1
|
Liang Y, Lan T, Gan Q, Liang H. Successful transduction of target gene mediated by adeno-associated virus 2 into lens epithelial cells in rats. J Virol Methods 2023; 321:114792. [PMID: 37591371 DOI: 10.1016/j.jviromet.2023.114792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
The Adeno-Associated Virus (AAV) has emerged as a promising candidate for delivery of genetic material, exhibiting significant potential in various clinical applications. Although multiple AAV serotypes have been shown to transduce ocular tissues, there have been few studies of AAV transduction of lens epithelial cells (LECs) in the ocular. In this study, we compared the efficiency of intravitreal injection of six AAV serotypes (AAV2, AAV5, AAV6, AAV8, AAV9, and AAVDJ) to transduce lens and retina in rats, The expression and localization of the reporter gene ZsGreen in the lens and retina were examined using immunofluorescence staining, and the relative expression of ZsGreen mRNA was detected using RT-qPCR. Our results demonstrated that AAV2 had the highest efficiency in transducing LECs. All six AAV serotypes could transduce the retina. To validate this observation, we further constructed an AAV2 vector with exogenous gene senescence marker protein 30 (SMP30) and performed intravitreal injection to successfully overexpress SMP30 in LECs of rats. our results provide a basis for the use of AAV vector-mediated gene therapy for lens diseases.
Collapse
Affiliation(s)
- Yongshun Liang
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Tian Lan
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Qingqiao Gan
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Hao Liang
- Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
2
|
Barboni MTS, Vaillend C, Joachimsthaler A, Liber AMP, Khabou H, Roux MJ, Vacca O, Vignaud L, Dalkara D, Guillonneau X, Ventura DF, Rendon A, Kremers J. Rescue of Defective Electroretinographic Responses in Dp71-Null Mice With AAV-Mediated Reexpression of Dp71. Invest Ophthalmol Vis Sci 2020; 61:11. [PMID: 32049345 PMCID: PMC7326481 DOI: 10.1167/iovs.61.2.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose To study the potential effect of a gene therapy, designed to rescue the expression of dystrophin Dp71 in the retinas of Dp71-null mice, on retinal physiology. Methods We recorded electroretinograms (ERGs) in Dp71-null and wild-type littermate mice. In dark-adapted eyes, responses to flashes of several strengths were measured. In addition, flash responses on a 25-candela/square meters background were measured. On- and Off-mediated responses to sawtooth stimuli and responses to photopic sine-wave modulation (3–30 Hz) were also recorded. After establishing the ERG phenotype, the ShH10-GFP adeno-associated virus (AAV), which has been previously shown to target specifically Müller glial cells (MGCs), was delivered intravitreously with or without (sham therapy) the Dp71 coding sequence under control of a CBA promoter. ERG recordings were repeated three months after treatment. Real-time quantitative PCR and Western blotting analyses were performed in order to quantify Dp71 expression in the retinas. Results Dp71-null mice displayed reduced b-waves in dark- and light-adapted flash ERGs and smaller response amplitudes to photopic rapid-on sawtooth modulation and to sine-wave stimuli. Three months after intravitreal injections of the ShH10-GFP-2A-Dp71 AAV vector, ERG responses were completely recovered in treated eyes of Dp71-null mice. The functional rescue was associated with an overexpression of Dp71 in treated retinas. Conclusions The present results show successful functional recovery accompanying the reexpression of Dp71. In addition, this experimental model sheds light on MGCs influencing ERG components, since previous reports showed that aquaporin 4 and Kir4.1 channels were mislocated in MGCs of Dp71-null mice, while their distribution could be normalized following intravitreal delivery of the same ShH10-GFP-2A-Dp71 vector.
