1
|
Mukherjee P, Dutta J, Roy M, Thakur TK, Mitra A. Plant growth-promoting rhizobacterial secondary metabolites in augmenting heavy metal(loid) phytoremediation: An integrated green in situ ecorestorative technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55851-55894. [PMID: 39251536 DOI: 10.1007/s11356-024-34706-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/17/2022] [Indexed: 09/11/2024]
Abstract
In recent times, increased geogenic and human-centric activities have caused significant heavy metal(loid) (HM) contamination of soil, adversely impacting environmental, plant, and human health. Phytoremediation is an evolving, cost-effective, environment-friendly, in situ technology that employs indigenous/exotic plant species as natural purifiers to remove toxic HM(s) from deteriorated ambient soil. Interestingly, the plant's rhizomicrobiome is pivotal in promoting overall plant nutrition, health, and phytoremediation. Certain secondary metabolites produced by plant growth-promoting rhizobacteria (PGPR) directly participate in HM bioremediation through chelation/mobilization/sequestration/bioadsorption/bioaccumulation, thus altering metal(loid) bioavailability for their uptake, accumulation, and translocation by plants. Moreover, the metallotolerance of the PGPR and the host plant is another critical factor for the successful phytoremediation of metal(loid)-polluted soil. Among the phytotechniques available for HM remediation, phytoextraction/phytoaccumulation (HM mobilization, uptake, and accumulation within the different plant tissues) and phytosequestration/phytostabilization (HM immobilization within the soil) have gained momentum in recent years. Natural metal(loid)-hyperaccumulating plants have the potential to assimilate increased levels of metal(loid)s, and several such species have already been identified as potential candidates for HM phytoremediation. Furthermore, the development of transgenic rhizobacterial and/or plant strains with enhanced environmental adaptability and metal(loid) uptake ability using genetic engineering might open new avenues in PGPR-assisted phytoremediation technologies. With the use of the Geographic Information System (GIS) for identifying metal(loid)-impacted lands and an appropriate combination of normal/transgenic (hyper)accumulator plant(s) and rhizobacterial inoculant(s), it is possible to develop efficient integrated phytobial remediation strategies in boosting the clean-up process over vast regions of HM-contaminated sites and eventually restore ecosystem health.
Collapse
Affiliation(s)
- Pritam Mukherjee
- Department of Oceanography, Techno India University, West Bengal, EM 4/1 Sector V, Salt Lake, Kolkata, 700091, West Bengal, India.
| | - Joystu Dutta
- Department of Environmental Science, University Teaching Department, Sant Gahira Guru University, Ambikapur, 497001, Chhattisgarh, India
| | - Madhumita Roy
- Department of Microbiology, Bose Institute, P-1/12, CIT Road, Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Tarun Kumar Thakur
- Department of Environmental Science, Indira Gandhi National Tribal University, Amarkantak, 484886, Madhya Pradesh, India
| | - Abhijit Mitra
- Department of Marine Science, University of Calcutta, 35 B. C. Road, Kolkata, 700019, West Bengal, India
| |
Collapse
|
2
|
Chitolina SF, Dartora N, de Pelegrin CMG, Dos Santos MV, Cassol F, Friedrich T, da Veiga JD, Borkowski JE, Vieira IAM. Excess copper promotes an increase in the concentration of metabolites in Tridax procumbens L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51870-51882. [PMID: 39134796 DOI: 10.1007/s11356-024-34688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
The study investigated the effects of cultivating Tridax procumbens in hydroponic conditions with different concentrations of copper ions, aiming to understand the physiological changes and the impact on the biosynthesis of secondary metabolites. The treatments consisted of a completely randomized design, with five increasing concentrations of copper (T0 = 0.235, T1 = 12.5, T2 = 25, T3 = 50, T4 = 100 µmol L-1 of Cu), under controlled conditions for 36 days. Analysis of bioactive compounds in leaves was performed by HPLC-DAD and ESI-MS. Several phenolic compounds, alkaloids, phytosterols and triterpenoids were identified, demonstrating the plant's metabolic plasticity. The highest dose of copper (100 µmol L-1) significantly promoted voacangine, the most predominant compound in the analyses. Notably, 66.7% of the metabolites that showed an increase in concentration, were phenolic compounds. Furthermore, treatments with 12.5 and 25 µmol L-1 of copper were identified as promoting the biosynthesis of phytosterols and triterpenoids. These biochemical adaptations can play a fundamental role in the survival and development of plants in environments contaminated by metals, and from this it is possible to determine cultivation techniques that maximize the biosynthesis of the compound of interest.
Collapse
Affiliation(s)
- Samuel Francisco Chitolina
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| | - Nessana Dartora
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil.
| | - Carla Maria Garlet de Pelegrin
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
- Programa de Pós-Graduação Em Ambientes E Tecnologias Sustentáveis (UFFS), Unidade Seminário, Sala 1-2-16, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| | - Marlei Veiga Dos Santos
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
- Programa de Pós-Graduação Em Ambientes E Tecnologias Sustentáveis (UFFS), Unidade Seminário, Sala 1-2-16, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| | - Fabiano Cassol
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
- Programa de Pós-Graduação Em Ambientes E Tecnologias Sustentáveis (UFFS), Unidade Seminário, Sala 1-2-16, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| | - Thalía Friedrich
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| | - Jayne Deboni da Veiga
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| | - Júnior Eugênio Borkowski
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| | - Isabelle Alícia Melo Vieira
- Universidade Federal da Fronteira Sul (UFFS), Sala 109, Laboratório 2, Campus Cerro Largo, Cerro Largo, RS, CEP 97900-000, Brazil
| |
Collapse
|
3
|
Anjitha KS, Sarath NG, Sameena PP, Janeeshma E, Shackira AM, Puthur JT. Plant response to heavy metal stress toxicity: the role of metabolomics and other omics tools. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:965-982. [PMID: 37995340 DOI: 10.1071/fp23145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Metabolomic investigations offers a significant foundation for improved comprehension of the adaptability of plants to reconfigure the key metabolic pathways and their response to changing climatic conditions. Their application to ecophysiology and ecotoxicology help to assess potential risks caused by the contaminants, their modes of action and the elucidation of metabolic pathways associated with stress responses. Heavy metal stress is one of the most significant environmental hazards affecting the physiological and biochemical processes in plants. Metabolomic tools have been widely utilised in the massive characterisation of the molecular structure of plants at various stages for understanding the diverse aspects of the cellular functioning underlying heavy metal stress-responsive mechanisms. This review emphasises on the recent progressions in metabolomics in plants subjected to heavy metal stresses. Also, it discusses the possibility of facilitating effective management strategies concerning metabolites for mitigating the negative impacts of heavy metal contaminants on the growth and productivity of plants.
