1
|
Donne R, Sangouard F, Celton-Morizur S, Desdouets C. Hepatocyte Polyploidy: Driver or Gatekeeper of Chronic Liver Diseases. Cancers (Basel) 2021; 13:cancers13205151. [PMID: 34680300 PMCID: PMC8534039 DOI: 10.3390/cancers13205151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
Polyploidy, also known as whole-genome amplification, is a condition in which the organism has more than two basic sets of chromosomes. Polyploidy frequently arises during tissue development and repair, and in age-associated diseases, such as cancer. Its consequences are diverse and clearly different between systems. The liver is a particularly fascinating organ in that it can adapt its ploidy to the physiological and pathological context. Polyploid hepatocytes are characterized in terms of the number of nuclei per cell (cellular ploidy; mononucleate/binucleate hepatocytes) and the number of chromosome sets in each nucleus (nuclear ploidy; diploid, tetraploid, octoploid). The advantages and disadvantages of polyploidy in mammals are not fully understood. About 30% of the hepatocytes in the human liver are polyploid. In this review, we explore the mechanisms underlying the development of polyploid cells, our current understanding of the regulation of polyploidization during development and pathophysiology and its consequences for liver function. We will also provide data shedding light on the ways in which polyploid hepatocytes cope with centrosome amplification. Finally, we discuss recent discoveries highlighting the possible roles of liver polyploidy in protecting against tumor formation, or, conversely, contributing to liver tumorigenesis.
Collapse
Affiliation(s)
- Romain Donne
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY 10029, USA
- Icahn School of Medicine at Mount Sinai, The Precision Immunology Institute, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Flora Sangouard
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, F-75006 Paris, France;
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - Séverine Celton-Morizur
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, F-75006 Paris, France;
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- Correspondence: (S.C.-M.); (C.D.)
| | - Chantal Desdouets
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, F-75006 Paris, France;
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- Correspondence: (S.C.-M.); (C.D.)
| |
Collapse
|
2
|
Nandakumar S, Rozich E, Buttitta L. Cell Cycle Re-entry in the Nervous System: From Polyploidy to Neurodegeneration. Front Cell Dev Biol 2021; 9:698661. [PMID: 34249947 PMCID: PMC8264763 DOI: 10.3389/fcell.2021.698661] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Terminally differentiated cells of the nervous system have long been considered to be in a stable non-cycling state and are often considered to be permanently in G0. Exit from the cell cycle during development is often coincident with the differentiation of neurons, and is critical for neuronal function. But what happens in long lived postmitotic tissues that accumulate cell damage or suffer cell loss during aging? In other contexts, cells that are normally non-dividing or postmitotic can or re-enter the cell cycle and begin replicating their DNA to facilitate cellular growth in response to cell loss. This leads to a state called polyploidy, where cells contain multiple copies of the genome. A growing body of literature from several vertebrate and invertebrate model organisms has shown that polyploidy in the nervous system may be more common than previously appreciated and occurs under normal physiological conditions. Moreover, it has been found that neuronal polyploidization can play a protective role when cells are challenged with DNA damage or oxidative stress. By contrast, work over the last two and a half decades has discovered a link between cell-cycle reentry in neurons and several neurodegenerative conditions. In this context, neuronal cell cycle re-entry is widely considered to be aberrant and deleterious to neuronal health. In this review, we highlight historical and emerging reports of polyploidy in the nervous systems of various vertebrate and invertebrate organisms. We discuss the potential functions of polyploidization in the nervous system, particularly in the context of long-lived cells and age-associated polyploidization. Finally, we attempt to reconcile the seemingly disparate associations of neuronal polyploidy with both neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
| | | | - Laura Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Anatskaya OV, Vinogradov AE, Vainshelbaum NM, Giuliani A, Erenpreisa J. Phylostratic Shift of Whole-Genome Duplications in Normal Mammalian Tissues towards Unicellularity Is Driven by Developmental Bivalent Genes and Reveals a Link to Cancer. Int J Mol Sci 2020; 21:ijms21228759. [PMID: 33228223 PMCID: PMC7699474 DOI: 10.3390/ijms21228759] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
Tumours were recently revealed to undergo a phylostratic and phenotypic shift to unicellularity. As well, aggressive tumours are characterized by an increased proportion of polyploid cells. In order to investigate a possible shared causation of these two features, we performed a comparative phylostratigraphic analysis of ploidy-related genes, obtained from transcriptomic data for polyploid and diploid human and mouse tissues using pairwise cross-species transcriptome comparison and principal component analysis. Our results indicate that polyploidy shifts the evolutionary age balance of the expressed genes from the late metazoan phylostrata towards the upregulation of unicellular and early metazoan phylostrata. The up-regulation of unicellular metabolic and drug-resistance pathways and the downregulation of pathways related to circadian clock were identified. This evolutionary shift was associated with the enrichment of ploidy with bivalent genes (p < 10−16). The protein interactome of activated bivalent genes revealed the increase of the connectivity of unicellulars and (early) multicellulars, while circadian regulators were depressed. The mutual polyploidy-c-MYC-bivalent genes-associated protein network was organized by gene-hubs engaged in both embryonic development and metastatic cancer including driver (proto)-oncogenes of viral origin. Our data suggest that, in cancer, the atavistic shift goes hand-in-hand with polyploidy and is driven by epigenetic mechanisms impinging on development-related bivalent genes.
