1
|
Purwasena IA, Amaniyah M, Astuti DI, Firmansyah Y, Sugai Y. Production, characterization, and application of Pseudoxanthomonas taiwanensis biosurfactant: a green chemical for microbial enhanced oil recovery (MEOR). Sci Rep 2024; 14:10270. [PMID: 38704438 PMCID: PMC11069559 DOI: 10.1038/s41598-024-61096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
Biosurfactants, as microbial bioproducts, have significant potential in the field of microbial enhanced oil recovery (MEOR). Biosurfactants are microbial bioproducts with the potential to reduce the interfacial tension (IFT) between crude oil and water, thus enhancing oil recovery. This study aims to investigate the production and characterization of biosurfactants and evaluate their effectiveness in increasing oil recovery. Pseudoxanthomonas taiwanensis was cultured on SMSS medium to produce biosurfactants. Crude oil was found to be the most effective carbon source for biosurfactant production. The biosurfactants exhibited comparable activity to sodium dodecyl sulfate (SDS) at a concentration of 400 ppm in reducing IFT. It was characterized as glycolipids, showing stability in emulsions at high temperatures (up to 120 °C), pH levels ranging from 3 to 9, and NaCl concentrations up to 10% (w/v). Response surface methodology revealed the optimized conditions for the most stable biosurfactants (pH 7, temperature of 40 °C, and salinity of 2%), resulting in an EI24 value of 64.45%. Experimental evaluations included sand pack column and core flooding studies, which demonstrated additional oil recovery of 36.04% and 12.92%, respectively. These results indicate the potential application of P. taiwanensis biosurfactants as sustainable and environmentally friendly approaches to enhance oil recovery in MEOR processes.
Collapse
Affiliation(s)
- Isty Adhitya Purwasena
- Microbiology Study Program, School of Life Sciences and Technology, Bandung Institute of Technology, Ganesha No 10, Bandung, West Java, 40132, Indonesia.
| | - Maghfirotul Amaniyah
- Politeknik Negeri Banyuwangi, Livestock Product Processing Technology Study Program, Jl. Raya Jember Km. 13, Labanasem, Kabat, Banyuwangi, East Java, 68461, Indonesia
| | - Dea Indriani Astuti
- Microbiology Study Program, School of Life Sciences and Technology, Bandung Institute of Technology, Ganesha No 10, Bandung, West Java, 40132, Indonesia
| | - Yoga Firmansyah
- Microbiology Study Program, School of Life Sciences and Technology, Bandung Institute of Technology, Ganesha No 10, Bandung, West Java, 40132, Indonesia
| | - Yuichi Sugai
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
2
|
Nayarisseri A, Singh SK. Genome analysis of biosurfactant producing bacterium, Bacillus tequilensis. PLoS One 2023; 18:e0285994. [PMID: 37267268 DOI: 10.1371/journal.pone.0285994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 05/06/2023] [Indexed: 06/04/2023] Open
Abstract
Bioremediation is crucial for recuperating polluted water and soil. By expanding the surface area of substrates, biosurfactants play a vital role in bioremediation. Biosurfactant-producing microbes release certain biosurfactant compounds, which are promoted for oil spill remediation. In the present investigation, a biosurfactant-producing bacterium Bacillus tequilensis was isolated from Chilika Lake, Odisha, India (latitude and longitude: 19.8450 N 85.4788 E). Whole-Genome Sequencing (WGS) of Bacillus tequilensis was carried out using Illumina NextSeq 500. The size of the whole genome of Bacillus tequilensis was 4.47 MB consisting of 4,478,749 base pairs forming a circular chromosome with 528 scaffolds, 4492 protein-encoding genes (ORFs), 81 tRNA genes, and 114 ribosomal RNA transcription units. The total raw reads were 4209415, and the processed reads were 4058238 with 4492 genes. The whole genome obtained from the present investigation was used for genome annotation, variant calling, variant annotation, and comparative genome analysis with other existing Bacillus species. In this study, a pathway was constructed which describes the biosurfactant metabolism of Bacillus tequilensis. The study identified that genes such as SrfAD, SrfAC, SrfAA and SrfAB are involved in biosurfactant synthesis. The sequence of the genes SrfAD, SrfAC, SrfAA, SrfAB was deposited in GenBank database with accession MUG02427.1, MUG02428.1, MUG02429.1, MUG03515.1 respectively. The whole genome sequence was submitted to GenBank with an accession RMVO00000000 and the raw fastq reads were submitted to SRA, NCBI repository with an accession: SRX5023292.
