animal health, i.e., Mycobacterium, Mycoplasma, Staphylococcus, Streptococcus, Salmonella, Shigella, Francisella, Chlamydia, Listeria, Brucella, Helicobacter, Neisseria, and other genera.
Collapse
Affiliation(s)
- Lidia Szulc-Dąbrowska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Justyna Struzik
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland.,Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
14
|
Cersosimo F, Lonardi S, Bernardini G, Telfer B, Mandelli GE, Santucci A, Vermi W, Giurisato E. Tumor-Associated Macrophages in Osteosarcoma: From Mechanisms to Therapy. Int J Mol Sci 2020; 21:E5207. [PMID: 32717819 PMCID: PMC7432207 DOI: 10.3390/ijms21155207] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Osteosarcomas (OSs) are bone tumors most commonly found in pediatric and adolescent patients characterized by high risk of metastatic progression and recurrence after therapy. Effective therapeutic management of this disease still remains elusive as evidenced by poor patient survival rates. To achieve a more effective therapeutic management regimen, and hence patient survival, there is a need to identify more focused targeted therapies for OSs treatment in the clinical setting. The role of the OS tumor stroma microenvironment plays a significant part in the development and dissemination of this disease. Important components, and hence potential targets for treatment, are the tumor-infiltrating macrophages that are known to orchestrate many aspects of OS stromal signaling and disease progression. In particular, increased infiltration of M2-like tumor-associated macrophages (TAMs) has been associated with OS metastasis and poor patient prognosis despite currently used aggressive therapies regimens. This review aims to provide a summary update of current macrophage-centered knowledge and to discuss the possible roles that macrophages play in the process of OS metastasis development focusing on the potential influence of stromal cross-talk signaling between TAMs, cancer-stem cells and additional OSs tumoral microenvironment factors.
Collapse
Affiliation(s)
- Francesca Cersosimo
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (F.C.); (G.B.); (A.S.)
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (G.E.M.); (W.V.)
| | - Giulia Bernardini
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (F.C.); (G.B.); (A.S.)
| | - Brian Telfer
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK;
| | - Giulio Eugenio Mandelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (G.E.M.); (W.V.)
| | - Annalisa Santucci
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (F.C.); (G.B.); (A.S.)
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (G.E.M.); (W.V.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; (F.C.); (G.B.); (A.S.)
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
15
|
Li XX, Clark RJ, Woodruff TM. C5aR2 Activation Broadly Modulates the Signaling and Function of Primary Human Macrophages. THE JOURNAL OF IMMUNOLOGY 2020; 205:1102-1112. [PMID: 32611725 DOI: 10.4049/jimmunol.2000407] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
The complement activation fragment C5a is a potent proinflammatory mediator that is increasingly recognized as an immune modulator. C5a acts through two C5a receptors, C5aR1 (C5aR, CD88) and C5aR2 (C5L2, GPR77), to powerfully modify multiple aspects of immune cell function. Although C5aR1 is generally acknowledged to be proinflammatory and immune-activating, the potential roles played by C5aR2 remain poorly defined. Despite studies demonstrating C5aR2 can modulate C5aR1 in human cells, it is not yet known whether C5aR2 functionality is limited to, or requires, C5aR1 activation or influences immune cells more broadly. The present study, therefore, aimed to characterize the roles of C5aR2 on the signaling and function of primary human monocyte-derived macrophages, using a C5aR2 agonist (Ac-RHYPYWR-OH; P32) to selectively activate the receptor. We found that although C5aR2 activation with P32 by itself was devoid of any detectable MAPK signaling activities, C5aR2 agonism significantly dampened C5aR1-, C3aR-, and chemokine-like receptor 1 (CMKLR1)-mediated ERK signaling and altered intracellular calcium mobilization mediated by these receptors. Functionally, selective C5aR2 activation also downregulated cytokine production triggered by various TLRs (TLR2, TLR3, TLR4, and TLR7), C-type lectin receptors (Dectin-1, Dectin-2, and Mincle), and the cytosolic DNA sensor stimulator of IFN genes (STING). Surprisingly, activity at the C-type lectin receptors was particularly powerful, with C5aR2 activation reducing Mincle-mediated IL-6 and TNF-α generation by 80-90%. In sum, this study demonstrates that C5aR2 possesses pleiotropic functions in primary human macrophages, highlighting the role of C5aR2 as a powerful regulator of innate immune function.
Collapse
Affiliation(s)
- Xaria X Li
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
16
|
Qiao X, Li P, He J, Yu Z, Chen J, He L, Yu X, Lin H, Lu D, Zhang Y. Type F scavenger receptor expressed by endothelial cells (SREC)-II from Epinephelus coioides is a potential pathogen recognition receptor in the immune response to Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2020; 98:262-270. [PMID: 31899357 DOI: 10.1016/j.fsi.2019.12.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/24/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Scavenger receptors play a central role in defending against infectious diseases in mammals. However, the function of SRECII remains unknown in teleost fish. In this study, type F scavenger receptor expressed by endothelial cells-II (SRECII) cDNA sequence was first identified from Epinephelus coioides, named EcSRECII, which contained an N-terminal signal peptide, eight EGF/EGF-like cysteine-rich motifs and a C-terminal low-complexity region. The gene location maps revealed that EcSRECII has the conservation of synteny among selected species. Subcellular localization showed that EcSRECII was mainly located in the cytoplasm in HEK293T cells and GS cells. In healthy E. coioides, EcSRECII mRNA was highly expressed in spleen, skin, gill, thymus and head kidney. The relative EcSRECII mRNA expression after Vibrio parahaemolyticus infection was significantly up-regulated at 12 h in spleen, head kidney and thymus, but downregulated at 1 d in skin and reduced at 3 d and 1 w in spleen. Furthermore, overexpression of EcSRECII activated NF-κB and IFN-β signaling pathway in vitro. Taken together, these results indicated that EcSRECII could be as the potential pathogen recognition receptor for involving in bacterial infection by regulating innate immunity responses in E. coioides.