Collapse
Affiliation(s)
- Olga V. Anatskaya
- Department of Bioinformatics and Functional Genomics, Institute of Cytology, Russian Academy of sciences, 194064 St. Petersburg, Russia
- Correspondence: (O.V.A.); (A.E.V.); (J.E.)
| | - Alexander E. Vinogradov
- Department of Bioinformatics and Functional Genomics, Institute of Cytology, Russian Academy of sciences, 194064 St. Petersburg, Russia
- Correspondence: (O.V.A.); (A.E.V.); (J.E.)
| | - Ninel M. Vainshelbaum
- Department of Oncology, Latvian Biomedical Research and Study Centre, Cancer Research Division, LV-1067 Riga, Latvia;
- Faculty of Biology, University of Latvia, LV-1586 Riga, Latvia
| | | | - Jekaterina Erenpreisa
- Department of Oncology, Latvian Biomedical Research and Study Centre, Cancer Research Division, LV-1067 Riga, Latvia;
- Correspondence: (O.V.A.); (A.E.V.); (J.E.)
| |
Collapse
|
4
|
Ren L, Lu J, Fan Y, Hu Y, Li J, Xiao Y, Liu S. Expression Profile Analysis of the Cell Cycle in Diploid and Tetraploid Carassius auratus red var. Front Genet 2020; 11:203. [PMID: 32256518 PMCID: PMC7089929 DOI: 10.3389/fgene.2020.00203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/21/2020] [Indexed: 11/15/2022] Open
Abstract
Polyploidization often leads to “transcriptome shock,” and is considered an important factor in evolution of species. Analysis of the cell cycle, which is associated with survival in polyploidy, has proved useful in investigating polyploidization. Here, we used mRNA sequencing to investigate global expression in vitro (in cultured cells) and in vivo (in fin and liver tissues) in both the diploid and tetraploid Carassius auratus red var.. Differential expression (DE) of genes in diploid (7482, 36.0%) and tetraploid (3787, 18.2%) states suggested that in vitro and in vivo conditions dramatically change mRNA expression levels. However, of the 20,771 total shared expressed genes, 18,050 (87.0%), including 17,905 (86.2%) non-differentially expressed genes (DEGs) and 145 (0.7%) DEGs between diploids and tetraploids, showed the same expression trends in both cultured cells and liver tissues. Of the DEGs, four of seven genes in the cell cycle pathway had the same expression trends (upregulated in diploids and tetraploids) in both cultured cells and liver tissues. Quantitative PCR analysis confirmed the same expression trends in the nine DEGs associated with regulation of the cell cycle. This research on common characteristics between diploids and tetraploids provides insights into the potential molecular regulatory mechanisms of polyploidization. The steady changes that occur between diploids and tetraploids in vitro and in vivo show the potential value of studying polyploidy processes using cultured cell lines, especially with respect to cell cycle regulation.