Collapse
Affiliation(s)
- Anuraj Nayarisseri
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
- Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd., Indore, Madhya Pradesh, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
- Department of Data Sciences, Centre of Biomedical Research, Lucknow, India
| |
Collapse
|
3
|
Kamala Jayanthi PD, Vyas M. Exploring the Transient Microbe Population on Citrus Butterfly Wings. Microbiol Spectr 2022; 10:e0205521. [PMID: 35856677 PMCID: PMC9431565 DOI: 10.1128/spectrum.02055-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
Microbes carve out dwelling niches in unusual environments. Insects, in general, have been hosts to microbes in different ways. Some insects incorporate microbes as endosymbionts that help with metabolic functions, while some vector pathogenic microbes that cause serious plant and animal diseases, including humans. Microbes isolated from insect sources have been beneficial and a huge information repository. The fascinating and evolutionarily successful insect community has survived mass extinctions as a result of their unique biological traits. Wings have been one of the most important factors contributing to the evolutionary success of insects. In the current study, wings of Papilio polytes, a citrus butterfly, were investigated for the presence of ecologically significant microbes within hours of eclosing under aseptic conditions. Scanning electron microscopy (SEM) revealed the presence of bacteria dwelling in crevices created by a specific arrangement of scales on the butterfly wing. A total of 38 bacterial isolates were obtained from the patched wings of the citrus butterfly, and Bacillus spp. were predominant among them. We probed the occurrence of these microbes to assess their significance to the insect. Many of the isolates displayed antibacterial, antifungal, and biosurfactant properties. Interestingly, one of the isolates displayed entomopathogenic potential toward the notorious agricultural pest mealybug. All the wing isolates were seen to cluster together consistently in a phylogenetic analysis, except for one isolate of Bacillus zhangzhouensis (Papilio polytes isolate [Pp] no. 28), suggesting they are distinct strains. IMPORTANCE This is a first study reporting the presence of culturable microbes on an unusual ecological niche such as butterfly wings. Our findings also establish that microbes inhabit these niches before the butterfly has contact with the environment. The findings in this report have opened up a new area of research which will not only help understand the microbiome of insect wings but might prove beneficial in other specialized studies.
Collapse
Affiliation(s)
- P. D. Kamala Jayanthi
- Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| | - Meenal Vyas
- Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Effect of bacteria on oil/water interfacial tension in asphaltenic oil reservoirs. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Fenibo EO, Ijoma GN, Selvarajan R, Chikere CB. Microbial Surfactants: The Next Generation Multifunctional Biomolecules for Applications in the Petroleum Industry and Its Associated Environmental Remediation. Microorganisms 2019; 7:E581. [PMID: 31752381 PMCID: PMC6920868 DOI: 10.3390/microorganisms7110581] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 11/30/2022] Open
Abstract
Surfactants are a broad category of tensio-active biomolecules with multifunctional properties applications in diverse industrial sectors and processes. Surfactants are produced synthetically and biologically. The biologically derived surfactants (biosurfactants) are produced from microorganisms, with Pseudomonas aeruginosa, Bacillus subtilis Candida albicans, and Acinetobacter calcoaceticus as dominant species. Rhamnolipids, sophorolipids, mannosylerithritol lipids, surfactin, and emulsan are well known in terms of their biotechnological applications. Biosurfactants can compete with synthetic surfactants in terms of performance, with established advantages over synthetic ones, including eco-friendliness, biodegradability, low toxicity, and stability over a wide variability of environmental factors. However, at present, synthetic surfactants are a preferred option in different industrial applications because of their availability in commercial quantities, unlike biosurfactants. The usage of synthetic surfactants introduces new species of recalcitrant pollutants into the environment and leads to undesired results when a wrong selection of surfactants is made. Substituting synthetic surfactants with biosurfactants resolves these drawbacks, thus interest has been intensified in biosurfactant applications in a wide range of industries hitherto considered as experimental fields. This review, therefore, intends to offer an overview of diverse applications in which biosurfactants have been found to be useful, with emphases on petroleum biotechnology, environmental remediation, and the agriculture sector. The application of biosurfactants in these settings would lead to industrial growth and environmental sustainability.