Collapse
Affiliation(s)
- Xifeng Qiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Pingchao Li
- Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, PR China
| | - Jianan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Zeshu Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jiaxing Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Liangge He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Xue Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China; College of Ocean, Hainan University, Haikou, 570228, PR China
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China; Southern Marine Science and Engineering Guangdong Laboratory (ZhanJiang), Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| |
Collapse
|
17
|
Patten DA, Shetty S. The Role of Stabilin-1 in Lymphocyte Trafficking and Macrophage Scavenging in the Liver Microenvironment. Biomolecules 2019; 9:biom9070283. [PMID: 31315308 PMCID: PMC6681381 DOI: 10.3390/biom9070283] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic liver diseases are a major global health burden, and cases of these conditions continue to rise in many countries. A diverse range of insults can lead to chronic liver disease, but they are all characterised by the infiltration and accumulation of immune cells within liver tissue and, if progressive, can lead to tissue fibrosis and cirrhosis. In this review, we focus on the role of stabilin-1 in two key processes that contribute to liver disease, namely, the recruitment of lymphocytes into liver tissue and the response of macrophages to tissue injury. Stabilin-1 is constitutively expressed on the sinusoidal endothelium of the liver and contributes to the homeostatic scavenging function of these cells. Epithelial damage in the context of chronic liver disease leads to the upregulation of stabilin-1 at sites of tissue injury, specifically at sites of immune cell recruitment and on subpopulations of hepatic macrophages. Functionally, stabilin-1 has been shown to mediate transendothelial migration of lymphocyte subsets in the setting of pro-inflammatory-activated human liver endothelium. In experimental models of liver fibrosis, stabilin-1 promotes the uptake of products of chronic oxidative stress by a subset of hepatic macrophages and suppresses their release of pro-inflammatory mediators that regulate tissue remodelling. These studies highlight the active contribution that scavenger receptors such as stabilin-1 can make in regulating chronic inflammation and tissue fibrosis, and their potential as novel therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Daniel A Patten
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham B15 2TT, UK
| | - Shishir Shetty
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
18
|
Chen T, Luo W, Wu G, Wu L, Huang S, Li J, Wang J, Hu X, Huang W, Liang G. A novel MyD88 inhibitor LM9 prevents atherosclerosis by regulating inflammatory responses and oxidative stress in macrophages. Toxicol Appl Pharmacol 2019; 370:44-55. [DOI: 10.1016/j.taap.2019.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 02/01/2023]
|
19
|
Curtale G, Rubino M, Locati M. MicroRNAs as Molecular Switches in Macrophage Activation. Front Immunol 2019; 10:799. [PMID: 31057539 PMCID: PMC6478758 DOI: 10.3389/fimmu.2019.00799] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/26/2019] [Indexed: 12/25/2022] Open
Abstract
The efficacy of macrophage- mediated inflammatory response relies on the coordinated expression of key factors, which expression is finely regulated at both transcriptional and post-transcriptional level. Several studies have provided compelling evidence that microRNAs play pivotal roles in modulating macrophage activation, polarization, tissue infiltration, and resolution of inflammation. In this review, we highlight the essential molecular mechanisms underlying the different phases of inflammation that are targeted by microRNAs to inhibit or accelerate restoration to tissue integrity and homeostasis. We further review the impact of microRNA-dependent regulation of tumor-associated macrophages and the relative implication for tumor biology.