Collapse
Affiliation(s)
- Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jiahao Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yunpeng Fan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yibo Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jiaming Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China.,College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
5
|
Wang J, Batourina E, Schneider K, Souza S, Swayne T, Liu C, George CD, Tate T, Dan H, Wiessner G, Zhuravlev Y, Canman JC, Mysorekar IU, Mendelsohn CL. Polyploid Superficial Cells that Maintain the Urothelial Barrier Are Produced via Incomplete Cytokinesis and Endoreplication. Cell Rep 2019; 25:464-477.e4. [PMID: 30304685 PMCID: PMC6351079 DOI: 10.1016/j.celrep.2018.09.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/28/2018] [Accepted: 09/12/2018] [Indexed: 01/26/2023] Open
Abstract
The urothelium is an epithelia barrier lined by a luminal layer of binucleated, octoploid, superficial cells. Superficial cells are critical for production and transport of uroplakins, a family of proteins that assemble into a waterproof crystalline plaque that helps protect against infection and toxic substances. Adult urothelium is nearly quiescent, but rapidly regenerates in response to injury. Yet the mechanism by which binucleated, polyploid, superficial cells are produced remains unclear. Here, we show that superficial cells are likely to be derived from a population of binucleated intermediate cells, which are produced from mononucleated intermediate cells via incomplete cytokinesis. We show that binucleated intermediate and superficial cells increase DNA content via endoreplication, passing through S phase without entering mitosis. The urothelium can be permanently damaged by repetitive or chronic injury or disease. Identification of the mechanism by which superficial cells are produced may be important for developing strategies for urothelial repair.
Collapse
Affiliation(s)
- Jia Wang
- Department of Urology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Ekatherina Batourina
- Department of Urology, Genetics, and Development and Pathology and Cell Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Kerry Schneider
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Spenser Souza
- Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Theresa Swayne
- Confocal and Specialized Microscopy Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Chang Liu
- Department of Urology, Genetics, and Development and Pathology and Cell Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Christopher D George
- Department of Urology, Genetics, and Development and Pathology and Cell Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Tiffany Tate
- Department of Urology, Genetics, and Development and Pathology and Cell Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Hanbin Dan
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Gregory Wiessner
- Department of Urology, Genetics, and Development and Pathology and Cell Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Yelena Zhuravlev
- Department of Urology, Genetics, and Development and Pathology and Cell Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Indira U Mysorekar
- Departments of Obstetrics and Gynecology and Pathology and Immunology and Center for Reproductive Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cathy Lee Mendelsohn
- Department of Urology, Genetics, and Development and Pathology and Cell Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA.
| |
Collapse
|
6
|
Record J, Sendel A, Kritikou JS, Kuznetsov NV, Brauner H, He M, Nagy N, Oliveira MMS, Griseti E, Haase CB, Dahlström J, Boddul S, Wermeling F, Thrasher AJ, Liu C, Andersson J, Claesson HE, Winqvist O, Burns SO, Björkholm M, Westerberg LS. An intronic deletion in megakaryoblastic leukemia 1 is associated with hyperproliferation of B cells in triplets with Hodgkin lymphoma. Haematologica 2019; 105:1339-1350. [PMID: 31582539 PMCID: PMC7193474 DOI: 10.3324/haematol.2019.216317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/26/2019] [Indexed: 11/09/2022] Open
Abstract
Megakaryoblastic leukemia 1 (MKL1) is a coactivator of serum response factor and together they regulate transcription of actin cytoskeleton genes. MKL1 is associated with hematologic malignancies and immunodeficiency, but its role in B cells is unexplored. Here we examined B cells from monozygotic triplets with an intronic deletion in MKL1, two of whom had been previously treated for Hodgkin lymphoma (HL). To investigate MKL1 and B-cell responses in the pathogenesis of HL, we generated Epstein-Barr virus-transformed lymphoblastoid cell lines from the triplets and two controls. While cells from the patients with treated HL had a phenotype close to that of the healthy controls, cells from the undiagnosed triplet had increased MKL1 mRNA, increased MKL1 protein, and elevated expression of MKL1-dependent genes. This profile was associated with elevated actin content, increased cell spreading, decreased expression of CD11a integrin molecules, and delayed aggregation. Moreover, cells from the undiagnosed triplet proliferated faster, displayed a higher proportion of cells with hyperploidy, and formed large tumors in vivo This phenotype was reversible by inhibiting MKL1 activity. Interestingly, cells from the triplet treated for HL in 1985 contained two subpopulations: one with high expression of CD11a that behaved like control cells and the other with low expression of CD11a that formed large tumors in vivo similar to cells from the undiagnosed triplet. This implies that pre-malignant cells had re-emerged a long time after treatment. Together, these data suggest that dysregulated MKL1 activity participates in B-cell transformation and the pathogenesis of HL.
