1
|
Ding K, Jiang W, Zhan W, Xiong C, Chen J, Wang Y, Jia H, Lei M. The therapeutic potential of quercetin for cigarette smoking-induced chronic obstructive pulmonary disease: a narrative review. Ther Adv Respir Dis 2023; 17:17534666231170800. [PMID: 37154390 PMCID: PMC10170608 DOI: 10.1177/17534666231170800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Quercetin is a flavonoid with antioxidant and anti-inflammatory properties. Quercetin has potentially beneficial therapeutic effects for several diseases, including cigarette smoking-induced chronic obstructive pulmonary disease (CS-COPD). Many studies have shown that quercetin's antioxidant and anti-inflammatory properties have positive therapeutic potential for CS-COPD. In addition, quercetin's immunomodulatory, anti-cellular senescence, mitochondrial autophagy-modulating, and gut microbiota-modulating effects may also have therapeutic value for CS-COPD. However, there appears to be no review of the possible mechanisms of quercetin for treating CS-COPD. Moreover, the combination of quercetin with common therapeutic drugs for CS-COPD needs further refinement. Therefore, in this article, after introducing the definition and metabolism of quercetin, and its safety, we comprehensively presented the pathogenesis of CS-COPD related to oxidative stress, inflammation, immunity, cellular senescence, mitochondrial autophagy, and gut microbiota. We then reviewed quercetin's anti-CS-COPD effects, performed by influencing these mechanisms. Finally, we explored the possibility of using quercetin with commonly used drugs for treating CS-COPD, providing a basis for future screening of excellent drug combinations for treating CS-COPD. This review has provided meaningful information on quercetin's mechanisms and clinical use in treating CS-COPD.
Collapse
Affiliation(s)
- Kaixi Ding
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenling Zhan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunping Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jieling Chen
- Shehong Hospital of Traditional Chinese Medicine, Shehong, China
| | - Yu Wang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Huanan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Ming Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
2
|
Exendin-4 restores airway mucus homeostasis through the GLP1R-PKA-PPARγ-FOXA2-phosphatase signaling. Mucosal Immunol 2020; 13:637-651. [PMID: 32034274 PMCID: PMC7664156 DOI: 10.1038/s41385-020-0262-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 02/04/2023]
Abstract
Goblet cell hyperplasia and metaplasia and excessive mucus are prominent pathologies of chronic airway diseases such as chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), and chronic bronchitis. Chronic infection by respiratory pathogens, including Pseudomonas aeruginosa, exacerbates cyclical proinflammatory responses and mucus hypersecretion. P. aeruginosa and its virulence factor pyocyanin contribute to these pathologies by inhibiting FOXA2, a key transcriptional regulator of mucus homeostasis, through activation of antagonistic signaling pathways EGFR-AKT/ERK1/2 and IL-4/IL-13-STAT6-SPDEF. However, FOXA2-targeted therapy has not been previously explored. Here, we examined the feasibility of repurposing the incretin mimetic Exendin-4 to restore FOXA2-mediated airway mucus homeostasis. We have found that Exendin-4 restored FOXA2 expression, attenuated mucin production in COPD and CF-diseased airway cells, and reduced mucin and P. aeruginosa burden in mouse lungs. Mechanistically, Exendin-4 activated the GLP1R-PKA-PPAR-γ-dependent phosphatases PTEN and PTP1B, which inhibited key kinases within both EGFR and STAT6 signaling cascades. Our results may lead to the repurposing of Exendin-4 and other incretin mimetics to restore FOXA2 function and ultimately regulate excessive mucus in diseased airways.