Collapse
Affiliation(s)
- Graziella Curtale
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Marcello Rubino
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| |
Collapse
|
20
|
Alferink J, Specht S, Arends H, Schumak B, Schmidt K, Ruland C, Lundt R, Kemter A, Dlugos A, Kuepper JM, Poppensieker K, Findeiss M, Albayram Ö, Otte DM, Marazzi J, Gertsch J, Förster I, Maier W, Scheu S, Hoerauf A, Zimmer A. Cannabinoid Receptor 2 Modulates Susceptibility to Experimental Cerebral Malaria through a CCL17-dependent Mechanism. J Biol Chem 2016; 291:19517-31. [PMID: 27474745 DOI: 10.1074/jbc.m116.746594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 11/06/2022] Open
Abstract
Cerebral malaria is a severe and often fatal complication of Plasmodium falciparum infection. It is characterized by parasite sequestration, a breakdown of the blood-brain barrier, and a strong inflammation in the brain. We investigated the role of the cannabinoid receptor 2 (CB2), an important modulator of neuroinflammatory responses, in experimental cerebral malaria (ECM). Strikingly, mice with a deletion of the CB2-encoding gene (Cnr2(-/-)) inoculated with Plasmodium berghei ANKA erythrocytes exhibited enhanced survival and a diminished blood-brain barrier disruption. Therapeutic application of a specific CB2 antagonist also conferred increased ECM resistance in wild type mice. Hematopoietic derived immune cells were responsible for the enhanced protection in bone marrow (BM) chimeric Cnr2(-/-) mice. Mixed BM chimeras further revealed that CB2-expressing cells contributed to ECM development. A heterogeneous CD11b(+) cell population, containing macrophages and neutrophils, expanded in the Cnr2(-/-) spleen after infection and expressed macrophage mannose receptors, arginase-1 activity, and IL-10. Also in the Cnr2(-/-) brain, CD11b(+) cells that expressed selected anti-inflammatory markers accumulated, and expression of inflammatory mediators IFN-γ and TNF-α was reduced. Finally, the M2 macrophage chemokine CCL17 was identified as an essential factor for enhanced survival in the absence of CB2, because CCL17 × Cnr2 double-deficient mice were fully susceptible to ECM. Thus, targeting CB2 may be promising for the development of alternative treatment regimes of ECM.
Collapse
Affiliation(s)
- Judith Alferink
- From the Institute of Molecular Psychiatry, Medical Faculty, and the Department of Psychiatry, University of Münster, 48149 Münster, Germany, the Cluster of Excellence EXC 1003, Cells in Motion, 48149 Münster, Germany,
| | - Sabine Specht
- the Institute of Medical Microbiology, Immunology, and Parasitology and
| | - Hannah Arends
- From the Institute of Molecular Psychiatry, Medical Faculty, and
| | - Beatrix Schumak
- the Institute of Medical Microbiology, Immunology, and Parasitology and
| | - Kim Schmidt
- the Institute of Medical Microbiology, Immunology, and Parasitology and
| | - Christina Ruland
- the Department of Psychiatry, University of Münster, 48149 Münster, Germany
| | - Ramona Lundt
- From the Institute of Molecular Psychiatry, Medical Faculty, and
| | - Andrea Kemter
- From the Institute of Molecular Psychiatry, Medical Faculty, and
| | - Andrea Dlugos
- the Department of Psychiatry, University of Münster, 48149 Münster, Germany
| | - Janina M Kuepper
- the Institute of Medical Microbiology, Immunology, and Parasitology and
| | | | | | - Önder Albayram
- From the Institute of Molecular Psychiatry, Medical Faculty, and
| | - David-M Otte
- From the Institute of Molecular Psychiatry, Medical Faculty, and
| | - Janine Marazzi
- the Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland, and
| | - Jürg Gertsch
- the Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland, and
| | - Irmgard Förster
- the Department of Immunology and Environment, Life and Medical Sciences Institute (LIMES), University of Bonn, 53127 Bonn, Germany
| | - Wolfgang Maier
- the Department of Psychiatry, University Hospital Bonn, 53105 Bonn, Germany
| | - Stefanie Scheu
- the Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Achim Hoerauf
- the Institute of Medical Microbiology, Immunology, and Parasitology and
| | - Andreas Zimmer
- From the Institute of Molecular Psychiatry, Medical Faculty, and
| |
Collapse
|
21
|
Reyes AWB, Arayan LT, Simborio HLT, Hop HT, Min W, Lee HJ, Kim DH, Chang HH, Kim S. Dextran sulfate sodium upregulates MAPK signaling for the uptake and subsequent intracellular survival of Brucella abortus in murine macrophages. Microb Pathog 2016; 91:68-73. [DOI: 10.1016/j.micpath.2015.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/24/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
|
22
|
Sartim MA, Sampaio SV. Snake venom galactoside-binding lectins: a structural and functional overview. J Venom Anim Toxins Incl Trop Dis 2015; 21:35. [PMID: 26413085 PMCID: PMC4583214 DOI: 10.1186/s40409-015-0038-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 09/16/2015] [Indexed: 12/13/2022] Open
Abstract
Snake venom galactoside-binding lectins (SVgalLs) comprise a class of toxins capable of recognizing and interacting with terminal galactoside residues of glycans. In the past 35 years, since the first report on the purification of thrombolectin from Bothrops atrox snake venom, several SVgalLs from Viperidae and Elapidae snake families have been described, as has progressive improvement in the investigation of structural/functional aspects of these lectins. Moreover, the advances of techniques applied in protein-carbohydrate recognition have provided important approaches in order to screen for possible biological targets. The present review describes the efforts over the past 35 years to elucidate SVgalLs, highlighting their structure and carbohydrate recognition function involved in envenomation pathophysiology and potential biomedical applications.