Collapse
Affiliation(s)
- K S Anjitha
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O., Malappuram, Kerala 673635, India
| | - Nair G Sarath
- Department of Botany, Mar Athanasius College, Kothamangalam, Ernakulam, Kerala 686666, India
| | - P P Sameena
- Department of Botany, PSMO College, Tirurangadi, Malappuram, Kerala 676306, India
| | - Edappayil Janeeshma
- Department of Botany, MES KEVEEYAM College, Valanchery, Malappuram, Kerala 676552, India
| | - A M Shackira
- Department of Botany, Sir Syed College, Kannur University, Kannur, Kerala 670142, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus P.O., Malappuram, Kerala 673635, India
| |
Collapse
|
4
|
Li HL, Yan CP, Qi JS, Zhang S, Guo DQ, Gu WC, Wu YM, Wu Y, Zhou N. Analysis of the heavy metal contents' effect on steroidal saponins and the anti-breast cancer activity of Paris polyphylla var. yunnanensis. Front Pharmacol 2023; 14:1277395. [PMID: 37954839 PMCID: PMC10637373 DOI: 10.3389/fphar.2023.1277395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Background: P. polyphylla var. yunnanensis, as a near-threatened and ethnic medicine in China, used to be a key ingredient in traditional Chinese medicine in treatment of traumatic injuries, sore throat, snakebites, and convulsions for thousands of years. However, there were no reports on the inverse relationship between the contents of heavy metals and saponins and its anti-breast cancer pharmacological activity in P. polyphylla var. yunnanensis. Methods: The present study aimed to reveal the characteristics of heavy metal contents and saponins and its anti-breast cancer pharmacological activity and their interrelationships in P. polyphylla var. yunnanensis from different production areas. The contents of heavy metal and steroidal saponins in P. polyphylla var. yunnanensis were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and the high-performance liquid chromatography technique, respectively. The Pearson correlation was used to study the correlation between saponins and heavy metals. 4T1 mouse mammary tumor cells were selected and cultivated for antitumor studies in vitro. Cell Counting Kit-8 (CCK-8) assay, Hoechst staining, and flow cytometry analysis were used for the examination of the proliferation and apoptosis of 4T1 tumor cells. Mouse breast cancer 4T1 cells were subcutaneously injected into BALB/c mice to construct a tumor model to explore the in vivo inhibitory effect on breast cancer. TUNEL assay and immunohistochemistry were used for the examination of the effect of P. polyphylla var. yunnanensis from different origins on cancer cell proliferation and apoptosis induction in 4T1 tumor mice. Results: Heavy metal contents were highly correlated with the content of steroidal saponins. The overall content of 10 metals in the three producing origins was of the order C3 >C2 >C1. The total content of eight steroidal saponins in the extracts of P. polyphylla var. yunnanensis from three different origins was C1 >C2 >C3. The Pearson correlation study showed that in all of the heavy metals, the contents of Cd and Ba were positively correlated with the main steroidal saponins in P. polyphylla var. yunnanensis, while Al, Cr, Cu, Fe, Zn, As, Hg, and Pb showed a negative correlation. In vitro experiments showed that the extracts of P. polyphylla var. yunnanensis from three origins could inhibit the proliferation and induce cell apoptosis of 4T1 cells in a concentration- and time-dependent manner, especially in the C1 origin. In vivo experiments showed that the extract of P. polyphylla var. yunnanensis from the three origins could inhibit the growth of tumors and induce the apoptosis of tumor cells. In the three origins, C1 origin had the lowest total heavy metal level but the highest total steroidal saponin level. Therefore, it showed a better effect in reducing the expression of the human epidermal growth factor receptor 2 (HER2) and Kiel 67 (Ki67) and increasing the expression of p53 in tumor tissues compared to the other origins. In conclusion, in the three origins, C1 origin exhibits antitumor pharmacological effects in vivo and in vitro which are better than those in the other origins. Conclusion: In this study, we found that with the increase of the heavy metal content, the content of steroid saponins and anti-breast cancer activity decreased. The results showed that the high content of the total heavy metals may not be conducive to the accumulation of steroidal saponins in P. polyphylla var. yunnanensis and lead to the low anti-breast cancer activity. The results of this study suggest that the content of heavy metals should be controlled in the artificial cultivation process of P. polyphylla var. yunnanensis.