Collapse
|
3
|
Nasirikenari M, Lugade AA, Neelamegham S, Gao Z, Moremen KW, Bogner PN, Thanavala Y, Lau JTY. Recombinant Sialyltransferase Infusion Mitigates Infection-Driven Acute Lung Inflammation. Front Immunol 2019; 10:48. [PMID: 30778346 PMCID: PMC6369197 DOI: 10.3389/fimmu.2019.00048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/09/2019] [Indexed: 11/13/2022] Open
Abstract
Inappropriate inflammation exacerbates a vast array of chronic and acute conditions with severe health risks. In certain situations, such as acute sepsis, traditional therapies may be inadequate in preventing severe organ damage or death. We have previously shown cell surface glycan modification by the circulating sialyltransferase ST6Gal-1 regulates de novo inflammatory cell production via a novel extrinsic glycosylation pathway. Here, we show that therapeutic administration of recombinant, bioactive ST6Gal-1 (rST6G) mitigates acute inflammation in a murine model mimicking acute exacerbations experienced by patients with chronic obstructive pulmonary disease (COPD). In addition to suppressing proximal neutrophil recruitment at onset of infection-mediated inflammation, rST6G also muted local cytokine production. Histologically, exposure with NTHI, a bacterium associated with COPD exacerbations, in rST6G-treated animals revealed consistent and pronounced reduction of pulmonary inflammation, characterized by smaller inflammatory cuffs around bronchovascular bundles, and fewer inflammatory cells within alveolar walls, alveolar spaces, and on pleural surfaces. Taken together, the data advance the idea that manipulating circulatory ST6Gal-1 levels has potential in managing inflammatory conditions by leveraging the combined approaches of controlling new inflammatory cell production and dampening the inflammation mediator cascade.
Collapse
Affiliation(s)
- Mehrab Nasirikenari
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Amit A Lugade
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Sriram Neelamegham
- Department of Chemical and Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| | - Zhongwei Gao
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Kelley W Moremen
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Paul N Bogner
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
4
|
Khosravi N, Caetano MS, Cumpian AM, Unver N, De la Garza Ramos C, Noble O, Daliri S, Hernandez BJ, Gutierrez BA, Evans SE, Hanash S, Alekseev AM, Yang Y, Chang SH, Nurieva R, Kadara H, Chen J, Ostrin EJ, Moghaddam SJ. IL22 Promotes Kras-Mutant Lung Cancer by Induction of a Protumor Immune Response and Protection of Stemness Properties. Cancer Immunol Res 2018; 6:788-797. [PMID: 29764837 PMCID: PMC6030457 DOI: 10.1158/2326-6066.cir-17-0655] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/22/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023]
Abstract
Somatic KRAS mutations are the most common oncogenic variants in lung cancer and are associated with poor prognosis. Using a Kras-induced lung cancer mouse model, CC-LR, we previously showed a role for inflammation in lung tumorigenesis through activation of the NF-κB pathway, along with induction of interleukin 6 (IL6) and an IL17-producing CD4+ T-helper cell response. IL22 is an effector molecule secreted by CD4+ and γδ T cells that we previously found to be expressed in CC-LR mice. IL22 mostly signals through the STAT3 pathway and is thought to act exclusively on nonhematopoietic cells with basal IL22 receptor (IL22R) expression on epithelial cells. Here, we found that higher expression of IL22R1 in patients with KRAS-mutant lung adenocarcinoma was an independent indicator of poor recurrence-free survival. We then showed that genetic ablation of Il22 in CC-LR mice (CC-LR/IL22KO mice) caused a significant reduction in tumor number and size. This was accompanied by significantly lower tumor cell proliferation, angiogenesis, and STAT3 activation. Il22 ablation was also associated with significant reduction in lung-infiltrating inflammatory cells and expression of protumor inflammatory cytokines. Conversely, this was accompanied with increased antitumor Th1 and cytotoxic CD8+ T-cell responses, while suppressing the protumor immunosuppressive T regulatory cell response. In CC-LR/IL22KO mice, we found significantly reduced expression of core stemness genes and the number of prototypical SPC+CCSP+ stem cells. Thus, we conclude that IL22 promotes Kras-mutant lung tumorigenesis by driving a protumor inflammatory microenvironment with proliferative, angiogenic, and stemness contextual cues in epithelial/tumor cells. Cancer Immunol Res; 6(7); 788-97. ©2018 AACR.