Collapse
Affiliation(s)
- Marco A. Sartim
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| | - Suely V. Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP CEP 14040-903 Brazil
| |
Collapse
|
23
|
Kim YW, Yakubenko VP, West XZ, Gugiu GB, Renganathan K, Biswas S, Gao D, Crabb JW, Salomon RG, Podrez EA, Byzova TV. Receptor-Mediated Mechanism Controlling Tissue Levels of Bioactive Lipid Oxidation Products. Circ Res 2015; 117:321-32. [PMID: 25966710 DOI: 10.1161/circresaha.117.305925] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/12/2015] [Indexed: 01/06/2023]
Abstract
RATIONALE Oxidative stress is an important contributing factor in several human pathologies ranging from atherosclerosis to cancer progression; however, the mechanisms underlying tissue protection from oxidation products are poorly understood. Oxidation of membrane phospholipids, containing the polyunsaturated fatty acid docosahexaenoic acid, results in the accumulation of an end product, 2-(ω-carboxyethyl)pyrrole (CEP), which was shown to have proangiogenic and proinflammatory functions. Although CEP is continuously accumulated during chronic processes, such as tumor progression and atherosclerosis, its level during wound healing return to normal when the wound is healed, suggesting the existence of a specific clearance mechanism. OBJECTIVE To identify the cellular and molecular mechanism for CEP clearance. METHODS AND RESULTS Here, we show that macrophages are able to bind, scavenge, and metabolize carboxyethylpyrrole derivatives of proteins but not structurally similar ethylpyrrole derivatives, demonstrating the high specificity of the process. F4/80(hi) and M2-skewed macrophages are much more efficient at CEP binding and scavenging compared with F4/80(lo) and M1-skewed macrophages. Depletion of macrophages leads to increased CEP accumulation in vivo. CEP binding and clearance are dependent on 2 receptors expressed by macrophages, CD36 and toll-like receptor 2. Although knockout of each individual receptor results in diminished CEP clearance, the lack of both receptors almost completely abrogates macrophages' ability to scavenge CEP derivatives of proteins. CONCLUSIONS Our study demonstrates the mechanisms of recognition, scavenging, and clearance of pathophysiologically active products of lipid oxidation in vivo, thereby contributing to tissue protection against products of oxidative stress.
Collapse
Affiliation(s)
- Young-Woong Kim
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.)
| | - Valentin P Yakubenko
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.)
| | - Xiaoxia Z West
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.)
| | - Gabriel B Gugiu
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.)
| | - Kutralanathan Renganathan
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.)
| | - Sudipta Biswas
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.)
| | - Detao Gao
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.)
| | - John W Crabb
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.)
| | - Robert G Salomon
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.)
| | - Eugene A Podrez
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.)
| | - Tatiana V Byzova
- From the Department of Molecular Cardiology, Lerner Research Institute (Y.-W.K., V.P.Y., X.Z.W., S.B., D.G., E.A.P., T.V.B.) and Department of Ophthalmology, Cole Eye Institute (R.K., J.W.C.), Cleveland Clinic, OH; and Department of Chemistry, Case Western Reserve University, Cleveland, OH (G.B.G., R.K., R.G.S.).
| |
Collapse
|
24
|
NADPH oxidase-driven phagocyte recruitment controls Candida albicans filamentous growth and prevents mortality. PLoS Pathog 2013; 9:e1003634. [PMID: 24098114 PMCID: PMC3789746 DOI: 10.1371/journal.ppat.1003634] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/03/2013] [Indexed: 01/17/2023] Open
Abstract
Candida albicans is a human commensal and clinically important fungal pathogen that grows as both yeast and hyphal forms during human, mouse and zebrafish infection. Reactive oxygen species (ROS) produced by NADPH oxidases play diverse roles in immunity, including their long-appreciated function as microbicidal oxidants. Here we demonstrate a non-traditional mechanistic role of NADPH oxidase in promoting phagocyte chemotaxis and intracellular containment of fungi to limit filamentous growth. We exploit the transparent zebrafish model to show that failed NADPH oxidase-dependent phagocyte recruitment to C. albicans in the first four hours post-infection permits fungi to germinate extracellularly and kill the host. We combine chemical and genetic tools with high-resolution time-lapse microscopy to implicate both phagocyte oxidase and dual-specific oxidase in recruitment, suggesting that both myeloid and non-myeloid cells promote chemotaxis. We show that early non-invasive imaging provides a robust tool for prognosis, strongly connecting effective early immune response with survival. Finally, we demonstrate a new role of a key regulator of the yeast-to-hyphal switching program in phagocyte-mediated containment, suggesting that there are species-specific methods for modulation of NADPH oxidase-independent immune responses. These novel links between ROS-driven chemotaxis and fungal dimorphism expand our view of a key host defense mechanism and have important implications for pathogenesis. Over 45 years ago chronic granulomatous disease (CGD) was ascribed to a failure of neutrophils to mount a respiratory burst, and it is now known to result from primary genetic deficiencies in the phagocyte NADPH oxidase complex. Recent work suggests that reactive oxygen species produced by NADPH oxidases have other important functions as diverse as maturing hormones and promoting protein kinase signal transduction. Candida albicans is an opportunistic pathogen that preys on immunocompromised patients to cause lethal candidemia. We used the transparent zebrafish larva to describe a novel function of both phagocyte oxidase and dual-specific NADPH oxidase in directing phagocyte recruitment to C. albicans infection foci. We demonstrate that NADPH oxidase-dependent attraction of neutrophils and macrophages is instrumental in effective containment of yeast within phagocytes, which prevents the yeast-to-hyphal morphogenetic switch and limits mortality. Remarkably, when the fungal morphogenetic switch is prevented by mutation, NADPH oxidase activity is no longer required for effective fungal containment. Our study suggests that defects in CGD may extend beyond reduced microbial killing by superoxide to include impairment of chemotaxis, and provide a basis for exploring this alternative function in mammals.