Collapse
Affiliation(s)
- Julien Record
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Anton Sendel
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Joanna S Kritikou
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Nikolai V Kuznetsov
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Hanna Brauner
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Minghui He
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Noemi Nagy
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Mariana M S Oliveira
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Elena Griseti
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Christoph B Haase
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Dahlström
- Department of Medicine Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Sanjaykumar Boddul
- Department of Medicine Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Fredrik Wermeling
- Department of Medicine Solna, Karolinska University Hospital, Stockholm, Sweden
| | | | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - John Andersson
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Erik Claesson
- Department of Medicine Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Ola Winqvist
- Department of Medicine Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, University College London, London, UK.,Department of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Magnus Björkholm
- Department of Medicine Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Abstract
Polyploid cells contain more than two homologous sets of chromosomes. The original observations of liver polyploidy date back to the 1940s, but functional roles for polyploid cells are still unclear. Liver polyploidy may influence regeneration, stress response, and cancer, although little evidence has established direct causal links between polyploidy and these biological phenotypes. In this review, we will introduce broad concepts about polyploidy including its distribution in nature and how polyploids form in normal and pathological situations. Then we will examine recent discoveries that have begun to clarify functionality and disease relevance of liver polyploidy. Finally, we will discuss implications and future directions of research about polyploidy in the liver.
Collapse
Affiliation(s)
- Shuyuan Zhang
- a Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine , University of Texas Southwestern Medical Center , Dallas , USA
| | - Yu-Hsuan Lin
- a Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine , University of Texas Southwestern Medical Center , Dallas , USA
| | - Branden Tarlow
- b Department of Internal Medicine , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Hao Zhu
- a Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine , University of Texas Southwestern Medical Center , Dallas , USA
| |
Collapse
|
8
|
Tormos AM, Taléns-Visconti R, Sastre J. Regulation of cytokinesis and its clinical significance. Crit Rev Clin Lab Sci 2015; 52:159-67. [DOI: 10.3109/10408363.2015.1012191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Sandahl JD, Kjeldsen E, Abrahamsson J, Ha SY, Heldrup J, Jahnukainen K, Jónsson OG, Lausen B, Palle J, Zeller B, Forestier E, Hasle H. Ploidy and clinical characteristics of childhood acute myeloid leukemia: A NOPHO-AML study. Genes Chromosomes Cancer 2014; 53:667-75. [PMID: 24753324 DOI: 10.1002/gcc.22177] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/04/2014] [Indexed: 12/11/2022] Open
Abstract
We report the first large series (n = 596) of pediatric acute myeloid leukemia (AML) focusing on modal numbers (MN) from the population-based NOPHO-AML trials. Abnormal karyotypes were present in 452 cases (76%) and numerical aberrations were present in 40% (n = 237) of all pediatric AML. Among patients with an abnormal karyotype, the MN 46 was most common (n = 251; 56%) of which 36 (8%) were pseudodiploid with numerical aberrations, followed by MN 47 (n = 80; 18%) and MN 43-45 (n = 48; 8%). No cases had MN less than 43. Hyperdiploid AML with MN 48-65 comprised 11% of all cases and was associated with early onset (median age 2 years), female sex (57%), and a dominance of acute megakaryoblastic leukemia (AMKL) (29%). Hypodiploidy constituted 8% of all AML and was associated with older age (median age 9 years), male predominance (60%), FAB M2 (56%), and t(8;21)(q22;q22) (56%) with loss of sex chromosomes. Inferior outcome was observed for hypodiploid cases (5-year event-free survival 40% and 5-year overall survival 40%) but did not reach statistical significance. Chromosomes were gained in a nonrandom pattern, where chromosomes 8, 21, 19, and 6 were the most commonly gained. In conclusion, based on MNs, two cytogenetic subgroups with characteristic clinical features are described; hypodiploidy found in 8% and associated with high median age, male sex, t(8;21)(q22;q22), and FAB M2 and possibly associated with inferior outcome (P = 0.13), and hyperdiploidy with MN 48-65 in 11% associated with early onset, female sex, and AMKL.