Collapse
Affiliation(s)
- Nasim Khosravi
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mauricio S Caetano
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amber M Cumpian
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nese Unver
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Oscar Noble
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
| | - Soudabeh Daliri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Belinda J Hernandez
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Berenice A Gutierrez
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott E Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrei M Alekseev
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yi Yang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Radiation Oncology, The Second Hospital of Jilin University, China
| | - Seon Hee Chang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roza Nurieva
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Edwin J Ostrin
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
5
|
Bhat TA, Kalathil SG, Bogner PN, Miller A, Lehmann PV, Thatcher TH, Phipps RP, Sime PJ, Thanavala Y. Secondhand Smoke Induces Inflammation and Impairs Immunity to Respiratory Infections. THE JOURNAL OF IMMUNOLOGY 2018; 200:2927-2940. [PMID: 29555783 DOI: 10.4049/jimmunol.1701417] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/16/2018] [Indexed: 12/29/2022]
Abstract
Despite advocacy to reduce smoking-related diseases, >1 billion people worldwide continue to smoke. Smoking is immunosuppressive and an important etiological factor in the development of several human disorders including respiratory diseases like chronic obstructive pulmonary disease. However, there is a critical gap in the knowledge of the role of secondhand smoke (SHS) in inflammation and immunity. We therefore studied the influence of SHS on pulmonary inflammation and immune responses to respiratory infection by nontypeable Haemophilus influenzae (NTHI) recurrently found in chronic obstructive pulmonary disease patients. Chronic SHS-exposed mice were chronically infected with NTHI and pulmonary inflammation was evaluated by histology. Immune cell numbers and cytokines were measured by flow cytometry and ELISA, respectively. Chronic SHS exposure impaired NTHI P6 Ag-specific B and T cell responses following chronic NTHI infection as measured by ELISPOT assays, reduced the production of Abs in serum and bronchoalveolar lavage, and enhanced albumin leak into the bronchoalveolar lavage as determined by ELISA. Histopathological examination of lungs revealed lymphocytic accumulation surrounding airways and bronchovasculature following chronic SHS exposure and chronic infection. Chronic SHS exposure enhanced the levels of inflammatory cytokines IL-17A, IL-6, IL-1β, and TNF-α in the lungs, and impaired the generation of adaptive immunity following either chronic infection or P6 vaccination. Chronic SHS exposure diminished bacterial clearance from the lungs after acute NTHI challenge, whereas P6 vaccination improved clearance equivalent to the level seen in air-exposed, non-vaccinated mice. Our study provides unequivocal evidence that SHS exposure has long-term detrimental effects on the pulmonary inflammatory microenvironment and immunity to infection and vaccination.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | - Paul N Bogner
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Austin Miller
- Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | - Thomas H Thatcher
- Department of Medicine, University of Rochester, Rochester, NY 14620; and
| | - Richard P Phipps
- Department of Medicine, University of Rochester, Rochester, NY 14620; and.,Department of Environmental Medicine, University of Rochester, Rochester, NY 14620
| | - Patricia J Sime
- Department of Medicine, University of Rochester, Rochester, NY 14620; and.,Department of Environmental Medicine, University of Rochester, Rochester, NY 14620
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263;
| |
Collapse
|
6
|
Iturra PA, Rojas DA, Pérez FJ, Méndez A, Ponce CA, Bonilla P, Bustamante R, Rodríguez H, Beltrán CJ, Vargas SL. Progression of Type 2 Helper T Cell-Type Inflammation and Airway Remodeling in a Rodent Model of Naturally Acquired Subclinical Primary Pneumocystis Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:417-431. [PMID: 29169991 DOI: 10.1016/j.ajpath.2017.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/03/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022]
Abstract