Collapse
|
25
|
The scavenger receptor SCARF1 mediates the clearance of apoptotic cells and prevents autoimmunity. Nat Immunol 2013; 14:917-26. [PMID: 23892722 PMCID: PMC3752698 DOI: 10.1038/ni.2670] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/21/2013] [Indexed: 12/14/2022]
Abstract
Clearance of apoptotic cells is critical for control of tissue homeostasis however the full range of receptor(s) on phagocytes responsible for recognition of apoptotic cells remains to be identified. Here we show that dendritic cells (DCs), macrophages and endothelial cells use scavenger receptor type F family member 1 (SCARF1) to recognize and engulf apoptotic cells via C1q. Loss of SCARF1 impairs uptake of apoptotic cells. Consequently, in SCARF1-deficient mice, dying cells accumulate in tissues leading to a lupus-like disease with the spontaneous generation of autoantibodies to DNA-containing antigens, immune cell activation, dermatitis and nephritis. The discovery of SCARF1 interactions with C1q and apoptotic cells provides insights into molecular mechanisms involved in maintenance of tolerance and prevention of autoimmune disease.
Collapse
|
26
|
Zigmond E, Varol C, Farache J, Elmaliah E, Satpathy AT, Friedlander G, Mack M, Shpigel N, Boneca IG, Murphy KM, Shakhar G, Halpern Z, Jung S. Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 2012; 37:1076-90. [PMID: 23219392 DOI: 10.1016/j.immuni.2012.08.026] [Citation(s) in RCA: 554] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/29/2012] [Indexed: 12/15/2022]
Abstract
Ly6C(hi) monocytes seed the healthy intestinal lamina propria to give rise to resident CX(3)CR1(+) macrophages that contribute to the maintenance of gut homeostasis. Here we report on two alternative monocyte fates in the inflamed colon. We showed that CCR2 expression is essential to the recruitment of Ly6C(hi) monocytes to the inflamed gut to become the dominant mononuclear cell type in the lamina propria during settings of acute colitis. In the inflammatory microenvironment, monocytes upregulated TLR2 and NOD2, rendering them responsive to bacterial products to become proinflammatory effector cells. Ablation of Ly6C(hi) monocytes ameliorated acute gut inflammation. With time, monocytes differentiated into migratory antigen-presenting cells capable of priming naive T cells, thus acquiring hallmarks reminiscent of dendritic cells. Collectively, our results highlight cellular dynamics in the inflamed colon and the plasticity of Ly6C(hi) monocytes, marking them as potential targets for inflammatory bowel disease (IBD) therapy.
Collapse
Affiliation(s)
- Ehud Zigmond
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Regulation and function of the E-cadherin/catenin complex in cells of the monocyte-macrophage lineage and DCs. Blood 2011; 119:1623-33. [PMID: 22174153 DOI: 10.1182/blood-2011-10-384289] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
E-cadherin is best characterized as adherens junction protein, which through homotypic interactions contributes to the maintenance of the epithelial barrier function. In epithelial cells, the cytoplasmic tail of E-cadherin forms a dynamic complex with catenins and regulates several intracellular signal transduction pathways, including Wnt/β-catenin, PI3K/Akt, Rho GTPase, and NF-κB signaling. Recent progress uncovered a novel and critical role for this adhesion molecule in mononuclear phagocyte functions. E-cadherin regulates the maturation and migration of Langerhans cells, and its ligation prevents the induction of a tolerogenic state in bone marrow-derived dendritic cells (DCs). In this respect, the functionality of β-catenin could be instrumental in determining the balance between immunogenicity and tolerogenicity of DCs in vitro and in vivo. Fusion of alternatively activated macrophages and osteoclasts is also E-cadherin-dependent. In addition, the E-cadherin ligands CD103 and KLRG1 are expressed on DC-, T-, and NK-cell subsets and contribute to their interaction with E-cadherin-expressing DCs and macrophages. Here we discuss the regulation, function, and implications of E-cadherin expression in these central orchestrators of the immune system.
Collapse
|
28
|
Maintenance and break of immune tolerance against human factor VIII in a new transgenic hemophilic mouse model. Blood 2011; 118:3698-707. [DOI: 10.1182/blood-2010-11-316521] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Replacement of the missing factor VIII (FVIII) is the current standard of care for patients with hemophilia A. However, the short half-life of FVIII makes frequent treatment necessary. Current efforts focus on the development of longer-acting FVIII concentrates by introducing chemical and genetic modifications to the protein. Any modification of the FVIII protein, however, risks increasing its immunogenic potential to induce neutralizing antibodies (FVIII inhibitors), and this is one of the major complications in current therapy. It would be highly desirable to identify candidates with a high risk for increased immunogenicity before entering clinical development to minimize the risk of exposing patients to such altered FVIII proteins. In the present study, we describe a transgenic mouse line that expresses a human F8 cDNA. This mouse is immunologically tolerant to therapeutic doses of native human FVIII but is able to mount an antibody response when challenged with a modified FVIII protein that possesses altered immunogenic properties. In this situation, immunologic tolerance breaks down and antibodies develop that recognize both the modified and the native human FVIII. The applicability of this new model for preclinical immunogenicity assessment of new FVIII molecules and its potential use for basic research are discussed.