Collapse
Affiliation(s)
- Hai-Ling Li
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Cui-Ping Yan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Taizhou Institute for Drug Control, Taizhou, China
| | - Jun-Sheng Qi
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Shuo Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, China
| | - Dong-Qin Guo
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Wen-Chao Gu
- College of Pharmacy, Dali University, Dali, China
| | - Ying-Mei Wu
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yu Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, China
| | - Nong Zhou
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Pivetta CP, Chitolina SF, Dartora N, Pelegrin CMGD, Santos MVD, Cassol F, Batista LS. Copper exposure leads to changes in chlorophyll content and secondary metabolite profile in Lantana fucata leaves. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:571-584. [PMID: 37187188 DOI: 10.1071/fp23047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Cultivation of plants in environments polluted by metals at toxic levels can affect the biosynthesis of secondary metabolites. Here, we analysed the effect caused by excess copper on the concentration of chlorophylls a and b and the profile of secondary metabolites of Lantana fucata leaves. Five copper (Cu) treatments (mg Cukg-1 soil) were tested: T0, 0; T1, 210; T2, 420; T3, 630; and T4, 840. We found that the concentrations of chlorophylls in the plants decreased when compared to the control. However, this did not lead to a significant reduction in its growth, possibly due to the low translocation of the metal to shoots and the activation of plant defence systems to tolerate the environment in which they are exposed, increasing the emission of lateral roots and activating pathways for the production of secondary metabolites. Therefore, we found a decrease in the concentration of two key compounds in secondary metabolism, p -coumaric and cinnamic acids in treatments with higher copper concentrations. We also found an increase in phenolics. Decreases in p -coumaric and cinnamic acids may have occurred because these are precursors in the synthesis of phenolic compounds, which are increased in the high Cu treatments. Six secondary metabolites were characterised, described for the first time for this plant species. Thus, the presence of excess Cu in the soil may have triggered an increase in the amount of reactive oxygen species in the plants, which that led to the synthesis of antioxidant compounds, as a defence strategy.
Collapse
Affiliation(s)
- Carlise Patrícia Pivetta
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil; and Programa de Pós-Graduação em Ambientes e Tecnologias Sustentáveis (UFFS), Cerro Largo, Brazil
| | | | - Nessana Dartora
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil
| | - Carla Maria Garlet de Pelegrin
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil; and Programa de Pós-Graduação em Ambientes e Tecnologias Sustentáveis (UFFS), Cerro Largo, Brazil
| | - Marlei Veiga Dos Santos
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil; and Programa de Pós-Graduação em Ambientes e Tecnologias Sustentáveis (UFFS), Cerro Largo, Brazil
| | - Fabiano Cassol
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil
| | - Laura Spohr Batista
- Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil; and Programa de Pós-Graduação em Ambientes e Tecnologias Sustentáveis (UFFS), Cerro Largo, Brazil
| |
Collapse
|
6
|
Al-Khayri JM, Banadka A, Rashmi R, Nagella P, Alessa FM, Almaghasla MI. Cadmium toxicity in medicinal plants: An overview of the tolerance strategies, biotechnological and omics approaches to alleviate metal stress. FRONTIERS IN PLANT SCIENCE 2023; 13:1047410. [PMID: 36733604 PMCID: PMC9887195 DOI: 10.3389/fpls.2022.1047410] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Medicinal plants, an important source of herbal medicine, are gaining more demand with the growing human needs in recent times. However, these medicinal plants have been recognized as one of the possible sources of heavy metal toxicity in humans as these medicinal plants are exposed to cadmium-rich soil and water because of extensive industrial and agricultural operations. Cadmium (Cd) is an extremely hazardous metal that has a deleterious impact on plant development and productivity. These plants uptake Cd by symplastic, apoplastic, or via specialized transporters such as HMA, MTPs, NRAMP, ZIP, and ZRT-IRT-like proteins. Cd exerts its effect by producing reactive oxygen species (ROS) and interfere with a range of metabolic and physiological pathways. Studies have shown that it has detrimental effects on various plant growth stages like germination, vegetative and reproductive stages by analyzing the anatomical, morphological and biochemical changes (changes in photosynthetic machinery and membrane permeability). Also, plants respond to Cd toxicity by using various enzymatic and non-enzymatic antioxidant systems. Furthermore, the ROS generated due to the heavy metal stress alters the genes that are actively involved in signal transduction. Thus, the biosynthetic pathway of the important secondary metabolite is altered thereby affecting the synthesis of secondary metabolites either by enhancing or suppressing the metabolite production. The present review discusses the abundance of Cd and its incorporation, accumulation and translocation by plants, phytotoxic implications, and morphological, physiological, biochemical and molecular responses of medicinal plants to Cd toxicity. It explains the Cd detoxification mechanisms exhibited by the medicinal plants and further discusses the omics and biotechnological strategies such as genetic engineering and gene editing CRISPR- Cas 9 approach to ameliorate the Cd stress.
Collapse
Affiliation(s)
- Jameel M. Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Akshatha Banadka
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - R Rashmi
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Fatima M. Alessa
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mustafa I. Almaghasla
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
7
|
Asare MO, Száková J, Tlustoš P. The fate of secondary metabolites in plants growing on Cd-, As-, and Pb-contaminated soils-a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11378-11398. [PMID: 36529801 PMCID: PMC9760545 DOI: 10.1007/s11356-022-24776-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/11/2022] [Indexed: 04/12/2023]
Abstract
The study used scattered literature to summarize the effects of excess Cd, As, and Pb from contaminated soils on plant secondary metabolites/bioactive compounds (non-nutrient organic substances). Hence, we provided a systematic overview involving the sources and forms of Cd, As, and Pb in soils, plant uptake, mechanisms governing the interaction of these risk elements during the formation of secondary metabolites, and subsequent effects. The biogeochemical characteristics of soils are directly responsible for the mobility and bioavailability of risk elements, which include pH, redox potential, dissolved organic carbon, clay content, Fe/Mn/Al oxides, and microbial transformations. The radial risk element flow in plant systems is restricted by the apoplastic barrier (e.g., Casparian strip) and chelation (phytochelatins and vacuole sequestration) in roots. However, bioaccumulation is primarily a function of risk element concentration and plant genotype. The translocation of risk elements to the shoot via the xylem and phloem is well-mediated by transporter proteins. Besides the dysfunction of growth, photosynthesis, and respiration, excess Cd, As, and Pb in plants trigger the production of secondary metabolites with antioxidant properties to counteract the toxic effects. Eventually, this affects the quantity and quality of secondary metabolites (including phenolics, flavonoids, and terpenes) and adversely influences their antioxidant, antiinflammatory, antidiabetic, anticoagulant, and lipid-lowering properties. The mechanisms governing the translocation of Cd, As, and Pb are vital for regulating risk element accumulation in plants and subsequent effects on secondary metabolites.