Collapse
|
10
|
Gentric G, Desdouets C. Polyploidization in liver tissue. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:322-31. [PMID: 24140012 DOI: 10.1016/j.ajpath.2013.06.035] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 12/14/2022]
Abstract
Polyploidy (alias whole genome amplification) refers to organisms containing more than two basic sets of chromosomes. Polyploidy was first observed in plants more than a century ago, and it is known that such processes occur in many eukaryotes under a variety of circumstances. In mammals, the development of polyploid cells can contribute to tissue differentiation and, therefore, possibly a gain of function; alternately, it can be associated with development of disease, such as cancer. Polyploidy can occur because of cell fusion or abnormal cell division (endoreplication, mitotic slippage, or cytokinesis failure). Polyploidy is a common characteristic of the mammalian liver. Polyploidization occurs mainly during liver development, but also in adults with increasing age or because of cellular stress (eg, surgical resection, toxic exposure, or viral infections). This review will explore the mechanisms that lead to the development of polyploid cells, our current state of understanding of how polyploidization is regulated during liver growth, and its consequence on liver function.
Collapse
Affiliation(s)
- Géraldine Gentric
- French Institute of Health and Medical Research (INSERM), U1016, Cochin Institute, Department of Development, Reproduction and Cancer, Paris, France; French National Centre for Scientific Research (CNRS), UMR 8104, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Chantal Desdouets
- French Institute of Health and Medical Research (INSERM), U1016, Cochin Institute, Department of Development, Reproduction and Cancer, Paris, France; French National Centre for Scientific Research (CNRS), UMR 8104, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
11
|
Eliades A, Papadantonakis N, Matsuura S, Mi R, Bais MV, Trackman P, Ravid K. Megakaryocyte polyploidy is inhibited by lysyl oxidase propeptide. Cell Cycle 2013; 12:1242-50. [PMID: 23518500 DOI: 10.4161/cc.24312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Megakaryocytes (MKs), the platelet precursors, undergo an endomitotic cell cycle that leads to polyploidy. Lysyl oxidase propeptide (LOX-PP) is generated from lysyl oxidase (LOX) pro-enzyme after proteolytical cleavage. We recently reported that LOX, a known matrix cross-linking enzyme, contributes to MK lineage expansion. In addition, LOX expression levels are ploidy-dependent, with polyploidy MKs having minimal levels. This led us to test the effects of LOX-PP on the number and ploidy of primary MKs. LOX-PP significantly decreases mouse bone marrow MK ploidy coupled with a reduction in MK size. MK number is unchanged upon LOX-PP treatment. Analysis of LOX-PP- or vehicle-treated MKs by western blotting revealed a reduction in ERK1/2 phosphorylation and in the levels of its downstream targets, cyclin D3 and cyclin E, which are known to play a central role in MK endomitosis. Pull-down assays and immunochemistry staining indicated that LOX-PP interacts with α-tubulin and the mictotubules, which can contribute to decreased MK ploidy. Thus, our findings defined a role for LOX-PP in reducing MK ploidy. This suggests that high-level expression of LOX in aberrantly proliferating MKs could play a part in inhibiting their polyploidization via LOX-PP.
Collapse
Affiliation(s)
- Alexia Eliades
- Department of Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Campioni D, Bardi MA, Cavazzini F, Tammiso E, Pezzolo E, Pregnolato E, Volta E, Cuneo A, Lanza F. Cytogenetic and molecular cytogenetic profile of bone marrow-derived mesenchymal stromal cells in chronic and acute lymphoproliferative disorders. Ann Hematol 2012; 91:1563-77. [DOI: 10.1007/s00277-012-1500-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/22/2012] [Indexed: 12/31/2022]
|
13
|
Sroga JM, Ma X, Das SK. Developmental regulation of decidual cell polyploidy at the site of implantation. Front Biosci (Schol Ed) 2012; 4:1475-86. [PMID: 22652887 DOI: 10.2741/s347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polyploidy has been reported in several animal cells, as well as within humans; however the mechanism of developmental regulation of this process remains poorly understood. Polyploidy occurs in normal biologic processes as well as in pathologic states. Decidual polyploid cells are terminally differentiated cells with a critical role in continued uterine development during embryo implantation and growth. Here we review the mechanisms involved in polyploidy cell formation in normal developmental processes, with focus on known regulatory aspects in decidual cells.