Collapse
|
29
|
Getts DR, Turley DM, Smith CE, Harp CT, McCarthy D, Feeney EM, Getts MT, Martin AJ, Luo X, Terry RL, King NJC, Miller SD. Tolerance induced by apoptotic antigen-coupled leukocytes is induced by PD-L1+ and IL-10-producing splenic macrophages and maintained by T regulatory cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:2405-17. [PMID: 21821796 DOI: 10.4049/jimmunol.1004175] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ag-specific tolerance is a highly desired therapy for immune-mediated diseases. Intravenous infusion of protein/peptide Ags linked to syngeneic splenic leukocytes with ethylene carbodiimide (Ag-coupled splenocytes [Ag-SP]) has been demonstrated to be a highly efficient method for inducing peripheral, Ag-specific T cell tolerance for treatment of autoimmune disease. However, little is understood about the mechanisms underlying this therapy. In this study, we show that apoptotic Ag-SP accumulate in the splenic marginal zone, where their uptake by F4/80(+) macrophages induces production of IL-10, which upregulates the expression of the immunomodulatory costimulatory molecule PD-L1 that is essential for Ag-SP tolerance induction. Ag-SP infusion also induces T regulatory cells that are dispensable for tolerance induction but required for long-term tolerance maintenance. Collectively, these results indicate that Ag-SP tolerance recapitulates how tolerance is normally maintained in the hematopoietic compartment and highlight the interplay between the innate and adaptive immune systems in the induction of Ag-SP tolerance. To our knowledge, we show for the first time that tolerance results from the synergistic effects of two distinct mechanisms, PD-L1-dependent T cell-intrinsic unresponsiveness and the activation of T regulatory cells. These findings are particularly relevant as this tolerance protocol is currently being tested in a Phase I/IIa clinical trial in new-onset relapsing-remitting multiple sclerosis.
Collapse
Affiliation(s)
- Daniel R Getts
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Paclik D, Werner L, Guckelberger O, Wiedenmann B, Sturm A. Galectins distinctively regulate central monocyte and macrophage function. Cell Immunol 2011; 271:97-103. [PMID: 21724180 DOI: 10.1016/j.cellimm.2011.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 05/27/2011] [Accepted: 06/08/2011] [Indexed: 12/11/2022]
Abstract
Monocytes and macrophages link the innate and adaptive immune systems and protect the host from the outside world. In inflammatory disorders their activation leads to tissue damage. Galectins have emerged as central regulators of the immune system. However, if they regulate monocyte/macrophage physiology is still unknown. Binding of Gal-1, Gal-2, Gal-3 and Gal-4 to monocytes/macrophages, activation, cytokine secretion and apoptosis were determined by FACS, migration by Transwell system and phagocytosis by phagotest. Supernatants from macrophages co-cultured with galectins revealed their influence on T-cell function. In our study Gal-1, Gal-2, Gal-4, and partly Gal-3 bound to monocytes/macrophages. Galectins prevented Salmonella-induced MHCII upregulation. Cytokine release was distinctly induced by different galectins. T-cell activation was significantly restricted by supernatants of macrophages co-cultured in the presence of Gal-2 or Gal-4. Furthermore, all galectins tested significantly inhibited monocyte migration. Finally, we showed for the first time that galectins induce potently monocyte, but not macrophage apoptosis. Our study provides evidence that galectins distinctively modulate central monocyte/macrophage function. By inhibiting T-cell function via macrophage priming, we show that galectins link the innate and adaptive immune systems and provide new insights into the action of sugar-binding proteins.
Collapse
Affiliation(s)
- Daniela Paclik
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Germany.
| | | | | | | | | |
Collapse
|
31
|
Dorhoi A, Reece ST, Kaufmann SHE. For better or for worse: the immune response against Mycobacterium tuberculosis balances pathology and protection. Immunol Rev 2011; 240:235-51. [PMID: 21349097 DOI: 10.1111/j.1600-065x.2010.00994.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tuberculosis (TB) is a complex disease, and the success of the bacterium as an intracellular pathogen is the outcome of its close and longstanding coevolution with the mammalian host. The dialogue between Mycobacterium tuberculosis and the host is becoming understandable at the molecular, cellular, and tissue level. This has led to the elucidation of the (i) interaction between pattern recognition receptors and pathogen-associated molecular patterns, (ii) cross-talk between immune cells, and (iii) mechanisms underlying granuloma development. Disease as an eventual but not a necessary consequence of infection results from a sensitive balance between protective immunity and destructive pathology. Early events, governed largely by conserved mechanisms of host recognition, impact not only on type and course of adaptive immunity but also on lung parenchymal function. New interpretations of how these responses shape the lung environment and direct granuloma development emphasize that the disease results from pathologic consequences of non-resolving inflammation. We review recent advances in TB research within the context of this ambitious view of TB.