Collapse
Affiliation(s)
- Michael O Asare
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 21, Prague 6, Czech Republic.
| | - Jiřina Száková
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 21, Prague 6, Czech Republic
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 21, Prague 6, Czech Republic
| |
Collapse
|
8
|
Castañeda-Espinoza J, Salinas-Sánchez DO, Mussali-Galante P, Castrejón-Godínez ML, Rodríguez A, González-Cortazar M, Zamilpa-Álvarez A, Tovar-Sánchez E. Dodonaea viscosa (Sapindaceae) as a phytoremediator for soils contaminated by heavy metals in abandoned mines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2509-2529. [PMID: 35931856 DOI: 10.1007/s11356-022-22374-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Dodonaea viscosa (L.) Jacq. is a plant with a wide distribution that expands throughout almost all Mexican territory and is used in traditional medicine to treat many ailments. This species has been found associated with polluted areas, including mine tailings. Huautla, Morelos, Mexico, was a metallurgic district where mining activities generated 780,000 tons of waste rich in metals, deposited at 500 m from the town without any treatment; this situation has been related to different environmental threats and human health risks. The study was carried out for 18 months on seedlings developed under greenhouse conditions in two treatments: control substrate and mine tailings substrate. The concentration of six metals (Cd, Cr, Cu, Fe, Pb, and Zn) was measured through atomic absorption spectrophotometry in plant tissues, roots, and leaves. Effects of metal exposure were analyzed by size, micro-morphological character changes, and genetic damage in foliar tissue using the comet assay. The results showed significantly higher metal concentrations in the roots and leaves of individuals growing on the mine tailing substrate in comparison to the same plants tissues growing on control substrate. Positive and significant relationships between exposure time and metal concentration in roots and leaves, and between metal bioaccumulation in leaves and genetic damage were registered. Four out of six micro-morphological and size characters evaluated decreased significantly in exposed plants, except for stomatic index and root biomass. The most important metals in terms of the number of significantly affected micro-morphological and size characters showed the next pattern: Fe > Cd = Cr = Pb > Cu > Zn. D. viscosa is an efficient accumulator of Cu, Cd, Fe, Pb, and Zn in its root and leaf tissues. Overall, metal translocation factors in exposed D. viscosa plants showed the following pattern: Zn > Cu > Cd. We conclude that D. viscosa has the potential to phytoextract (Zn, Cu, and Cd), and phytostabilize (Cu, Cd, Fe, Pb, and Zn) metals from polluted soils, and along with its abundance, natural establishment in mine tailings, high levels of metal translocation, and bioconcentration factors, without affecting plant development, it can be an ideal candidate for phytoremediation of metal polluted soils.
Collapse
Affiliation(s)
- Joel Castañeda-Espinoza
- Doctorado en Ciencias Naturales, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - David Osvaldo Salinas-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Patricia Mussali-Galante
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | - Alexis Rodríguez
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Col. Centro, Argentina No. 1, Xochitepec, Morelos, México
| | - Alejandro Zamilpa-Álvarez
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Col. Centro, Argentina No. 1, Xochitepec, Morelos, México
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México.
| |
Collapse
|
9
|
Effect of Cadmium and Copper Exposure on Growth, Physio-Chemicals and Medicinal Properties of Cajanus cajan L. (Pigeon Pea). Metabolites 2021; 11:metabo11110769. [PMID: 34822427 PMCID: PMC8623172 DOI: 10.3390/metabo11110769] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 01/24/2023] Open
Abstract
Soil contamination with heavy metals is an emerging concern in the modern era, affecting all forms of life. Pigeon pea is a multi-use shrub with medicinal and nutritional values. On the basis of a randomized complete design, we investigated in the current project the combined cadmium (Cd) and copper (Cu) effect on plant growth and physio-chemical/medicinal properties of pigeon pea. Three-week-old seedlings were grown in combined Cd and Cu amended soil with increasing metal concentrations (control, 20 + 30 mg/kg, 40 + 60 mg/kg, and 60 + 90 mg/kg) for three months. At high-dose metal cumulative stress (60 + 90 mg/kg), plant shoot and root growth in terms of plant height as well as fresh and dry weight were significantly inhibited in association with decreased photosynthetic attributes (chlorophyll a and b contents, net photosynthesis, transpiration rate, stomatal conductance, intercellular CO2 concentrations) and diminished nutrient contents. Cd and Cu at high amounts inflicted oxidative stresses as assessed in elevated lipid peroxidation (MDA), hydrogen peroxide (H2O2), and electrolyte leakage contents. Antioxidant enzyme activities, namely, those of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and glutathione peroxidase (GPX), were enhanced, along with proline content with increasing metal quantity. Phenolics and flavonoids exhibited a diverse response regarding metal concentration, and their biosynthesis was significantly suppressed at high Cd and Cu cumulative stress. The reduction in secondary metabolites may account for declined medicinal properties of pigeon pea as appraised in reduced antibacterial, 2, 2-diphenyl-1-picrylhydrazyl (DPPH), and ferric-reducing antioxidant potential (FRAP) activities. Our results clearly demonstrate that the exposure of pigeon pea to Cd- and Cu-contaminated soil might affect consumers due to the presence of metals and the negligible efficacy of the herbal products.