Subclinical primary Pneumocystis infection is the most common pulmonary infection in early infancy, making it important to determine whether it damages the lung. Pneumocystis peaks at 2 to 5 months of age, when respiratory morbidity coincidently increases. We have documented that Pneumocystis increases mucus production in infant lungs, and animal models reveal lung lesions that warrant characterization. Herein, immunocompetent rats infected at birth with Pneumocystis by cohabitation, to resemble community-acquired infection, underwent lung assessments at 45, 60, and 75 days of age. Lungs fixed by vascular perfusion to prevent collapse during necropsy were used for morphometry evaluations of mucus production, airway epithelial thickening, perivascular and peribronchiolar inflammation, and structural airway remodeling. Changes in these histologic features indicate lung disease. Selected immune markers were assessed in parallel using fresh-frozen lung tissue from sibling rats of the same cages. Sequential activation of NF-κB and an increased Gata3/T-bet mRNA level ratio, consistent with a type 2 helper T-cell-type inflammatory response, and subacute fibrosis were recognized. Therefore, documenting subclinical Pneumocystis infection induces lung disease in the immunocompetent host. Taken together with the peak age of primary Pneumocystis infection, results warrant investigating the clinical impact of this often subclinical infection on the severity of respiratory diseases in early infancy. This model can also be used to assess the effects of airway insults, including coinfections by recognized respiratory pathogens.
Collapse
Affiliation(s)
- Pablo A Iturra
- Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile School of Medicine, Santiago, Chile
| | - Diego A Rojas
- Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile School of Medicine, Santiago, Chile
| | - Francisco J Pérez
- Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile School of Medicine, Santiago, Chile
| | - Andrea Méndez
- Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile School of Medicine, Santiago, Chile
| | - Carolina A Ponce
- Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile School of Medicine, Santiago, Chile
| | - Paula Bonilla
- Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile School of Medicine, Santiago, Chile
| | - Rebeca Bustamante
- Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile School of Medicine, Santiago, Chile
| | - Héctor Rodríguez
- Anatomy and Developmental Biology Program, Biomedical Sciences Institute, University of Chile School of Medicine, Santiago, Chile
| | - Caroll J Beltrán
- Gastroenterology Division, University Hospital, University of Chile School of Medicine, Santiago, Chile
| | - Sergio L Vargas
- Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile School of Medicine, Santiago, Chile.
| |
Collapse
|
7
|
Cantone M, Santos G, Wentker P, Lai X, Vera J. Multiplicity of Mathematical Modeling Strategies to Search for Molecular and Cellular Insights into Bacteria Lung Infection. Front Physiol 2017; 8:645. [PMID: 28912729 PMCID: PMC5582318 DOI: 10.3389/fphys.2017.00645] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022] Open
Abstract
Even today two bacterial lung infections, namely pneumonia and tuberculosis, are among the 10 most frequent causes of death worldwide. These infections still lack effective treatments in many developing countries and in immunocompromised populations like infants, elderly people and transplanted patients. The interaction between bacteria and the host is a complex system of interlinked intercellular and the intracellular processes, enriched in regulatory structures like positive and negative feedback loops. Severe pathological condition can emerge when the immune system of the host fails to neutralize the infection. This failure can result in systemic spreading of pathogens or overwhelming immune response followed by a systemic inflammatory response. Mathematical modeling is a promising tool to dissect the complexity underlying pathogenesis of bacterial lung infection at the molecular, cellular and tissue levels, and also at the interfaces among levels. In this article, we introduce mathematical and computational modeling frameworks that can be used for investigating molecular and cellular mechanisms underlying bacterial lung infection. Then, we compile and discuss published results on the modeling of regulatory pathways and cell populations relevant for lung infection and inflammation. Finally, we discuss how to make use of this multiplicity of modeling approaches to open new avenues in the search of the molecular and cellular mechanisms underlying bacterial infection in the lung.
