1
|
Chen VCH, Chuang W, Chen CW, Tsai YH, McIntyre RS, Weng JC. Detecting microstructural alterations of cerebral white matter associated with breast cancer and chemotherapy revealed by generalized q-sampling MRI. Front Psychiatry 2023; 14:1161246. [PMID: 37363171 PMCID: PMC10289548 DOI: 10.3389/fpsyt.2023.1161246] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Objective Previous studies have discussed the impact of chemotherapy on the brain microstructure. There is no evidence of the impact regarding cancer-related psychiatric comorbidity on cancer survivors. We aimed to evaluate the impact of both chemotherapy and mental health problem on brain microstructural alterations and consequent cognitive dysfunction in breast cancer survivors. Methods In this cross-sectional study conducted in a tertiary center, data from 125 female breast cancer survivors who had not received chemotherapy (BB = 65; 49.86 ± 8.23 years) and had received chemotherapy (BA = 60; 49.82 ± 7.89 years) as well as from 71 age-matched healthy controls (47.18 ± 8.08 years) was collected. Chemotherapeutic agents used were docetaxel and epirubicin. We used neuropsychological testing and questionnaire to evaluate psychiatric comorbidity, cognitive dysfunction as well as generalized sampling imaging (GQI) and graph theoretical analysis (GTA) to detect microstructural alterations in the brain. Findings Cross-comparison between groups revealed that neurotoxicity caused by chemotherapy and cancer-related psychiatric comorbidity may affect the corpus callosum and middle frontal gyrus. In addition, GQI indices were correlated with the testing scores of cognitive function, quality of life, anxiety, and depression. Furthermore, weaker connections between brain regions and lower segregated ability were found in the post-treatment group. Conclusion This study suggests that chemotherapy and cancer-related mental health problem both play an important role in the development of white matter alterations and cognitive dysfunction.
Collapse
Affiliation(s)
- Vincent Chin-Hung Chen
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Wei Chuang
- Department of Medical Imaging and Radiological Sciences, Department of Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Wei Chen
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yuan-Hsiung Tsai
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Roger S. McIntyre
- Mood Disorder Psychopharmacology Unit, Department of Psychiatry, University Health Network, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Departments of Psychiatry and Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Jun-Cheng Weng
- Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi, Taiwan
- Department of Medical Imaging and Radiological Sciences, Department of Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Sungura R, Shirima G, Spitsbergen J, Mpolya E, Vianney JM. A case-control study on the driving factors of childhood brain volume loss: What pediatricians must explore. PLoS One 2022; 17:e0276433. [PMID: 36584214 PMCID: PMC9803277 DOI: 10.1371/journal.pone.0276433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/07/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The brain volume loss also known as brain atrophy is increasingly observed among children in the course of performing neuroimaging using CT scan and MRI brains. While severe forms of brain volume loss are frequently associated with neurocognitive changes due to effects on thought processing speed, reasoning and memory of children that eventually alter their general personality, most clinicians embark themselves in managing the neurological manifestations of brain atrophy in childhood and less is known regarding the offending factors responsible for developing pre-senile brain atrophy. It was therefore the goal of this study to explore the factors that drive the occurrence of childhood brain volume under the guidance of brain CT scan quantitative evaluation. METHODS This study was a case-control study involving 168 subjects with brain atrophy who were compared with 168 age and gender matched control subjects with normal brains on CT scan under the age of 18 years. All the children with brain CT scan were subjected to an intense review of their birth and medical history including laboratory investigation reports. RESULTS Results showed significant and influential risk factors for brain atrophy in varying trends among children including age between 14-17(OR = 1.1), male gender (OR = 1.9), birth outside facility (OR = 0.99), immaturity (OR = 1.04), malnutrition (OR = 0.97), head trauma (OR = 1.02), maternal alcoholism (OR = 1.0), antiepileptic drugs & convulsive disorders (OR = 1.0), radiation injury (OR = 1.06), space occupying lesions and ICP (OR = 1.01) and birth injury/asphyxia (OR = 1.02). CONCLUSIONS Pathological reduction of brain volume in childhood exhibits a steady trend with the increase in pediatric age, with space occupying lesions & intracranial pressure being the most profound causes of brain atrophy.