Collapse
|
10
|
Park YJ, Kim NS, Sathasivam R, Chung YS, Park SU. Impact of copper treatment on phenylpropanoid biosynthesis in adventitious root culture of Althaea officinalis L. Prep Biochem Biotechnol 2021; 52:283-291. [PMID: 34154516 DOI: 10.1080/10826068.2021.1934697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Althaea officinalis has been widely used in various pharmaceutical applications. The biological effects and significance of phenylpropanoids in numerous industries are well studied. However, fulfilling consumer demand for these commercially important compounds is difficult. The effect of heavy-metal toxic influence on plants is primarily due to a strong and rapid suppression of growth processes, as well as the decline in activity of the photosynthetic apparatus, also associated with progressing senescence processes. Some of the secondary metabolite production was triggered by the application of heavy metals, but there was not a stress response. In the adventitious root culture of A. officinalis, copper-mediated phenylpropanoid biosynthesis has been investigated in both concentration-and duration-dependent manners. High-performance liquid chromatography (HPLC) analysis revealed a total of nine different phenolic compounds in response to different concentrations of copper chloride. In this study, high productivity of phenolic compounds was observed in the copper chloride treated-adventitious root culture of A. officianalis. In particular, a low concentration of copper chloride led to a significant accumulation of phenolic compounds under optimal conditions. Moreover, all genes responsible for phenylpropanoid biosynthesis may be sensitive to phenolic compound production following copper treatment. Especially, the highest change in transcript level was observed from AoANS at 6 h. According to our findings, treatment with copper chloride (0.5 mM) for 48 or 96 h can be an appropriate method to maximize phenylpropanoid levels in A. officinalis adventitious root culture.
Collapse
Affiliation(s)
- Yun Ji Park
- Department of Crop Science, Chungnam National University, Daejeon, Republic of Korea
| | - Nam Su Kim
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon, Republic of Korea
| | - Ramaraj Sathasivam
- Department of Crop Science, Chungnam National University, Daejeon, Republic of Korea
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Smart Agriculture Systems, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Liu A, Li S, Cen N, Mao F, Yang R, Li L, Sui H, Zhao Y. Concentration of fifteen elements in herbaceous stems of Ephedra intermedia and influence of its growing soil. Sci Rep 2020; 10:15077. [PMID: 32934288 PMCID: PMC7494874 DOI: 10.1038/s41598-020-72048-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/24/2020] [Indexed: 12/02/2022] Open
Abstract
Mineral nutrients play important roles in the growth and metabolism of Ephedra intermedia, and are affected by soil factors. Fifteen elements were measured from wild E. intermedia as well as their growing soils using inductively coupled plasma mass spectroscopy to investigate the influences and characteristics of herb elements. The pH, cation exchange capacity, humus and soil mechanical composition were also determined in rhizosphere soils. Results showed that E. intermedia stems contained high N, low P concentrations in macronutrients and high Fe in micronutrients, and enriched N, S, Cl, P and Sr from soils. The 15 herb elements were affected by one or more soil factors, and K, P, Zn, Fe and Mn were important soil elements that influenced the mineral accumulation of E. intermedia. This study was useful for the artificial cultivation of wild E. intermedia.
Collapse
Affiliation(s)
- Anli Liu
- School of Pharmacy, Ningxia Medical University, No. 1160, Shengli South Avenue, Xingqing District, Yinchuan, 750004, People's Republic of China
| | - Siqi Li
- School of Pharmacy, Ningxia Medical University, No. 1160, Shengli South Avenue, Xingqing District, Yinchuan, 750004, People's Republic of China
| | - Nana Cen
- School of Pharmacy, Ningxia Medical University, No. 1160, Shengli South Avenue, Xingqing District, Yinchuan, 750004, People's Republic of China
| | - Fuying Mao
- School of Pharmacy, Ningxia Medical University, No. 1160, Shengli South Avenue, Xingqing District, Yinchuan, 750004, People's Republic of China.,Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Yinchuan, People's Republic of China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Yinchuan, People's Republic of China
| | - Ruixia Yang
- Wenxi County Meteorological Administration of Shanxi Province, Yuncheng, People's Republic of China
| | - Linfei Li
- School of Pharmacy, Ningxia Medical University, No. 1160, Shengli South Avenue, Xingqing District, Yinchuan, 750004, People's Republic of China
| | - Hong Sui
- School of Pharmacy, Ningxia Medical University, No. 1160, Shengli South Avenue, Xingqing District, Yinchuan, 750004, People's Republic of China.,Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Yinchuan, People's Republic of China
| | - Yunsheng Zhao
- School of Pharmacy, Ningxia Medical University, No. 1160, Shengli South Avenue, Xingqing District, Yinchuan, 750004, People's Republic of China. .,Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Yinchuan, People's Republic of China. .,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Yinchuan, People's Republic of China.
| |
Collapse
|
12
|
Husain R, Weeden H, Bogush D, Deguchi M, Soliman M, Potlakayala S, Katam R, Goldman S, Rudrabhatla S. Enhanced tolerance of industrial hemp (Cannabis sativa L.) plants on abandoned mine land soil leads to overexpression of cannabinoids. PLoS One 2019; 14:e0221570. [PMID: 31465423 PMCID: PMC6715179 DOI: 10.1371/journal.pone.0221570] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022] Open
Abstract
Industrial activities have a detrimental impact on the environment and health when high concentrations of pollutants are released. Phytoremediation is a natural method of utilizing plants to remove contaminants from the soil. The goal of this study was to investigate the ability of Cannabis sativa L. to sustainably grow and remediate abandoned coal mine land soils in Pennsylvania. In this study, six different varieties of industrial hemp (Fedora 17, Felina 32, Ferimon, Futura 75, Santhica 27, and USO 31) were grown on two different contaminated soil types and two commercial soils (Miracle-Gro Potting Mix and PRO-MIX HP Mycorrhizae High Porosity Grower Mix). Plants growing in all soil types were exposed to two environmental conditions (outside and in the greenhouse). Seed germination response and plant height indicated no significant differences among all hemp varieties grown in different soils, however on an average, the height of the plants grown in the greenhouse exceeded that of the plants grown outdoors. In addition, heavy metal analysis of Arsenic, Lead, Nickel, Mercury, and Cadmium was performed. The concentration of Nickel was 2.54 times greater in the leaves of hemp grown in mine land soil outdoors when compared to greenhouse conditions. No differences were found between expression of heavy metal transporter genes. Secondary metabolite analysis of floral buds from hemp grown in mine land soil displayed a significant increase in the total Cannabidiol content (2.16%, 2.58%) when compared to Miracle-Gro control soil (1.08%, 1.6%) for outdoors and in the greenhouse, respectively. Molecular analysis using qRT-PCR indicated an 18-fold increase in the expression of the cannabidiolic acid synthase gene in plants grown on mine land soil. The data indicates a high tolerance to heavy metals as indicated from the physiological and metabolites analysis.