Collapse
Affiliation(s)
| | | | | | | | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg and Universitätsklinikum ErlangenErlangen, Germany
| |
Collapse
|
8
|
Ng DSW, Liao W, Tan WSD, Chan TK, Loh XY, Wong WSF. Anti-malarial drug artesunate protects against cigarette smoke-induced lung injury in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1638-44. [PMID: 25442271 DOI: 10.1016/j.phymed.2014.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/11/2014] [Accepted: 07/22/2014] [Indexed: 06/04/2023]
Abstract
Cigarette smoking is the primary cause of chronic obstructive pulmonary disease (COPD), which is mediated by lung infiltration with inflammatory cells, enhanced oxidative stress, and tissue destruction. Anti-malarial drug artesunate has been shown to possess anti-inflammatory and anti-oxidative actions in mouse asthma models. We hypothesized that artesunate can protect against cigarette smoke-induced acute lung injury via its anti-inflammatory and anti-oxidative properties. Artesunate was given by oral gavage to BALB/c mice daily 2h before 4% cigarette smoke exposure for 1h over five consecutive days. Bronchoalveolar lavage (BAL) fluid and lungs were collected for analyses of cytokines, oxidative damage and antioxidant activities. Bronchial epithelial cell BEAS-2B was exposed to cigarette smoke extract (CSE) and used to study the mechanisms of action of artesunate. Artesunate suppressed cigarette smoke-induced increases in BAL fluid total and differential cell counts; levels of IL-1β, MCP-1, IP-10 and KC; and levels of oxidative biomarkers 8-isoprostane, 8-OHdG and 3-nitrotyrosine in a dose-dependent manner. Artesunate promoted anti-oxidant catalase activity and reduced NADPH oxidase 2 (NOX2) protein level in the lungs from cigarette smoke-exposed mice. In BEAS-2B cells, artesunate suppressed pro-inflammatory PI3K/Akt and p44/42 MAPK signaling pathways, and increased nuclear Nrf2 accumulation in response to CSE. Artesunate possesses anti-inflammatory and anti-oxidative properties against cigarette smoke-induced lung injury, probably via inhibition of PI3K and p42/22 MAPK signaling pathways, augmentation of Nrf2 and catalase activities, and reduction of NOX2 level. Our data suggest that artesunate may have therapeutic potential for treating COPD.
Collapse
Affiliation(s)
- David S W Ng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - W S Daniel Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Tze Khee Chan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Xin Yi Loh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore; Immunology Program, Life Science Institute; National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Lugade AA, Bogner PN, Thatcher TH, Sime PJ, Phipps RP, Thanavala Y. Cigarette smoke exposure exacerbates lung inflammation and compromises immunity to bacterial infection. THE JOURNAL OF IMMUNOLOGY 2014; 192:5226-35. [PMID: 24752444 DOI: 10.4049/jimmunol.1302584] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The detrimental impact of tobacco on human health is clearly recognized, and despite aggressive efforts to prevent smoking, close to one billion individuals worldwide continue to smoke. People with chronic obstructive pulmonary disease are susceptible to recurrent respiratory infections with pathogens, including nontypeable Haemophilus influenzae (NTHI), yet the reasons for this increased susceptibility are poorly understood. Because mortality rapidly increases with multiple exacerbations, development of protective immunity is critical to improving patient survival. Acute NTHI infection has been studied in the context of cigarette smoke exposure, but this is the first study, to our knowledge, to investigate chronic infection and the generation of adaptive immune responses to NTHI after chronic smoke exposure. After chronic NTHI infection, mice that had previously been exposed to cigarette smoke developed increased lung inflammation and compromised adaptive immunity relative to air-exposed controls. Importantly, NTHI-specific T cells from mice exposed to cigarette smoke produced lower levels of IFN-γ and IL-4, and B cells produced reduced levels of Abs against outer-membrane lipoprotein P6, with impaired IgG1, IgG2a, and IgA class switching. However, production of IL-17, which is associated with neutrophilic inflammation, was enhanced. Interestingly, cigarette smoke-exposed mice exhibited a similar defect in the generation of adaptive immunity after immunization with P6. Our study has conclusively demonstrated that cigarette smoke exposure has a profound suppressive effect on the generation of adaptive immune responses to NTHI and suggests the mechanism by which prior cigarette smoke exposure predisposes chronic obstructive pulmonary disease patients to recurrent infections, leading to exacerbations and contributing to mortality.