Collapse
Affiliation(s)
- Richard Sungura
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela- African Institution of Science and Technology, Arusha, Tanzania
- * E-mail:
| | - Gabriel Shirima
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela- African Institution of Science and Technology, Arusha, Tanzania
| | - John Spitsbergen
- Department of Neuroscience, Western Michigan University, Kalamazoo, MI, United States of America
| | - Emmanuel Mpolya
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela- African Institution of Science and Technology, Arusha, Tanzania
| | - John-Mary Vianney
- Department of Health and Biomedical Sciences, School of Life Science, Nelson Mandela- African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|
3
|
Rich MM, Housley SN, Nardelli P, Powers RK, Cope TC. Imbalanced Subthreshold Currents Following Sepsis and Chemotherapy: A Shared Mechanism Offering a New Therapeutic Target? Neuroscientist 2022; 28:103-120. [PMID: 33345706 PMCID: PMC8215085 DOI: 10.1177/1073858420981866] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Both sepsis and treatment of cancer with chemotherapy are known to cause neurologic dysfunction. The primary defects seen in both groups of patients are neuropathy and encephalopathy; the underlying mechanisms are poorly understood. Analysis of preclinical models of these disparate conditions reveal similar defects in ion channel function contributing to peripheral neuropathy. The defects in ion channel function extend to the central nervous system where lower motoneurons are affected. In motoneurons the defect involves ion channels responsible for subthreshold currents that convert steady depolarization into repetitive firing. The inability to correctly translate depolarization into steady, repetitive firing has profound effects on motor function, and could be an important contributor to weakness and fatigue experienced by both groups of patients. The possibility that disruption of function, either instead of, or in addition to neurodegeneration, may underlie weakness and fatigue leads to a novel approach to therapy. Activation of serotonin (5HT) receptors in a rat model of sepsis restores the normal balance of subthreshold currents and normal motoneuron firing. If an imbalance of subthreshold currents also occurs in other central nervous system neurons, it could contribute to encephalopathy. We hypothesize that pharmacologically restoring the proper balance of subthreshold currents might provide effective therapy for both neuropathy and encephalopathy in patients recovering from sepsis or treatment with chemotherapy.
Collapse
Affiliation(s)
- Mark M. Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Stephen N. Housley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA,Integrated Cancer Research Center, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Paul Nardelli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Randall K. Powers
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Timothy C. Cope
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA,Integrated Cancer Research Center, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
4
|
Sahu K, Singh S, Devi B, Singh C, Singh A. A review on the neuroprotective effect of berberine against chemotherapy-induced cognitive impairment. Curr Drug Targets 2022; 23:913-923. [PMID: 35240956 DOI: 10.2174/1389450123666220303094752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
Chemobrain is one of the major side effects of chemotherapy, despite increased research, the mechanisms underlying chemotherapy-induced cognitive changes remain unknown. Though, several possibly important candidate mechanisms have been identified and will be studied further in the future. Chemobrain is characterized by memory loss, cognitive impairment, difficulty in language, concentration, acceleration, and learning. The major characteristic of chemobrain is oxidative stress, mitochondrial dysfunction, immune dysregulation, hormonal alteration, white matter abnormalities, and DNA damage. Berberine (BBR) is an isoquinoline alkaloid extracted from various berberine species. BBR is a small chemical that easily passes the blood-brain barrier (BBB), making it useful for treating neurodegenerative diseases. Many studies on the pharmacology of BBR have been reported in the past. Furthermore, several clinical and experimental research indicates that BBR has a variety of pharmacological effects. So, in this review, we explore the pathogenesis of chemobrain and the neuroprotective potential of BBR against chemobrain. We also introduced the therapeutic role of BBR in various neurodegenerative and neurological diseases such as Alzheimer's, Parkinson's disease, mental depression, schizophrenia, anxiety, and also some stroke.