Collapse
Affiliation(s)
- Rabab Husain
- Penn State Harrisburg, Middletown, PA, United States of America
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL, United States of America
| | - Hannah Weeden
- Penn State Harrisburg, Middletown, PA, United States of America
| | - Daniel Bogush
- Penn State Harrisburg, Middletown, PA, United States of America
| | | | - Mario Soliman
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States of America
| | | | - Ramesh Katam
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL, United States of America
| | - Stephen Goldman
- Department of Environmental Sciences, The University of Toledo, Toledo, OH, United States of America
| | - Sairam Rudrabhatla
- Penn State Harrisburg, Middletown, PA, United States of America
- * E-mail:
| |
Collapse
|
13
|
Czompa A, Gyongyosi A, Szoke K, Bak I, Csepanyi E, Haines DD, Tosaki A, Lekli I. Effects of Momordica charantia (Bitter Melon) on Ischemic Diabetic Myocardium. Molecules 2017; 22:molecules22030488. [PMID: 28335529 PMCID: PMC6155383 DOI: 10.3390/molecules22030488] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/02/2017] [Accepted: 03/15/2017] [Indexed: 12/23/2022] Open
Abstract
Objective: A rat model is here used to test a hypothesis that Momordica charantia (Bitter melon (BM)) extract favorably alters processes in cardiovascular tissue and is systemically relevant to the pathophysiology of type 2 diabetes (T2DM) and related cardiovascular disease. Methods: Male Lean and Zucker Obese (ZO) rats were gavage-treated for six weeks with 400 mg/kg body weight bitter melon (BM) extract suspended in mucin–water vehicle, or with vehicle (Control). Animals were segregated into four treatment groups, 10 animals in each group, according to strain (Lean or ZO) and treatment (Control or BM). Following six-week treatment periods, peripheral blood was collected from selected animals, followed by sacrifice, thoracotomy and mounting of isolated working heart setup. Results: Body mass of both Lean and ZO rats was unaffected by treatment, likewise, peripheral blood fasting glucose levels showed no significant treatment-related effects. However, some BM treatment-related improvement was noted in postischemic cardiac functions when Lean, BM-treated animals were compared to vehicle treated Lean control rats. Treatment of Lean, but not ZO, rats significantly reduced the magnitude of infarcted zone in isolated hearts subjected to 30 min of ischemia followed by 2 h of working mode reperfusion. Immunohistochemical demonstration of caspase-3 expression by isolated heart tissues subjected to 30 min of ischemia followed by 2 h of reperfusion, revealed significant correlation between BM treatment and reduced expression of this enzyme in hearts obtained from both Lean and ZO animals. The hierarchy and order of caspase-3 expression from highest to lowest was as follows: ZO rats receiving vehicle > ZO rats receiving BM extract > Lean rats treated receiving vehicle > Lean rats administered BM extract. Outcomes of analyses of peripheral blood content of cardiac-related analytics: with particular relevance to clinical application was a significant elevation in blood of ZO and ZO BM-treated, versus Lean rats of total cholesterol (high density lipoprotein HDL-c + low density lipoprotein LDL-c), with an inferred increase in HDL-c/LDL-c ratio—an outcome associated with decreased risk of atherosclerotic disease. Conclusions: BM extract failed to positively affect T2DM- and cardiovascular-related outcomes at a level suggesting use as a standalone treatment. Nevertheless, the encouraging effects of BM in enhancement of cardiac function, suppression of post-ischemic/reperfused infarct size extent and capacity to modulate serum cholesterol, will likely make it useful as an adjuvant therapy for the management of T2DM and related cardiovascular diseases.
Collapse
Affiliation(s)
- Attila Czompa
- Faculty of Pharmacy, Department of Pharmacology, University of Debrecen, Debrecen 4032, Hungary.
| | - Alexandra Gyongyosi
- Faculty of Pharmacy, Department of Pharmacology, University of Debrecen, Debrecen 4032, Hungary.
| | - Kitti Szoke
- Faculty of Pharmacy, Department of Pharmacology, University of Debrecen, Debrecen 4032, Hungary.
| | - Istvan Bak
- Faculty of Pharmacy, Department of Pharmacology, University of Debrecen, Debrecen 4032, Hungary.
| | - Evelin Csepanyi
- Faculty of Pharmacy, Department of Pharmacology, University of Debrecen, Debrecen 4032, Hungary.
| | - David D Haines
- Faculty of Pharmacy, Department of Pharmacology, University of Debrecen, Debrecen 4032, Hungary.
| | - Arpad Tosaki
- Faculty of Pharmacy, Department of Pharmacology, University of Debrecen, Debrecen 4032, Hungary.
| | - Istvan Lekli
- Faculty of Pharmacy, Department of Pharmacology, University of Debrecen, Debrecen 4032, Hungary.