Collapse
Affiliation(s)
- Amit A Lugade
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Paul N Bogner
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Thomas H Thatcher
- Department of Medicine, University of Rochester, Rochester, NY 14620; and
| | - Patricia J Sime
- Department of Medicine, University of Rochester, Rochester, NY 14620; and Department of Environmental Medicine, University of Rochester, Rochester, NY 14620
| | - Richard P Phipps
- Department of Medicine, University of Rochester, Rochester, NY 14620; and Department of Environmental Medicine, University of Rochester, Rochester, NY 14620
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263;
| |
Collapse
|
10
|
Gao S, Ren D, Peng D, Zhang W, Muszyński A, Carlson RW, Gu XX. Late acyltransferase genes lpxX and lpxL jointly contribute to the biological activities of Moraxella catarrhalis. J Med Microbiol 2013; 62:807-812. [PMID: 23475908 DOI: 10.1099/jmm.0.056846-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lipo-oligosaccharide (LOS) is a major surface component and virulence factor of the human respiratory pathogen Moraxella catarrhalis. Two late acyltransferase genes, lpxX and lpxL, have been identified involved in the incorporation of acyloxyacyl-linked secondary acyl chains into lipid A during M. catarrhalis LOS biosynthesis. In this study, a double mutant with a deletion of both the lpxX and lpxL genes in M. catarrhalis strain O35E was constructed and named O35ElpxXL. Structural analysis of lipid A showed that the O35ElpxXL mutant lacked two decanoic acids (10 : 0) and one dodecanoic (lauric) acid (12 : 0). In comparison with the O35E parental strain and the single mutants O35ElpxX and O35ElpxL, the double mutant O35ElpxXL displayed prominently decreased endotoxin content, reduced resistance to normal human serum and accelerated bacterial clearance at 0, 3 and 6 h after an aerosol challenge in a mouse model of bacterial pulmonary clearance. These results indicate that these two genes encoding late acyltransferases responsible for lipid A biosynthesis jointly contribute to the biological activities and pathogenicity of M. catarrhalis. The double mutant O35ElpxXL with dramatically reduced toxicity is proposed as a potential vaccine candidate against M. catarrhalis infections for further investigation.
Collapse
Affiliation(s)
- Song Gao
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | - Dabin Ren
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | - Daxin Peng
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | - Wenhong Zhang
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Russell W Carlson
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Xin-Xing Gu
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| |
Collapse
|
11
|
Su YC, Singh B, Riesbeck K. Moraxella catarrhalis: from interactions with the host immune system to vaccine development. Future Microbiol 2013; 7:1073-100. [PMID: 22953708 DOI: 10.2217/fmb.12.80] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Moraxella catarrhalis is a human-restricted commensal that over the last two decades has developed into an emerging respiratory tract pathogen. The bacterial species is equipped with various adhesins to facilitate its colonization. Successful evasion of the human immune system is a prerequisite for Moraxella infection. This strategy involves induction of an excessive proinflammatory response, intervention of granulocyte recruitment to the infection site, activation of selected pattern recognition receptors and cellular adhesion molecules to counteract the host bacteriolytic attack, as well as, finally, reprogramming of antigen presenting cells. Host immunomodulator molecules are also exploited by Moraxella to aid in resistance against complement killing and host bactericidal molecules. Thus, breaking the basis of Moraxella immune evasion mechanisms is fundamental for future invention of effective therapy in controlling Moraxella infection.