Collapse
Affiliation(s)
- Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | |
Collapse
|
32
|
Mittal R, Sukumaran SK, Selvaraj SK, Wooster DG, Babu MM, Schreiber AD, Verbeek JS, Prasadarao NV. Fcγ receptor I alpha chain (CD64) expression in macrophages is critical for the onset of meningitis by Escherichia coli K1. PLoS Pathog 2010; 6:e1001203. [PMID: 21124939 PMCID: PMC2987830 DOI: 10.1371/journal.ppat.1001203] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 10/21/2010] [Indexed: 11/18/2022] Open
Abstract
Neonatal meningitis due to Escherichia coli K1 is a serious illness with unchanged morbidity and mortality rates for the last few decades. The lack of a comprehensive understanding of the mechanisms involved in the development of meningitis contributes to this poor outcome. Here, we demonstrate that depletion of macrophages in newborn mice renders the animals resistant to E. coli K1 induced meningitis. The entry of E. coli K1 into macrophages requires the interaction of outer membrane protein A (OmpA) of E. coli K1 with the alpha chain of Fcγ receptor I (FcγRIa, CD64) for which IgG opsonization is not necessary. Overexpression of full-length but not C-terminal truncated FcγRIa in COS-1 cells permits E. coli K1 to enter the cells. Moreover, OmpA binding to FcγRIa prevents the recruitment of the γ-chain and induces a different pattern of tyrosine phosphorylation of macrophage proteins compared to IgG2a induced phosphorylation. Of note, FcγRIa−/− mice are resistant to E. coli infection due to accelerated clearance of bacteria from circulation, which in turn was the result of increased expression of CR3 on macrophages. Reintroduction of human FcγRIa in mouse FcγRIa−/− macrophages in vitro increased bacterial survival by suppressing the expression of CR3. Adoptive transfer of wild type macrophages into FcγRIa−/− mice restored susceptibility to E. coli infection. Together, these results show that the interaction of FcγRI alpha chain with OmpA plays a key role in the development of neonatal meningitis by E. coli K1. Escherichia coli K1 is the most common cause of meningitis in premature infants; the mortality rate of this disease ranges from 5% to 30%. A better understanding of the pathogenesis of E. coli K1 meningitis is needed to develop new preventative strategies. We have shown that outer membrane protein A (OmpA) of E. coli K1, independent of antibody opsonization, is critical for bacterial entrance and survival within macrophages. Using a newborn mouse model, we found that depletion of macrophages renders the animals resistant to E. coli K1 induced meningitis. OmpA binds to α-chain of Fcγ-receptor I (FcγRIa) in macrophages, but does not induce expected gamma chain association and signaling. FcγRIa knockout mice are resistant to E. coli K1 infection because their macrophages express more CR3 and are thus able to kill bacteria with greater efficiency, preventing the development of high-grade bacteremia, a pre-requisite for the onset of meningitis. These novel observations demonstrate that inhibiting OmpA binding to FcγRIa is a promising therapeutic target for treatment or prevention of neonatal meningitis.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Bacterial Outer Membrane Proteins/metabolism
- Binding, Competitive
- Blotting, Western
- Brain/immunology
- Brain/metabolism
- Brain/microbiology
- COS Cells
- Chlorocebus aethiops
- Escherichia coli/growth & development
- Escherichia coli/pathogenicity
- Flow Cytometry
- Humans
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Immunoprecipitation
- Macrophage-1 Antigen/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/microbiology
- Meningitis, Escherichia coli/etiology
- Meningitis, Escherichia coli/metabolism
- Meningitis, Escherichia coli/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide/metabolism
- Phagocytosis
- Phosphorylation
- RNA, Messenger/genetics
- Receptors, IgG/physiology
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Rahul Mittal
- Division of Infectious Diseases, The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Sunil K. Sukumaran
- Division of Infectious Diseases, The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - Suresh K. Selvaraj
- Division of Infectious Diseases, The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - David G. Wooster
- Division of Infectious Diseases, The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
| | - M. Madan Babu
- Structural Studies Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Alan D. Schreiber
- Hematology and Oncology Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - J. Sjef Verbeek
- Department of Human Genetics, University Medical Center, Leiden, Netherlands
| | - Nemani V. Prasadarao
- Division of Infectious Diseases, The Saban Research Institute, Childrens Hospital Los Angeles, Los Angeles, California, United States of America
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Abstract
In vertebrates, myeloid cells comprise polymorphonuclear and mononuclear lineages that arise from 2 successive waves of development: a transitory primitive wave giving rise to limited myeloid cells during embryonic stage and a definitive wave capable of producing myeloid cells throughout the fetal and adult life. One key unresolved question is what factors dictate polymorphonuclear versus mononuclear lineage fates during myelopoiesis. Here we show that during zebrafish embryogenesis interferon regulatory factor-8 (irf8) is expressed specifically in macrophages but not neutrophils. Suppression of Irf8 function in zebrafish causes a depletion of macrophages and an enhanced output of neutrophils but does not affect the overall number, proliferation, and survival of primitive myeloid cells. These data indicate that the skewed myeloid lineage development in Irf8 knockdown embryos results from a cell-fate switching. Such a conclusion is further supported by the observation showing that overexpression of Irf8 promotes macrophage formation at the expense of neutrophil development. Genetic epistasis analysis reveals that Irf8 acts downstream of Pu.1 but is insufficient to promote macrophage development in the absence of Pu.1. Our findings demonstrate that Irf8 is a critical determinant for neutrophil versus macrophage fate choice during zebrafish primitive myelopoiesis.