Collapse
|
3
|
Lin MS, Liao PY, Chen HM, Chang CP, Chen SK, Chern Y. Degeneration of ipRGCs in Mouse Models of Huntington's Disease Disrupts Non-Image-Forming Behaviors Before Motor Impairment. J Neurosci 2019; 39:1505-1524. [PMID: 30587542 PMCID: PMC6381252 DOI: 10.1523/jneurosci.0571-18.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 11/22/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs), which express the photopigment melanopsin, are photosensitive neurons in the retina and are essential for non-image-forming functions, circadian photoentrainment, and pupillary light reflexes. Five subtypes of ipRGCs (M1-M5) have been identified in mice. Although ipRGCs are spared in several forms of inherited blindness, they are affected in Alzheimer's disease and aging, which are associated with impaired circadian rhythms. Huntington's disease (HD) is an autosomal neurodegenerative disease caused by the expansion of a CAG repeat in the huntingtin gene. In addition to motor function impairment, HD mice also show impaired circadian rhythms and loss of ipRGC. Here, we found that, in HD mouse models (R6/2 and N171-82Q male mice), the expression of melanopsin was reduced before the onset of motor deficits. The expression of retinal T-box brain 2, a transcription factor essential for ipRGCs, was associated with the survival of ipRGCs. The number of M1 ipRGCs in R6/2 male mice was reduced due to apoptosis, whereas non-M1 ipRGCs were relatively resilient to HD progression. Most importantly, the reduced innervations of M1 ipRGCs, which was assessed by X-gal staining in R6/2-OPN4Lacz/+ male mice, contributed to the diminished light-induced c-fos and vasoactive intestinal peptide in the suprachiasmatic nuclei (SCN), which may explain the impaired circadian photoentrainment in HD mice. Collectively, our results show that M1 ipRGCs were susceptible to the toxicity caused by mutant Huntingtin. The resultant impairment of M1 ipRGCs contributed to the early degeneration of the ipRGC-SCN pathway and disrupted circadian regulation during HD progression.SIGNIFICANCE STATEMENT Circadian disruption is a common nonmotor symptom of Huntington's disease (HD). In addition to the molecular defects in the suprachiasmatic nuclei (SCN), the cause of circadian disruption in HD remains to be further explored. We hypothesized that ipRGCs, by integrating light input to the SCN, participate in the circadian regulation in HD mice. We report early reductions in melanopsin in two mouse models of HD, R6/2, and N171-82Q. Suppression of retinal T-box brain 2, a transcription factor essential for ipRGCs, by mutant Huntingtin might mediate the reduced number of ipRGCs. Importantly, M1 ipRGCs showed higher susceptibility than non-M1 ipRGCs in R6/2 mice. The resultant impairment of M1 ipRGCs contributed to the early degeneration of the ipRGC-SCN pathway and the circadian abnormality during HD progression.
Collapse
Affiliation(s)
- Meng-Syuan Lin
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 115, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and
| | - Po-Yu Liao
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Hui-Mei Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and
| | - Ching-Pang Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and
| | - Shih-Kuo Chen
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and
| |
Collapse
|
4
|
Pellissier LP, Hoek RM, Vos RM, Aartsen WM, Klimczak RR, Hoyng SA, Flannery JG, Wijnholds J. Specific tools for targeting and expression in Müller glial cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14009. [PMID: 26015954 PMCID: PMC4362388 DOI: 10.1038/mtm.2014.9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/12/2014] [Indexed: 12/17/2022]
Abstract
Despite their physiological roles, Müller glial cells are involved directly or indirectly in retinal disease pathogenesis and are an interesting target for therapeutic approaches for retinal diseases and regeneration such as CRB1 inherited retinal dystrophies. In this study, we characterized the efficiency of adeno-associated virus (AAV) capsid variants and different promoters to drive protein expression in Müller glial cells. ShH10Y and AAV9 were the most powerful capsids to infect mouse Müller glial cells. Retinaldehyde-binding protein 1 (RLBP1) promoter was the most powerful promoter to transduce Müller glial cells. ShH10Y capsids and RLBP1 promoter targeted human Müller glial cells in vitro. We also developed and tested smaller promoters to express the large CRB1 gene via AAV vectors. Minimal cytomegalovirus (CMV) promoter allowed expression of full-length CRB1 protein in Müller glial cells. In summary, ShH10Y and AAV9 capsids, and RLBP1 or minimal CMV promoters are of interest as specific tools to target and express in mouse or human Müller glial cells.