Collapse
Affiliation(s)
- Yu-Ching Su
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | | |
Collapse
|
12
|
Boulianne B, Porfilio EA, Pikor N, Gommerman JL. Lymphotoxin-sensitive microenvironments in homeostasis and inflammation. Front Immunol 2012; 3:243. [PMID: 22866054 PMCID: PMC3408564 DOI: 10.3389/fimmu.2012.00243] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/18/2012] [Indexed: 01/04/2023] Open
Abstract
Stromal cell microenvironments within lymphoid tissues are designed to support immune cell homeostasis and to regulate ongoing immune responses to pathogens. Such stromal cell networks have been best characterized within lymphoid tissues including the spleen and peripheral lymph nodes, and systems for classifying stromal cell phenotypes and functions are emerging. In response to inflammation, stromal cell networks within lymphoid tissues change in order to accommodate and regulate lymphocyte activation. Local inflammation in non-lymphoid tissues can also induce de novo formation of lymphoid aggregates, which we term here “follicle-like structures.” Of note, the stromal cell networks that underpin such follicles are not as well characterized and may be different depending on the anatomical site. However, one common element that is integral to the maintenance of stromal cell environments, either in lymphoid tissue or in extra-lymphoid sites, is the constitutive regulation of stromal cell phenotype and/or function by the lymphotoxin (LT) pathway. Here we discuss how the LT pathway influences stromal cell environments both in homeostasis and in the context of inflammation in lymphoid and non-lymphoid tissues.
Collapse
Affiliation(s)
- Bryant Boulianne
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
13
|
Robinson AB, Stogsdill JA, Lewis JB, Wood TT, Reynolds PR. RAGE and tobacco smoke: insights into modeling chronic obstructive pulmonary disease. Front Physiol 2012; 3:301. [PMID: 22934052 PMCID: PMC3429072 DOI: 10.3389/fphys.2012.00301] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/10/2012] [Indexed: 12/31/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive condition characterized by chronic airway inflammation and airspace remodeling, leading to airflow limitation that is not completely reversible. Smoking is the leading risk factor for compromised lung function stemming from COPD pathogenesis. First- and second-hand cigarette smoke contain thousands of constituents, including several carcinogens and cytotoxic chemicals that orchestrate chronic lung inflammation and destructive alveolar remodeling. Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors primarily expressed by diverse lung cells. RAGE expression increases following cigarette smoke exposure and expression is elevated in the lungs of patients with COPD. RAGE is responsible in part for inducing pro-inflammatory signaling pathways that culminate in expression and secretion of several cytokines, chemokines, enzymes, and other mediators. In the current review, new transgenic mouse models that conditionally over-express RAGE in pulmonary epithelium are discussed. When RAGE is over-expressed throughout embryogenesis, apoptosis in the peripheral lung causes severe lung hypoplasia. Interestingly, apoptosis in RAGE transgenic mice occurs via conserved apoptotic pathways also known to function in advanced stages of COPD. RAGE over-expression in the adult lung models features of COPD including pronounced inflammation and loss of parenchymal tissue. Understanding the biological contributions of RAGE during cigarette smoke-induced inflammation may provide critically important insight into the pathology of COPD.