Collapse
Affiliation(s)
- Julie M Sroga
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
14
|
Abstract
As development unfolds, DNA replication is not only coordinated with cell proliferation, but is regulated uniquely in specific cell types and organs. This differential regulation of DNA synthesis requires crosstalk between DNA replication and differentiation. This dynamic aspect of DNA replication is highlighted by the finding that the distribution of replication origins varies between differentiated cell types and changes with differentiation. Moreover, differential DNA replication in some cell types can lead to increases or decreases in gene copy number along chromosomes. This review highlights the recent advances and technologies that have provided us with new insights into the developmental regulation of DNA replication.
Collapse
Affiliation(s)
- Jared Nordman
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | |
Collapse
|
15
|
Gao Y, Smith E, Ker E, Campbell P, Cheng EC, Zou S, Lin S, Wang L, Halene S, Krause DS. Role of RhoA-specific guanine exchange factors in regulation of endomitosis in megakaryocytes. Dev Cell 2012; 22:573-84. [PMID: 22387001 DOI: 10.1016/j.devcel.2011.12.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 11/22/2011] [Accepted: 12/22/2011] [Indexed: 01/06/2023]
Abstract
Polyploidization can precede the development of aneuploidy in cancer. Polyploidization in megakaryocytes (Mks), in contrast, is a highly controlled developmental process critical for efficient platelet production via unknown mechanisms. Using primary cells, we demonstrate that the guanine exchange factors GEF-H1 and ECT2, which are often overexpressed in cancer and are essential for RhoA activation during cytokinesis, must be downregulated for Mk polyploidization. The first (2N-4N) endomitotic cycle requires GEF-H1 downregulation, whereas subsequent cycles (>4N) require ECT2 downregulation. Exogenous expression of both GEF-H1 and ECT2 prevents endomitosis, resulting in proliferation of 2N Mks. Furthermore, we have shown that the mechanism by which polyploidization is prevented in Mks lacking Mkl1, which is mutated in megakaryocytic leukemia, is via elevated GEF-H1 expression; shRNA-mediated GEF-H1 knockdown alone rescues this ploidy defect. These mechanistic insights enhance our understanding of normal versus malignant megakaryocytopoiesis, as well as aberrant mitosis in aneuploid cancers.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Laboratory Medicine, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hepatocytes polyploidization and cell cycle control in liver physiopathology. Int J Hepatol 2012; 2012:282430. [PMID: 23150829 PMCID: PMC3485502 DOI: 10.1155/2012/282430] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/10/2012] [Indexed: 01/06/2023] Open
Abstract
Most cells in mammalian tissues usually contain a diploid complement of chromosomes. However, numerous studies have demonstrated a major role of "diploid-polyploid conversion" during physiopathological processes in several tissues. In the liver parenchyma, progressive polyploidization of hepatocytes takes place during postnatal growth. Indeed, at the suckling-weaning transition, cytokinesis failure events induce the genesis of binucleated tetraploid liver cells. Insulin signalling, through regulation of the PI3K/Akt signalling pathway, is essential in the establishment of liver tetraploidization by controlling cytoskeletal organisation and consequently mitosis progression. Liver cell polyploidy is generally considered to indicate terminal differentiation and senescence, and both lead to a progressive loss of cell pluripotency associated to a markedly decreased replication capacity. Although adult liver is a quiescent organ, it retains a capacity to proliferate and to modulate its ploidy in response to various stimuli or aggression (partial hepatectomy, metabolic overload (i.e., high copper and iron hepatic levels), oxidative stress, toxic insult, and chronic hepatitis etc.). Here we review the mechanisms and functional consequences of hepatocytes polyploidization during normal and pathological liver growth.