| |
Collapse
|
14
|
Wójciak-Kosior M, Sowa I, Blicharski T, Strzemski M, Dresler S, Szymczak G, Wnorowski A, Kocjan R, Świeboda R. The Stimulatory Effect of Strontium Ions on Phytoestrogens Content in Glycine max (L.) Merr. Molecules 2016; 21:90. [PMID: 26784151 PMCID: PMC6273764 DOI: 10.3390/molecules21010090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/22/2015] [Accepted: 01/07/2016] [Indexed: 11/30/2022] Open
Abstract
The amount of secondary metabolites in plants can be enhanced or reduced by various external factors. In this study, the effect of strontium ions on the production of phytoestrogens in soybeans was investigated. The plants were treated with Hoagland's solution, modified with Sr(2+) with concentrations ranging from 0.5 to 3.0 mM, and were grown for 14 days in hydroponic cultivation. After harvest, soybean plants were separated into roots and shoots, dried, and pulverized. The plant material was extracted with methanol and hydrolyzed. Phytoestrogens were quantified by HPLC. The significant increase in the concentration of the compounds of interest was observed for all tested concentrations of strontium ions when compared to control. Sr(2+) at a concentration of 2 mM was the strongest elicitor, and the amount of phytoestrogens in plant increased ca. 2.70, 1.92, 3.77 and 2.88-fold, for daidzein, coumestrol, genistein and formononetin, respectively. Moreover, no cytotoxic effects were observed in HepG2 liver cell models after treatment with extracts from 2 mM Sr(2+)-stressed soybean plants when compared to extracts from non-stressed plants. Our results indicate that the addition of strontium ions to the culture media may be used to functionalize soybean plants with enhanced phytoestrogen content.
Collapse
Affiliation(s)
- Magdalena Wójciak-Kosior
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, Lublin 20-093, Poland.
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, Lublin 20-093, Poland.
| | - Tomasz Blicharski
- Orthopaedics and Rehabilitation Clinic, Medical University Lublin, Chodźki 4a, Lublin 20-093, Poland.
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, Lublin 20-093, Poland.
| | - Sławomir Dresler
- Department of Plant Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland.
| | - Grażyna Szymczak
- Botanical Garden of Maria Curie-Skłodowska University in Lublin, Sławinkowska 3, Lublin 20-810, Poland.
| | - Artur Wnorowski
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, Lublin 20-093, Poland.
| | - Ryszard Kocjan
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, Lublin 20-093, Poland.
| | - Ryszard Świeboda
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, Lublin 20-093, Poland.
| |
Collapse
|
15
|
Saeidi S, Amini Boroujeni N, Ahmadi H, Hassanshahian M. Antibacterial Activity of Some Plant Extracts Against Extended- Spectrum Beta-Lactamase Producing Escherichia coli Isolates. Jundishapur J Microbiol 2015; 8:e15434. [PMID: 25793093 PMCID: PMC4353063 DOI: 10.5812/jjm.15434] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 04/05/2014] [Accepted: 04/12/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The extended-spectrum beta-lactamase (ESBL) -producing Escherichia coli isolates make many serious infections, especially urinary tract infections. OBJECTIVES The purpose of this study was to determine the antibacterial activities of some natural plant extracts against ESBL-producing E. coli isolates, which harbor the TEM gene in urine samples of the patients who have urinary tract infections. MATERIALS AND METHODS Evaluation has to be exactly determined for both methods of disk diffusion test and polymerase chain reaction (PCR), separately. We evaluated 120 strains of E. coli isolates from the urine culture of the patients in Boo-Ali Hospital (Zahedan, south-eastern Iran) who were suffering from urinary tract infections. The ESBL-producing E. coli isolates were evaluated by disk diffusion test and PCR through TEM gene detection. The minimal inhibitory concentration (MIC) of commonly used antibiotics including ceftazidime, ceftriaxon, amikacin, gentamicin and ciprofloxacin along with the MIC of the alcoholic extract of different natural plants including Myrtus communis L (Myrtaceae), Amaranthus retraflexus (Amaranthaceae), Cyminum cuminum L (Apiaceae), Marrubium vulgare (Laminaceae) and Peganum. harmala (Zygrophyllaceae) against the ESBL-producing E. coli isolates, which harbor the TEM genes, were determined using the microdulition method. RESULTS Results of this study showed that in disk diffusion method, 80 samples of E. coli produced ESBLs. In PCR method, the TEM gene distribution in the isolated ESBL-producing organisms was 50 (41.6%). Amikacin was the most effective anti-bacterial agent and ciprofloxacin was the least effective against E. coli isolates. All the natural plant extracts mentioned above, especially P. harmala, were effective against the selected isolates of ESBL-producing E. coli. The most frequent ESBL rate producing E. coli isolates (32 out of 50) had MIC of 2.5 mg/mL in ethanol extract of P. harmala. CONCLUSIONS The alcoholic extract of P. harmala was very effective against the selected ESBL-producing E. coli isolates harboring the TEM gene. Therefore, it could be suggested as an antibacterial agent in the future. More researches are necessary for detecting the mechanism of this plant's behavior and its pharmacological effects.
Collapse
Affiliation(s)
- Saeide Saeidi
- Agricultural Biotechnology Research Institute, Zabol University, Zabol, IR Iran
| | - Negar Amini Boroujeni
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Kerman, IR Iran
| | - Hassan Ahmadi
- Agricultural Biotechnology Research Institute, Zabol University, Zabol, IR Iran
| | - Mehdi Hassanshahian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, IR Iran
| |
Collapse
|
16
|
Paul S, Shakya K. Arsenic, chromium and NaCl induced artemisinin biosynthesis in Artemisia annua L.: a valuable antimalarial plant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 98:59-65. [PMID: 24367814 DOI: 10.1016/j.ecoenv.2013.09.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Effect of As(III), Cr(VI) and NaCl on plant growth, antioxidant enzymes, SOD, TBRAS, protein, cDNA amplification of key genes of artemisinin pathway and artemisinin biosynthesis have been investigated to explore the actual changes in total herb and artemisinin yield in a crop cycle of Artemisia annua. Enhanced TBARS and SOD activity (4 U mg⁻¹), decreased catalase activity and total cholorophyll content were observed under metal(loid) and NaCl stress. Accumulation of As (III; µg mg⁻¹ DW) was higher in roots (10.75±0.00) than shoot (0.43±0.00) at 10 µg ml⁻¹. While Cr(VI; µg ml⁻¹ DW) accumulated more in shoots (37±9.6, 41.1±7.2 and 52.71±19.6). cDNA template of these treated plants along with control were amplified with HMGR, ADS and CYP71AV1 genes (artemisinin biosynthetic pathway genes); showed very low expression with Cr(VI) while As(III) (5 and 7.5 µg ml⁻¹) showed higher expression than control. The results obtained from this study suggest that A. annua can grow well with favoring artemisinin biosynthesis with treatment of As(III) 5, 7.5 µg ml⁻¹ and NaCl, while 10 µg ml⁻¹ As(III) and all doses of Cr(VI) affect artemisinin synthesis. Finally some evidence also suggests that As(III), Cr(VI) and NaCl induces stress affects on total herb yield of plant.