Collapse
|
34
|
Scull CM, Hays WD, Fischer TH. Macrophage pro-inflammatory cytokine secretion is enhanced following interaction with autologous platelets. JOURNAL OF INFLAMMATION-LONDON 2010; 7:53. [PMID: 21067617 PMCID: PMC2988777 DOI: 10.1186/1476-9255-7-53] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 11/11/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Macrophages are the dominant phagocyte at sites of wound healing and inflammation, and the cellular and acellular debris encountered by macrophages can have profound effects on their inflammatory profile. Following interaction with apoptotic cells, macrophages are known to switch to an anti-inflammatory phenotype. Activated platelets, however, are also a major component of inflammatory lesions and have been proposed to be pro-inflammatory mediators. In the present study, we tested the hypothesis that macrophage interaction with activated platelets results in an inflammatory response that differs from the response following phagocytosis of apoptotic cells. METHODS Human monocyte-derived macrophages (hMDMs) were co-incubated with autologous activated platelets (AAPs) and the platelet-macrophage interaction was examined by electron microscopy and flow cytometry. The cytokines TNF-α, IL-6, and IL-23 were also measured during LPS-activated hMDM co-incubation with AAPs, which was compared to co-incubation with apoptotic lymphocytes. Cytokine secretion was also compared to platelets pre-treated with the gluococorticoid dexamethasone. RESULTS Macrophages trapped and phagocytized AAPs utilizing a mechanism that was significantly inhibited by the scavenger receptor ligand fucoidan. LPS-induced macrophage secretion of TNF-α, IL-6, and IL-23 was inhibited by co-incubation with apoptotic cells, but enhanced by co-incubation with AAPs. The platelet-dependent enhancement of LPS-induced cytokines could be reversed by pre-loading the platelets with the glucocorticoid dexamethasone. CONCLUSIONS The interaction of human macrophages with autologous platelets results in scavenger-receptor-mediated platelet uptake and enhancement of LPS-induced cytokines. Therefore, the presence of activated platelets at sites of inflammation may exacerbate pro-inflammatory macrophage activation. The possibility of reversing macrophage activation with dexamethasone-loaded platelets is a promising therapeutic approach to treating unresolved inflammation.
Collapse
Affiliation(s)
- Christopher M Scull
- Francis Owen Blood Research Lab, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 125 University Lake Rd, Chapel Hill, NC 27516, USA.
| | | | | |
Collapse
|
35
|
Abstract
The initial event in atherogenesis is the increased transcytosis of low density lipoprotein, and its subsequent deposition, retention and modification in the subendothelium. It is followed by the infiltration of activated inflammatory cells from the coronary circulation into the arterial wall. There they secrete reactive oxygen species (ROS) and produce oxidized lipoproteins capable of inducing endothelial cell apoptosis, and thereby plaque erosion. Activated T lymphocytes, macrophages and mast cells, accumulate in the eroded plaque where they secrete a variety of proteases capable of inducing degradation of extracellular proteins, thereby rendering the plaques more prone to rupture. This review summarizes the recent advancements in the understanding of the roles of ROS and oxidized lipoproteins in the activation of inflammatory cells and inducing signalling pathways related to cell death and apoptosis. In addition, it presents evidence that this vicious circle between oxidative stress and inflammation does not only occur in the diseased arterial wall, but also in adipose tissues. There, oxidative stress and inflammation impair adipocyte maturation resulting in defective insulin action and adipocytokine signalling. The latter is associated with increased infiltration of inflammatory cells, loss of anti-oxidant protection and cell death in the arterial wall.
Collapse
Affiliation(s)
- Maarten Hulsmans
- Atherosclerosis and Metabolism Unit, Department of Cardiovascular Diseases, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|
36
|
Hulsmans M, Holvoet P. The vicious circle between oxidative stress and inflammation in atherosclerosis. FASEB J 2009; 25:2515-27. [PMID: 19968738 DOI: 10.1096/fj.11-181149] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The initial event in atherogenesis is the increased transcytosis of low density lipoprotein, and its subsequent deposition, retention and modification in the subendothelium. It is followed by the infiltration of activated inflammatory cells from the coronary circulation into the arterial wall. There they secrete reactive oxygen species (ROS) and produce oxidized lipoproteins capable of inducing endothelial cell apoptosis, and thereby plaque erosion. Activated T lymphocytes, macrophages and mast cells, accumulate in the eroded plaque where they secrete a variety of proteases capable of inducing degradation of extracellular proteins, thereby rendering the plaques more prone to rupture. This review summarizes the recent advancements in the understanding of the roles of ROS and oxidized lipoproteins in the activation of inflammatory cells and inducing signalling pathways related to cell death and apoptosis. In addition, it presents evidence that this vicious circle between oxidative stress and inflammation does not only occur in the diseased arterial wall, but also in adipose tissues. There, oxidative stress and inflammation impair adipocyte maturation resulting in defective insulin action and adipocytokine signalling. The latter is associated with increased infiltration of inflammatory cells, loss of anti-oxidant protection and cell death in the arterial wall.
Collapse
Affiliation(s)
- Maarten Hulsmans
- Atherosclerosis and Metabolism Unit, Department of Cardiovascular Diseases, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|