Collapse
Affiliation(s)
- Emmanuel O. Fenibo
- World Bank Africa Centre of Excellence, Centre for Oilfield Chemical Research, University of Port Harcourt, Port Harcourt 500272, Nigeria
| | - Grace N. Ijoma
- Institute for the Development of Energy for African Sustainability, University of South Africa, Roodepoort 1709, South Africa;
| | - Ramganesh Selvarajan
- Department of Environmental Science, University of South Africa, Florida Campus, Rooderpoort 1709, South Africa
| | - Chioma B. Chikere
- Department of Microbiology, Faculty of Science, University of Port Harcourt, Port Harcourt 500272, Nigeria;
| |
Collapse
|
6
|
Marine Biosurfactants: Biosynthesis, Structural Diversity and Biotechnological Applications. Mar Drugs 2019; 17:md17070408. [PMID: 31323998 PMCID: PMC6669457 DOI: 10.3390/md17070408] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 11/16/2022] Open
Abstract
Biosurfactants are amphiphilic secondary metabolites produced by microorganisms. Marine bacteria have recently emerged as a rich source for these natural products which exhibit surface-active properties, making them useful for diverse applications such as detergents, wetting and foaming agents, solubilisers, emulsifiers and dispersants. Although precise structural data are often lacking, the already available information deduced from biochemical analyses and genome sequences of marine microbes indicates a high structural diversity including a broad spectrum of fatty acid derivatives, lipoamino acids, lipopeptides and glycolipids. This review aims to summarise biosyntheses and structures with an emphasis on low molecular weight biosurfactants produced by marine microorganisms and describes various biotechnological applications with special emphasis on their role in the bioremediation of oil-contaminated environments. Furthermore, novel exploitation strategies are suggested in an attempt to extend the existing biosurfactant portfolio.
Collapse
|
7
|
Zdarta A, Smułek W, Trzcińska A, Cybulski Z, Kaczorek E. Properties and potential application of efficient biosurfactant produced by Pseudomonas sp. KZ1 strain. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:110-117. [PMID: 30614383 DOI: 10.1080/10934529.2018.1530537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/29/2018] [Accepted: 09/15/2018] [Indexed: 06/09/2023]
Abstract
Increasing use of biosurfactants has stimulated the search for new and efficient biosurfactant-producing bacterial strains, preferably nonpathogenic ones. The aim of the present study was to characterize a new isolated Pseudomonas sp. KZ1 strain and its exocellular surface active compounds. After examining several mineral media of different compositions, the bioreactor-scale production of biosurfactants under optimum conditions was tested. Then, the composition of the isolated biosurfactants was investigated by Fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry analysis and their surface active properties were characterized by adsorption parameters. The results indicated that the Pseudomonas sp. KZ1 biosurfactant had the critical micelle concentration of 0.12 g L-1 and decreased the surface tension decreased to 31.7 mN m-1. Moreover, the biosurfactant increased the rate of biodegradation of diesel oil by the strains: Pseudomonas sp. KZ1, Pseudomonas sp. OS4 and Achromobacter sp. KW1. The obtained biosurfactant showing attractive properties is a promising and much 'greener' alternative in the application for surfactant-enhanced biodegradation of hydrocarbons.