Collapse
Affiliation(s)
- Kuleshwar Sahu
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
| | - Sukhdev Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
| | - Bhawna Devi
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
| | - Charan Singh
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab-144603, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
| |
Collapse
|
5
|
Housley SN, Nardelli P, Rotterman TM, Cope TC. Neural circuit mechanisms of sensorimotor disability in cancer treatment. Proc Natl Acad Sci U S A 2021; 118:e2100428118. [PMID: 34911753 PMCID: PMC8713769 DOI: 10.1073/pnas.2100428118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/02/2022] Open
Abstract
Cancer survivors rank sensorimotor disability among the most distressing, long-term consequences of chemotherapy. Disorders in gait, balance, and skilled movements are commonly assigned to chemotoxic damage of peripheral sensory neurons without consideration of the deterministic role played by the neural circuits that translate sensory information into movement. This oversight precludes sufficient, mechanistic understanding and contributes to the absence of effective treatment for reversing chemotherapy-induced disability. We rectified this omission through the use of a combination of electrophysiology, behavior, and modeling to study the operation of a spinal sensorimotor circuit in vivo in a rat model of chronic, oxaliplatin (chemotherapy)-induced neuropathy (cOIN). Key sequential events were studied in the encoding of propriosensory information and its circuit translation into the synaptic potentials produced in motoneurons. In cOIN rats, multiple classes of propriosensory neurons expressed defective firing that reduced accurate sensory representation of muscle mechanical responses to stretch. Accuracy degraded further in the translation of propriosensory signals into synaptic potentials as a result of defective mechanisms residing inside the spinal cord. These sequential, peripheral, and central defects compounded to drive the sensorimotor circuit into a functional collapse that was consequential in predicting the significant errors in propriosensory-guided movement behaviors demonstrated here in our rat model and reported for people with cOIN. We conclude that sensorimotor disability induced by cancer treatment emerges from the joint expression of independent defects occurring in both peripheral and central elements of sensorimotor circuits.
Collapse
Affiliation(s)
- Stephen N Housley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332;
- Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA 30309
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30309
| | - Paul Nardelli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Travis M Rotterman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Timothy C Cope
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332;
- Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA 30309
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30309
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
6
|
Sahu K, Langeh U, Singh C, Singh A. Crosstalk between anticancer drugs and mitochondrial functions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100047. [PMID: 34909674 PMCID: PMC8663961 DOI: 10.1016/j.crphar.2021.100047] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
Chemotherapy is an important component of cancer treatment, which has side effects like vomiting, peripheral neuropathy, and numerous organ toxicity but the most significant outcomes of chemotherapy are cognitive impairment, which is mainly referred to as chemobrain or CICI (chemotherapy-induced cognitive impairment). It is characterized by difficulty with language, concentrating, processing speed, learning, and memory, as it affects the hippocampus areas of the brain. Mitochondrial dysfunction and oxidative stress are one of the major mechanisms causing chemobrain. The generation of reactive oxygen species (byproducts of oxidative phosphorylation) mainly occurs in mitochondria that play a prominent role in the induction of oxidative stress. The homeostasis of ROS in the mitochondria is maintained by mitochondrial antioxidant mechanism via enzymes like catalase, glutathione, and superoxide dismutase. Lungs and breast cancer are the two most common types of cancer, which are the most leading cancers in the world with about 4.18 million cases. In this review we exposed the current knowledge regarding chemotherapy-induced oxidative stress and mitochondrial dysfunction to cause cognitive impairment.We especially focused on the antineoplastic agent (ADRIAMYCIN, CYCLOPHOSPHAMIDE), platinum group agent CISPLATIN, antimetabolite agents (METHOTREXATE), and nitrogen mustard agent (CARMUSTINE) which increase oxidative stress and inflammatory markers in the PNS (peripheral nervous system) as well as the central nervous system. We also highlight the behavioural and functional changes in the brain.
Collapse
Affiliation(s)
- Kuleshwar Sahu
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Urvashi Langeh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
7
|
Tseng YY, Chen TY, Liu SJ. Role of Polymeric Local Drug Delivery in Multimodal Treatment of Malignant Glioma: A Review. Int J Nanomedicine 2021; 16:4597-4614. [PMID: 34267515 PMCID: PMC8275179 DOI: 10.2147/ijn.s309937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
Malignant gliomas (MGs) are the most common and devastating primary brain tumor. At present, surgical interventions, radiotherapy, and chemotherapy are only marginally effective in prolonging the life expectancy of patients with MGs. Inherent heterogeneity, aggressive invasion and infiltration, intact physical barriers, and the numerous mechanisms underlying chemotherapy and radiotherapy resistance contribute to the poor prognosis for patients with MGs. Various studies have investigated methods to overcome these obstacles in MG treatment. In this review, we address difficulties in MG treatment and focus on promising polymeric local drug delivery systems. In contrast to most local delivery systems, which are directly implanted into the residual cavity after intratumoral injection or the surgical removal of a tumor, some rapidly developing and promising nanotechnological methods—including surface-decorated nanoparticles, magnetic nanoparticles, and focused ultrasound assist transport—are administered through (systemic) intravascular injection. We also discuss further synergistic and multimodal strategies for heightening therapeutic efficacy. Finally, we outline the challenges and therapeutic potential of these polymeric drug delivery systems.