Collapse
Affiliation(s)
| | | | | | | | - Paul R. Reynolds
- Department of Physiology and Developmental Biology, Brigham Young UniversityProvo, UT, USA
| |
Collapse
|
14
|
Jones MB, Nasirikenari M, Lugade AA, Thanavala Y, Lau JTY. Anti-inflammatory IgG production requires functional P1 promoter in β-galactoside α2,6-sialyltransferase 1 (ST6Gal-1) gene. J Biol Chem 2012; 287:15365-70. [PMID: 22427662 DOI: 10.1074/jbc.m112.345710] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The anti-inflammatory properties associated with intravenous immunoglobulin therapy require the sialic acid modification of the N-glycan of the Fc domain of IgG. Sialylation of the Fc fragment is mediated by β-galactoside α2,6-sialyltransferase 1 (ST6Gal-1), acting on the Gal(β4)GlcNAc terminal structure of the biantennary N-glycans on the Fc domain. However, little is known regarding the in vivo regulation of Fc sialylation and its role in the progression of inflammatory processes. Here, we report that decreased Fc sialylation of circulatory IgG accompanies the acute phase response elicited by turpentine exposure or upon acute exposure to either nontypeable Haemophilus influenzae or ovalbumin. However, Fc sialylation was increased 3-fold from the base line upon transition to chronic inflammation by repeated exposure to challenge. The P1 promoter of the ST6Gal-1 gene is critical for Fc sialylation, but P1 does not drive ST6Gal-1 expression in B cells. The Siat1ΔP1 mouse, with a dysfunctional P1 promoter, was unable to produce sialylated Fc in the systemic circulation, despite the presence of Gal(β4)GlcNAc termini on the Fc glycans. The major contribution of P1 action is to synthesize ST6Gal-1 enzymes that are deposited into the systemic circulation. The data strongly indicate that this pool of extracellular ST6Gal-1 in the blood impacts the sialylation of IgG Fc and that defective Fc sialylation is likely a major contributing mechanism for the proinflammatory tendencies previously noted in Siat1ΔP1 animals.
Collapse
Affiliation(s)
- Mark B Jones
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | |
Collapse
|
15
|
Lugade AA, Vethanayagam RR, Nasirikenari M, Bogner PN, Segal BH, Thanavala Y. Nrf2 regulates chronic lung inflammation and B-cell responses to nontypeable Haemophilus influenzae. Am J Respir Cell Mol Biol 2011; 45:557-65. [PMID: 21216970 PMCID: PMC3175582 DOI: 10.1165/rcmb.2010-0321oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 12/17/2010] [Indexed: 12/12/2022] Open
Abstract
Nrf2 is a leucine zipper transcription factor that protects against oxidant-induced injury. Nontypeable Haemophilus influenzae is responsible for frequent disease exacerbations in patients with chronic obstructive pulmonary disease and is responsible for causing otitis media in young children. We hypothesized that Nrf2 would limit inflammatory responses to nontypeable H. influenzae. The objective of this study was to assess the role of Nrf2 in chronic lung inflammation and regulation of immune responses to nontypeable H. influenzae in mice. Wild-type (C57BL/6) mice and Nrf2(-/-) mice were instilled by oropharyngeal aspiration of 1 × 10(6) colony-forming units of live, nontypeable H. influenzae (NTHI) twice a week for 4 to 16 consecutive weeks to generate a chronic inflammatory milieu within the lungs that models chronic bronchitis. Nrf2(-/-) mice had increased lymphocytic airway inflammation compared with WT mice after NTHI challenge. Although the extent of NTHI-induced peribronchovascular inflammation did not significantly differ between the genotypes, plasma cell infiltration was significantly more abundant in Nrf2(-/-) mice. Most strikingly, Nrf2(-/-) mice generated significantly enhanced and persistent levels of serum antibodies against P6, a key outer membrane protein of NTHI. Lung dendritic cells from Nrf2(-/-) mice challenged with NTHI had increased activation markers compared with dendritic cells from similarly treated WT mice. Nrf2 regulates NTHI-induced airway inflammation characterized by lymphocytic and plasma cell infiltration and the activation of lung dendritic cells and B-cell responses in mice. Nrf2 may be a potential therapeutic target in limiting the bacterial infection-induced airway inflammation that drives exacerbations of chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Amit A. Lugade
- Departments of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | | | - Mehrab Nasirikenari
- Departments of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| | - Paul N. Bogner
- Departments of Pathology, Roswell Park Cancer Institute, Buffalo, New York
| | - Brahm H. Segal
- Departments of Immunology, Roswell Park Cancer Institute, Buffalo, New York
- Departments of Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Yasmin Thanavala
- Departments of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|