Collapse
Affiliation(s)
- Agata Zdarta
- a Institute of Chemical Technology and Engineering , Poznan University of Technology , Poznan , Poland
| | - Wojciech Smułek
- a Institute of Chemical Technology and Engineering , Poznan University of Technology , Poznan , Poland
| | - Anna Trzcińska
- a Institute of Chemical Technology and Engineering , Poznan University of Technology , Poznan , Poland
| | - Zefiryn Cybulski
- b Department of Microbiology , Greater Poland Cancer Centre , Poznan , Poland
| | - Ewa Kaczorek
- a Institute of Chemical Technology and Engineering , Poznan University of Technology , Poznan , Poland
| |
Collapse
|
8
|
Butylbenzene and tert-Butylbenzene-Sorption on Sand Particles and Biodegradation in the Presence of Plant Natural Surfactants. Toxins (Basel) 2018; 10:toxins10090338. [PMID: 30131465 PMCID: PMC6162405 DOI: 10.3390/toxins10090338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 12/20/2022] Open
Abstract
The effects of hydrocarbons sorption on sand and saponins presence in the system on butylbenzene and tert-butylbenzene biological degradation was investigated. Additionally, the impact of saponins-containing plant extracts on environmental microorganisms was studied. Results of cell surface property measurements in samples with saponins only revealed changes in cell surface hydrophobicity, electrokinetic potential and membrane permeability when compared to corresponding values for glucose-grown microbes. Subsequently, in sorption experiments, the hydrocarbon adsorption kinetics in bacteria-free samples were better explained with the pseudo-second order kinetic model as compared to the pseudo-first order and intraparticular diffusion models. Moreover, the equilibrium data fitted better to the Freundlich isotherm for both benzene derivatives. In the samples combining hydrocarbons sorption and biological degradation in the presence of saponins, alkane-substituted hydrocarbons removal was accelerated from 40% to 90% after 14 days and the best surfactant in this aspect was S. officinalis extract.
Collapse
|
9
|
Najmi Z, Ebrahimipour G, Franzetti A, Banat IM. In situ downstream strategies for cost-effective bio/surfactant recovery. Biotechnol Appl Biochem 2018; 65:523-532. [PMID: 29297935 DOI: 10.1002/bab.1641] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/30/2017] [Indexed: 11/07/2022]
Abstract
Since 60-80% of total costs of production are usually associated with downstream collection, separation, and purification processes, it has become advantageous to investigate how to replace traditional methods with efficient and cost-effective alternative techniques for recovery and purification of biosurfactants. In the traditional techniques, large volumes of organic solvents are usually used for increasing production cost and the overall environmental burden. In addition, traditional production and separation methods typically carried out in batch cultures reduce biosurfactant yields due to product inhibition and lower biosurfactants activity as a result of interaction with the organic solvents used. However, some in situ recovery methods that allow continuous separation of bioproducts from culture broth leading to an improvement in yield production and fermentation efficiency. For biosurfactants commercialization, enhancement of product capacity of the separation methods and the rate of product removal is critical. Recently, interest in the integration of separation methods with a production step as rapid and efficient techniques has been increasing. This review focuses on the technology gains and potentials for the most common methods used in in situ product removal: foam fractionation and ultrafiltration, especially used to recover and purify two well-known biosurfactants: glycolipids (rhamnolipids) and lipopeptides (surfactins).
Collapse
Affiliation(s)
- Ziba Najmi
- Faculty of Biological Science and Technology, Department of Microbiology and Microbial Biotechnology, University of Shahid Beheshti, Tehran, Iran
| | - Gholamhossein Ebrahimipour
- Faculty of Biological Science and Technology, Department of Microbiology and Microbial Biotechnology, University of Shahid Beheshti, Tehran, Iran
| | - Andrea Franzetti
- Department of Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Ibrahim M Banat
- Faculty of Life and Health Sciences, School of Biomedical Sciences, University of Ulster, Coleraine, N. Ireland, UK
| |
Collapse
|
10
|
Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation. Int J Mol Sci 2015; 16:4814-37. [PMID: 25741767 PMCID: PMC4394451 DOI: 10.3390/ijms16034814] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 11/19/2022] Open
Abstract
Lipopeptides produced by microorganisms are one of the five major classes of biosurfactants known and they have received much attention from scientific and industrial communities due to their powerful interfacial and biological activities as well as environmentally friendly characteristics. Microbially produced lipopeptides are a series of chemical structural analogues of different families and, among them, 26 families covering about 90 lipopeptide compounds have been reported in the last two decades. This paper reviews the chemical structural characteristics and molecular behaviors of surfactin, one of the representative lipopeptides of the 26 families. In particular, two novel surfactin molecules isolated from cell-free cultures of Bacillus subtilis HSO121 are presented. Surfactins exhibit strong self-assembly ability to form sphere-like micelles and larger aggregates at very low concentrations. The amphipathic and surface properties of surfactins are related to the existence of the minor polar and major hydrophobic domains in the three 3-D conformations. In addition, the application potential of surfactin in bioremediation of oil spills and oil contaminants, and microbial enhanced oil recovery are discussed.