Collapse
|
17
|
Talukdar T, Talukdar D. Response of antioxidative enzymes to arsenic-induced phytotoxicity in leaves of a medicinal daisy, Wedelia chinensis Merrill. J Nat Sci Biol Med 2013; 4:383-8. [PMID: 24082737 PMCID: PMC3783785 DOI: 10.4103/0976-9668.116989] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background: Wedelia chinensis Merrill (Asteraceae) is a medicinally important herb, grown abundantly in soils contaminated with heavy metals, including toxic metalloid arsenic (As). The leaves have immense significance in treatment of various ailments. Objective: The present study was undertaken to ascertain whether the edible/usable parts experience oxidative stress in the form of membrane damage during As exposure or not. Materials and Methods: Responses of seven antioxidant enzymes were studied in leaves under 20 mg/L of As treatment in pot experiment. Results: When compared to control, activities of superoxide dismutase, monodehydroascorbatereductase, dehydroascorbatereductase, glutathione reductase, and gluathione peroxidase had increased, while the catalase level reduced and ascorbate peroxidase activity changed non-significantly in As-treated seedlings. This suggested overall positive response of antioxidant enzymes to As-induced oxidative stress. Although hydrogen peroxide content increased, level of lipid peroxidation and magnitude of membrane damage was quite normal, leading to normal growth (dry weight of shoot) of plant under Astreatment. Conclusion: W.chinensis is tolerant of As-toxicity, and thus, can be grown in As-contaminated zones.
Collapse
Affiliation(s)
- Tulika Talukdar
- Department of Botany, Systematics and Plant Taxonomy Section, University of Kalyani, Kalyani, Nadia, India
| | | |
Collapse
|
18
|
|
19
|
Zhang J, Yuan T, Wang Y, Zhao Y, Zhang J, Jin H. Determination of mineral elements in Gentiana rigescens from different zones of Yunnan, China. Biol Trace Elem Res 2012; 147:329-33. [PMID: 22161316 DOI: 10.1007/s12011-011-9293-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
Abstract
The concentrations of nine mineral elements were determined by atomic absorption spectroscopy in Gentiana rigescens from three zones (middle, southeast, and northwest zones) of Yunnan province in China. The average concentrations of mineral elements were found in the order K>Ca>Mg>Fe>Na>Zn>Cu>Cr>Se. Samples collected from the middle zone of Yunnan were enriched in Na (242.24 ± 50.80 mg/kg) and Mg (959.78 ± 54.60 mg/kg). However, materials from the southeast zone were particularly enriched in Ca (3,448.70 ± 749.82 mg/kg), but depleted in Se. Whereas those from the northwest zone were plentiful of K (2,746.89 ± 84.84 mg/kg), Fe (923.06 ± 127.52 mg/kg), Zn (261.38 ± 53.05 mg/kg), Cu (110.08 ± 46.23 mg/kg), and Se (53.99 ± 22.38 mg/kg).
Collapse
Affiliation(s)
- Jinyu Zhang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, China.
| | | | | | | | | | | |
Collapse
|
20
|
Sarma H, Deka S, Deka H, Saikia RR. Accumulation of heavy metals in selected medicinal plants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 214:63-86. [PMID: 21913125 DOI: 10.1007/978-1-4614-0668-6_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this review, we evaluate the reports published between 1993 and 2011 that address the heavy metal accumulation in 88 medicinal plant species. We compare the safe limits for heavy metals set by governmental agencies vs. the levels at which such metals actually exist in selected medicinal plants. We also evaluate the uses and effectiveness of medicinal plants in health care, and assess the hazards of medicinal plant uses, in view of the growing worldwide use of medicinal plants. From our extensive review of the literature, we discovered that a maximum permissible level (MPL) of Pb is exceeded in 21 plant medicine species, Cd in 44 species, and Hg in 10 species. Vetiveria zizanioides a potential candidate species for the treatment of cardiovascular diseases absorb a wide range of heavy metals from metal-contaminated soils. We believe that this species is the single most impressive example of a potentially hazardous medicinal plant. Based on our review, we endorse the hypothesis that heavy metal accumulation by medicinal plants is mainly caused by extraction of soluble metals from contaminated soil, sediments and air. One continuing problem in protecting consumers of plant-based medicines is that permissible levels of all heavy metals in herbal medicine have not yet been standardized by regulating governmental entities. Moreover, there are few limit tests that exist for heavy metal content of medicinal plants, or permissible limits for essential dietary minerals, in most medicinal plants. The dearth of such limits hamstrings development of medicinal plant research and delays the release of either new or improved versions of medicinal plants or their components. In the present review, we emphasize that medicinal plants are often subjected to heavy metal contamination and that the levels at which these heavy metals sometimes occur exceeds permissible levels for some species. Therefore, collecting medicinal plants from areas that are, or may be, contaminated should be discouraged and banned if possible.
Collapse
Affiliation(s)
- Hemen Sarma
- Environmental Biotechnology Laboratory, Resource Management and Environment Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781 035, India.
| | | | | | | |
Collapse
|