Collapse
|
17
|
Ma X, Gao F, Rusie A, Hemingway J, Ostmann AB, Sroga JM, Jegga AG, Das SK. Decidual cell polyploidization necessitates mitochondrial activity. PLoS One 2011; 6:e26774. [PMID: 22046353 PMCID: PMC3201964 DOI: 10.1371/journal.pone.0026774] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/03/2011] [Indexed: 11/18/2022] Open
Abstract
Cellular polyploidy has been widely reported in nature, yet its developmental mechanism and function remain poorly understood. In the present study, to better define the aspects of decidual cell polyploidy, we isolated pure polyploid and non-polyploid decidual cell populations from the in vivo decidual bed. Three independent RNA pools prepared for each population were then subjected to the Affymetrix gene chip analysis for the whole mouse genome transcripts. Our data revealed up-regulation of 1015 genes and down-regulation of 1207 genes in the polyploid populations, as compared to the non-polyploid group. Comparative RT-PCR and in situ hybridization results indeed confirmed differential expressional regulation of several genes between the two populations. Based on functional enrichment analyses, up-regulated polyploidy genes appeared to implicate several functions, which primarily include cell/nuclear division, ATP binding, metabolic process, and mitochondrial activity, whereas that of down-regulated genes primarily included apoptosis and immune processes. Further analyses of genes that are related to mitochondria and bi-nucleation showed differential and regional expression within the decidual bed, consistent with the pattern of polyploidy. Consistently, studies revealed a marked induction of mitochondrial mass and ATP production in polyploid cells. The inhibition of mitochondrial activity by various pharmacological inhibitors, as well as by gene-specific targeting using siRNA-mediated technology showed a dramatic attenuation of polyploidy and bi-nucleation development during in vitro stromal cell decidualization, suggesting mitochondria play a major role in positive regulation of decidual cell polyploidization. Collectively, analyses of unique polyploidy markers and molecular signaling networks may be useful to further characterize functional aspects of decidual cell polyploidy at the site of implantation.
Collapse
Affiliation(s)
- Xinghong Ma
- Division of Reproductive Sciences, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
18
|
García P, Berlanga O, Vegiopoulos A, Vyas P, Frampton J. c-Myb and GATA-1 alternate dominant roles during megakaryocyte differentiation. J Thromb Haemost 2011; 9:1572-81. [PMID: 21668739 DOI: 10.1111/j.1538-7836.2011.04396.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Transcription factors are essential for blood cell formation. Mice expressing low levels of c-Myb (c-Myb(low)) have an increased number of bone marrow megakaryocytes (MKs) and corresponding thrombocytosis. In contrast, mice engineered to express low levels of GATA-1 (GATA-1(low)) in the megakaryocytic lineage exhibit aberrant megakaryocytopoiesis with hyperproliferation of progenitors and defective terminal differentiation leading to thrombocytopenia. These seemingly opposite roles may affect platelet turnover and thus be of clinical relevance. OBJECTIVE To determine how these two transcription factors act together to control megakaryocytopoiesis and platelet formation. METHODS We used a combination of cellular and molecular in vitro assays to examine the ability of bone marrow cells from mice expressing low levels of both c-Myb and GATA-1 (referred to as double(low)) to produce MKs and platelets. RESULTS Double(low) cells, or those with low GATA-1 levels in which c-Myb is conditionally deleted, lack the hyperproliferative capacity of GATA-1(low) cells, allowing the cells to proceed towards more committed MKs that are, however, impaired in their capacity to produce fully differentiated cells, as confirmed by the abundance of morphologically aberrant cells that lack the ability to form proplatelets. CONCLUSION c-Myb and GATA-1 act in concert to achieve correct megakaryocytic differentiation. GATA-1 regulates both the proliferation of megakaryocytic progenitors and their terminal maturation. c-Myb also acts at the level of the progenitor by influencing its commitment to differentiation, but in contrast to GATA-1 it does not have any effect on the process of terminal differentiation.
Collapse
Affiliation(s)
- P García
- Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | | | | | | | | |
Collapse
|
19
|
Zakharchenko O, Greenwood C, Alldridge L, Souchelnytskyi S. Optimized Protocol for Protein Extraction from the Breast Tissue that is Compatible with Two-Dimensional Gel Electrophoresis. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2011; 5:37-42. [PMID: 21494400 PMCID: PMC3076014 DOI: 10.4137/bcbcr.s6263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Proteomics is a highly informative approach to analyze cancer-associated transformation in tissues. The main challenge to use a tissue for proteomics studies is the small sample size and difficulties to extract and preserve proteins. The choice of a buffer compatible with proteomics applications is also a challenge. Here we describe a protocol optimized for the most efficient extraction of proteins from the human breast tissue in a buffer compatible with two-dimensional gel electrophoresis (2D-GE). This protocol is based on mechanically assisted disintegration of tissues directly in the 2D-GE buffer. Our method is simple, robust and easy to apply in clinical practice. We demonstrate high quality of separation of proteins prepared according to the reported here protocol.
Collapse
Affiliation(s)
- Olena Zakharchenko
- Karolinska Institutet, Dept. Oncology-Pathology, Karolinska Biomics Center, Cancer Translational Research Unit, Stockholm, Sweden
| | | | | | | |
Collapse
|