Collapse
Affiliation(s)
- Yuan-Yun Tseng
- Department of Neurosurgery, New Taipei Municipal Tu-Cheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Tai-Yuan Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan.,Department of Orthopedic Surgery, Chang Gung Memorial Hospital-Linkuo, Tao-Yuan, Taiwan
| |
Collapse
|
8
|
El-Derany MO, Noureldein MH. Bone marrow mesenchymal stem cells and their derived exosomes resolve doxorubicin-induced chemobrain: critical role of their miRNA cargo. Stem Cell Res Ther 2021; 12:322. [PMID: 34090498 PMCID: PMC8180158 DOI: 10.1186/s13287-021-02384-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Background Doxorubicin (DOX), a widely used chemotherapeutic agent, can cause neurodegeneration in the brain, which leads to a condition known as chemobrain. In fact, chemobrain is a deteriorating condition which adversely affects the lives of cancer survivors. This study aimed to examine the potential therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) and their derived exosomes (BMSCs-Exo) in DOX-induced chemobrain in rat models. Methods Chemobrain was induced by exposing rats to DOX (2 mg/kg, i.p) once weekly for 4 consecutive weeks. After 48 h of the last DOX dose, a subset of rats was supplied with either an intravenous injection of BMSCs (1 × 106) or a single dose of 150 μg of BMSCs-Exo. Behavioral tests were conducted 7 days post injection. Rats were sacrificed after 14 days from BMSCs or BMSCs-Exo injection. Results BMSCs and BMSCs-Exo successfully restored DOX-induced cognitive and behavioral distortion. These actions were mediated via decreasing hippocampal neurodegeneration and neural demyelination through upregulating neural myelination factors (myelin%, Olig2, Opalin expression), neurotropic growth factors (BDNF, FGF-2), synaptic factors (synaptophysin), and fractalkine receptor expression (Cx3cr1). Halting neurodegeneration in DOX-induced chemobrain was achieved through epigenetic induction of key factors in Wnt/β-catenin and hedgehog signaling pathways mediated primarily by the most abundant secreted exosomal miRNAs (miR-21-5p, miR-125b-5p, miR-199a-3p, miR-24-3p, let-7a-5p). Moreover, BMSCs and BMSCs-Exo significantly abrogate the inflammatory state (IL-6, TNF-α), apoptotic state (BAX/Bcl2), astrocyte, and microglia activation (GFAP, IBA-1) in DOX-induced chemobrain with a significant increase in the antioxidant mediators (GSH, GPx, SOD activity). Conclusions BMSCs and their derived exosomes offer neuroprotection against DOX-induced chemobrain via genetic and epigenetic abrogation of hippocampal neurodegeneration through modulating Wnt/β-catenin and hedgehog signaling pathways and through reducing inflammatory, apoptotic, and oxidative stress state. Graphical abstract Proposed mechanisms of the protective effects of bone marrow stem cells (BMSCs) and their exosomes (BMSCs-Exo) in doxorubicin (DOX)-induced chemobrain. Blue arrows: induce. Red arrows: inhibit.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02384-9.
Collapse
Affiliation(s)
- Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Mohamed H Noureldein
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,American University of Beirut Diabetes Program, Beirut, Lebanon
| |
Collapse
|
9
|
Tajaldini M, Asadi J. The Use of Bio-Active Compounds of Citrus Fruits as Chemopreventive Agents and Inhibitor of Cancer Cells Viability. Anticancer Agents Med Chem 2021; 21:1058-1068. [PMID: 32698740 DOI: 10.2174/1871520620666200721105505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/13/2020] [Accepted: 05/24/2020] [Indexed: 11/22/2022]
Abstract
Common therapy of cancer, such as chemotherapy, has various side effects for the patients. In recent studies, new therapeutic approaches in cancer treatment are adjuvant therapy, along with a reduction in side effects of chemotherapy drugs. Treatment by herbal medicines may have some advantages over treatment with single purified chemicals, also in terms of side effects, the use of plants in cancer treatment is a more secure method. Citrus fruits are one of the most consumed natural products in the world due to the presence of various metabolites and bioactive compounds, such as phenols, flavonoids and, carotenoids. Bioactive compounds of citrus modulate signaling pathways and interact with signaling molecules such as apoptotic and cell cycle (P53, P21, etc.) and thus have a wide range of pharmacological activities, including anti-inflammatory, anti-cancer and oxidative stress. The findings discussed in this review strongly support their potential as anti-cancer agents. Therefore, the purpose of this review was to examine the effects of active compounds in citrus as a therapy agent in cancer treatment.