Collapse
|
11
|
Sharma D, Saharan BS, Chauhan N, Procha S, Lal S. Isolation and functional characterization of novel biosurfactant produced by Enterococcus faecium. SPRINGERPLUS 2015; 4:4. [PMID: 25674491 PMCID: PMC4320184 DOI: 10.1186/2193-1801-4-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023]
Abstract
The objective of the present study was to isolate the biosurfactant (BS) producing lactic acid bacteria (LAB) from traditional fermented food (buttermilk) and its functional and structural characterization. BS isolated from strain MRTL9 reduced surface tension from 72.0 to 40.2 mN m(-1). The critical micelle concentration (CMC) of BS was 2.25 mg ml(-1) with emulsification efficiency (E24) after 24 h of 64% against kerosene oil. The cell bound BS was partially purified by silica gel column chromatography and found as glycolipid. The gas chromatography and mass spectroscopy data revealed the fatty acid as hexadecanoic acid. Xylose was determined as hydrophilic moiety. The BS was found to be stable to pH changes over a range of 4.0-12.0, being most effective at pH 7 and showed no apparent loss of surface tension and emulsification efficiency after heat treatment at 120°C for 15 min. The outcomes of cellular toxicity showed lower toxicity of BS in comparison to SDS and rhamnolipids. Current study confirmed the preventive anti-adhesion activity of BS. These amphiphilic molecules, interferes with the microbial adhesion and found to be least cytotoxic with cellular compatibility with mouse fibroblasts cells.
Collapse
Affiliation(s)
- Deepansh Sharma
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136 119 INDIA
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana 132 001 India
| | | | - Nikhil Chauhan
- Division of Microbiology and Immunology, Vector Control Research Center, Puducherry, 605006 India
| | - Suresh Procha
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119 India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119 India
| |
Collapse
|
12
|
Jamal P, Mir S, Alam MZ, Wan Nawawi WMF. Isolation and selection of new biosurfactant producing bacteria from degraded palm kernel cake under liquid state fermentation. J Oleo Sci 2014; 63:795-804. [PMID: 25007747 DOI: 10.5650/jos.ess13181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biosurfactants are surface-active compounds produced by different microorganisms. The aim of this study was to introduce palm kernel cake (PKC) as a novel substrate for biosurfactant production using a potent bacterial strain under liquid state fermentation. This study was primarily based on the isolation and identification of biosurfactant-producing bacteria that could utilize palm kernel cake as a new major substrate. Potential bacterial strains were isolated from degraded PKC and screened for biosurfactant production with the help of the drop collapse assay and by analyzing the surface tension activity. From the screened isolates, a new strain, SM03, showed the best and most consistent results, and was therefore selected as the most potent biosurfactant-producing bacterial strain. The new strain was identified as Providencia alcalifaciens SM03 using the Gen III MicroPlate Biolog Microbial Identification System. The yield of the produced biosurfactant was 8.3 g/L.