Collapse
Affiliation(s)
- Lucie P Pellissier
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences , Amsterdam, The Netherlands
| | - Robert M Hoek
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences , Amsterdam, The Netherlands
| | - Rogier M Vos
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences , Amsterdam, The Netherlands
| | - Wendy M Aartsen
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences , Amsterdam, The Netherlands
| | - Ryan R Klimczak
- Department of Molecular and Cellular Biology and The Helen Wills Neuroscience Institute, University of California , Berkeley, California, USA
| | - Stefan A Hoyng
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences , Amsterdam, The Netherlands
| | - John G Flannery
- Department of Molecular and Cellular Biology and The Helen Wills Neuroscience Institute, University of California , Berkeley, California, USA
| | - Jan Wijnholds
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences , Amsterdam, The Netherlands
| |
Collapse
|
5
|
Greenwald DL, Cashman SM, Kumar-Singh R. Mutation-independent rescue of a novel mouse model of Retinitis Pigmentosa. Gene Ther 2012; 20:425-34. [PMID: 22809998 DOI: 10.1038/gt.2012.53] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Retinitis Pigmentosa (RP) is the leading cause of inherited blindness in the developed world, affecting approximately 1 in 3000 individuals. Although there is currently no cure for RP, the genetic pathology has been well established. In this study, we developed a novel mouse model of RP (huRhoP347S) expressing a pathogenic human rhodopsin gene with a Pro347Ser (P347S) mutation on a rhodopsin knockout background. These mice undergo severe retinal degeneration at 1 month of age. In contrast to prior studies, this model was administered a gene therapy treatment at 19 days postnata. We evaluated several self-complementary adeno-associated virus (AAV) serotypes for photoreceptor tropism, including scAAV2/2, scAAV2/5, scAAV2/6.2 and scAAV2/9, and found that scAAV2/9 transduced photoreceptors with greater efficiency and expression than other vectors. We engineered an scAAV2/9 vector to contain a microRNA sequence specifically targeting the human rhodopsin gene and demonstrated its ability to silence rhodopsin by 60.2±8.2% in vitro. In addition, we constructed an scAAV2/9 vector to contain a replacement 'codon-modified' rhodopsin transgene (RhoR2) that was resistant to degradation by the microRNA. We found that delivery of the RhoR2 by scAAV2/9 is capable of restoring vision to rhodopsin knockout mice, and rescuing our novel transgenic huRhoP347S mouse model of dominant RP. Average a-wave responses of RhoR2-injected eyes were 1.8-fold higher than those of control-injected eyes. We found that delivery of the microRNA and replacement rhodopsin in a 1:2 ratio produced an average electroretinography (ERG) a-wave response of 17.4±2.9 compared to 6.5±2.8 μV for eyes injected with negative control virus.