Collapse
Affiliation(s)
- Parveen Jamal
- Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia
| | | | | | | |
Collapse
|
13
|
Potential applications of bioprocess technology in petroleum industry. Biodegradation 2012; 23:865-80. [DOI: 10.1007/s10532-012-9577-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/17/2012] [Indexed: 11/25/2022]
|
14
|
Zheng C, Li Z, Su J, Zhang R, Liu C, Zhao M. Characterization and emulsifying property of a novel bioemulsifier by Aeribacillus pallidus YM-1. J Appl Microbiol 2012; 113:44-51. [PMID: 22515599 DOI: 10.1111/j.1365-2672.2012.05313.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Biosurfactants and bioemulsifiers commonly have the advantages of biodegradability, low toxicity, selectivity and biocompatibility over chemically synthesized surfactants. The goal of the study is to present a novel bioemulsifier with great application potential. METHODS AND RESULTS Aeribacillus pallidus YM-1, isolated from crude oil contaminated soil, was found to produce a novel high molecular bioemulsifier with an emulsification index of 60 ± 1% without remarkable surface tension reduction (45·7 ± 0·1 mN m(-1) ). The number-average molecular weight was determined as 526 369 Da by gel permeation chromatography analysis. Bioemulsifier was subjected to FT-IR and a complex of carbohydrates (41·1%), lipids (47·6%) and proteins (11·3%) was determined. CONCLUSIONS The bioemulsifier of A. pallidus YM-1 was isolated from the glucose-based culture medium and characterized with the help of chemical analytical techniques. The bioemulsifier exhibited a promising emulsifying property for biotechnology application potential in bioremediation and microbial enhanced oil recovery. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report of the bioemulsifier production by A. pallidus. The potential emulsifying activity of the bioemulsifier in the present study may be explored in various biotechnological and industrial applications.
Collapse
Affiliation(s)
- C Zheng
- Petroleum Exploration & Production Research Institute, SINOPEC, Xueyuan Road, Haidian District, Beijing, China.
| | | | | | | | | | | |
Collapse
|
15
|
Gang HZ, Liu JF, Mu BZ. Molecular Dynamics Study of Surfactin Monolayer at the Air/Water Interface. J Phys Chem B 2011; 115:12770-7. [DOI: 10.1021/jp206350j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Hong-Ze Gang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China 200237
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China 200237
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China 200237
| |
Collapse
|
16
|
Harner NK, Richardson TL, Thompson KA, Best RJ, Best AS, Trevors JT. Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery. J Ind Microbiol Biotechnol 2011; 38:1761-75. [DOI: 10.1007/s10295-011-1024-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/24/2011] [Indexed: 11/29/2022]
|
17
|
Application of polyhydroxyalkanoate binding protein PhaP as a bio-surfactant. Appl Microbiol Biotechnol 2011; 91:1037-47. [PMID: 21590291 DOI: 10.1007/s00253-011-3258-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/16/2011] [Accepted: 04/17/2011] [Indexed: 01/19/2023]
Abstract
PhaP or phasin is an amphiphilic protein located on surfaces of microbial storage polyhydroxyalkanoates granules. This study aimed to explore amphiphilic properties of PhaP for possible application as a protein surfactant. Following agents were used to conduct this study as controls including bovine serum albumin, sodium dodecyl sulfate (SDS), Tween 20, sodium oleate, a commercial liquefied detergent together with the same amount of PhaP. Among all these tested control surfactants, PhaP showed the strongest effect to form emulsions with lubricating oil, diesel, and soybean oil, respectively. PhaP emulsion stability study compared with SDS revealed that PhaP had a stronger capability to maintain a very stable emulsion layer after 30 days while SDS lost half and two-thirds of its capacity after 2 and 30 days, respectively. When PhaP was more than 200 μg/ml in the water, all liquids started to exhibit stable emulsion layers. Similar to SDS, PhaP significantly reduced the water contact angles of water on a hydrophobic film of biaxially oriented polypropylene. PhaP was thermally very stable, it showed ability to form emulsion and to bind to the surface of polyhydroxybutyrate nanoparticles after a 60- min heating process at 95 °C. It is therefore concluded that PhaP is a protein with thermally stable property for application as natural and environmentally friendly surfactant for food, cosmetic, and pharmaceutical usages.
Collapse
|