Collapse
Affiliation(s)
- D L Greenwald
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
6
|
DiMattia MA, Nam HJ, Van Vliet K, Mitchell M, Bennett A, Gurda BL, McKenna R, Olson NH, Sinkovits RS, Potter M, Byrne BJ, Aslanidi G, Zolotukhin S, Muzyczka N, Baker TS, Agbandje-McKenna M. Structural insight into the unique properties of adeno-associated virus serotype 9. J Virol 2012; 86:6947-58. [PMID: 22496238 PMCID: PMC3393551 DOI: 10.1128/jvi.07232-11] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 04/03/2012] [Indexed: 12/20/2022] Open
Abstract
Adeno-associated virus serotype 9 (AAV9) has enhanced capsid-associated tropism for cardiac muscle and the ability to cross the blood-brain barrier compared to other AAV serotypes. To help identify the structural features facilitating these properties, we have used cryo-electron microscopy (cryo-EM) and three-dimensional image reconstruction (cryo-reconstruction) and X-ray crystallography to determine the structure of the AAV9 capsid at 9.7- and 2.8-Å resolutions, respectively. The AAV9 capsid exhibits the surface topology conserved in all AAVs: depressions at each icosahedral two-fold symmetry axis and surrounding each five-fold axis, three separate protrusions surrounding each three-fold axis, and a channel at each five-fold axis. The AAV9 viral protein (VP) has a conserved core structure, consisting of an eight-stranded, β-barrel motif and the αA helix, which are present in all parvovirus structures. The AAV9 VP differs in nine variable surface regions (VR-I to -IX) compared to AAV4, but at only three (VR-I, VR-II, and VR-IV) compared to AAV2 and AAV8. VR-I differences modify the raised region of the capsid surface between the two-fold and five-fold depressions. The VR-IV difference produces smaller three-fold protrusions in AAV9 that are less "pointed" than AAV2 and AAV8. Significantly, residues in the AAV9 VRs have been identified as important determinants of cellular tropism and transduction and dictate its antigenic diversity from AAV2. Hence, the AAV9 VRs likely confer the unique infection phenotypes of this serotype.
Collapse
Affiliation(s)
- Michael A. DiMattia
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Hyun-Joo Nam
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Kim Van Vliet
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Matthew Mitchell
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Brittney L. Gurda
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Norman H. Olson
- Department of Chemistry and Biochemistry and Division of Biological Sciences, University of California—San Diego, La Jolla, California, USA
| | - Robert S. Sinkovits
- Department of Chemistry and Biochemistry and Division of Biological Sciences, University of California—San Diego, La Jolla, California, USA
| | - Mark Potter
- Department of Pediatrics and Powell Gene Therapy Center, Division of Cell and Molecular Therapy, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Barry J. Byrne
- Department of Pediatrics and Powell Gene Therapy Center, Division of Cell and Molecular Therapy, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - George Aslanidi
- Department of Pediatrics and Powell Gene Therapy Center, Division of Cell and Molecular Therapy, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Sergei Zolotukhin
- Department of Pediatrics and Powell Gene Therapy Center, Division of Cell and Molecular Therapy, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Nicholas Muzyczka
- Department of Molecular Genetics and Microbiology and Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Timothy S. Baker
- Department of Chemistry and Biochemistry and Division of Biological Sciences, University of California—San Diego, La Jolla, California, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Rahim AA, Wong AMS, Hoefer K, Buckley SMK, Mattar CN, Cheng SH, Chan JKY, Cooper JD, Waddington SN. Intravenous administration of AAV2/9 to the fetal and neonatal mouse leads to differential targeting of CNS cell types and extensive transduction of the nervous system. FASEB J 2011; 25:3505-18. [DOI: 10.1096/fj.11-182311] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ahad A. Rahim
- Gene Transfer Technology Group, Institute for Women's HealthUniversity College London London UK
| | - Andrew M. S. Wong
- Pediatric Storage Disorders LaboratoryInstitute of Psychiatry, King's College London London UK
| | - Klemens Hoefer
- Pediatric Storage Disorders LaboratoryInstitute of Psychiatry, King's College London London UK
| | - Suzanne M. K. Buckley
- Gene Transfer Technology Group, Institute for Women's HealthUniversity College London London UK
| | - Citra N. Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and GynaecologyNational University of Singapore Singapore
| | | | - Jerry K. Y. Chan
- Experimental Fetal Medicine Group, Department of Obstetrics and GynaecologyNational University of Singapore Singapore
- Department of Reproductive MedicineKandang Kerbau Women's and Children's Hospital Singapore
| | - Jonathan D. Cooper
- Pediatric Storage Disorders LaboratoryInstitute of Psychiatry, King's College London London UK
| | - Simon N. Waddington
- Gene Transfer Technology Group, Institute for Women's HealthUniversity College London London UK
| |
Collapse
|