Collapse
Affiliation(s)
- Mahboubeh Tajaldini
- Ischimic Disorder Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorder Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
10
|
Zhang Y, Yi X, Gao J, Li L, Liu L, Qiu T, Zhang J, Zhang Y, Liao W. Chemotherapy Potentially Facilitates the Occurrence of Radiation Encephalopathy in Patients With Nasopharyngeal Carcinoma Following Radiotherapy: A Multiparametric Magnetic Resonance Imaging Study. Front Oncol 2019; 9:567. [PMID: 31334108 PMCID: PMC6618298 DOI: 10.3389/fonc.2019.00567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Radiation encephalopathy (RE) is deemed to be a disease induced only by radiotherapy (RT), with the effects of chemotherapeutic agents on the brains of nasopharyngeal carcinoma (NPC) patients being largely overlooked. In this study, we investigated structural and functional brain alterations in NPC patients following RT with or without chemotherapy. Fifty-six pre-RT, 37 post-RT, and 108 post-CCRT (concomitant chemo-radiotherapy) NPC patients were enrolled in this study. A surface-based local gyrification index (LGI) was obtained from high resolution MRI and was used to evaluate between-group differences in cortical folding. Seed-based functional connectivity (FC) analysis of resting-state fMRI data was also conducted to investigate the functional significance of the cortical folding alterations. Compared with the Pre-RT group, patients in the Post-CCRT group showed LGI reductions in widespread brain regions including the bilateral temporal lobes, insula, frontal lobes, and parietal lobes. Compared with the Post-RT group, patients in the Post-CCRT group showed LGI reductions in the right insula, which extended to the adjacent frontal lobe. Seed-based FC analysis showed that patients in the Post-CCRT group had lower FC between the insula and the left middle frontal gyrus than patients in the Pre-RT group. The follow-up results showed that patients in the Post-CCRT group had a much higher RE incidence rate (20.4%) than patients in the Post-RT group (2.7%; P = 0.01). These findings indicate that chemotherapy potentially facilitated the occurrence of RE in NPC patients who underwent radiotherapy.
Collapse
Affiliation(s)
- Youming Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianming Gao
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Li Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Imaging Diagnosis and Interventional Center, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lizhi Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Imaging Diagnosis and Interventional Center, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ting Qiu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinlei Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuanchao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Alexander TC, Kiffer F, Groves T, Anderson J, Wang J, Hayar A, Chen MT, Rodriguez A, Allen AR. Effects of thioTEPA chemotherapy on cognition and motor coordination. Synapse 2019; 73:e22085. [PMID: 30586195 DOI: 10.1002/syn.22085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 01/10/2023]
Abstract
Cancer survivorship has increased greatly as therapies have become more advanced and effective. Thus, we must now focus on improving the quality of life of patients after treatment. After chemotherapy, many patients experience chemotherapy-induced cognitive decline, indicating a need to investigate pathologies associated with this condition. In this study, we addressed cognitive impairment after thioTEPA treatment by assessing behavior and assaying cytokine production and the structure of dendrites in the hippocampus. Male mice were given three intraperitoneal injections of thioTEPA. Five weeks later, the mice underwent behavior testing, and brains were collected for Golgi staining and cytokine analysis. Behavior tests included y-maze and Morris water maze and licking behavioral task. Cytokines measured include: IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-10, IL-12p70, MCP-1, TNF-α, GMCSF, and RANTES. We observed decreased memory retention in behavioral tasks. Also, dendritic arborization and length were decreased after chemotherapy treatment. Finally, thioTEPA decreased cytokine production in animals treated with chemotherapy, compared to saline-treated controls. Here, we used a mouse model to correlate the decreases in dendritic complexity and inflammatory cytokine production with cognitive impairment after chemotherapy.
Collapse
Affiliation(s)
- Tyler C Alexander
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Frederico Kiffer
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Thomas Groves
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Ocala West Veterans Affairs, Ocala, Florida
| | - Julie Anderson
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jing Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Abdallah Hayar
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
12
|
Li TY, Chen VCH, Yeh DC, Huang SL, Chen CN, Chai JW, Chen CCC, Weng JC. Investigation of chemotherapy-induced brain structural alterations in breast cancer patients with generalized q-sampling MRI and graph theoretical analysis. BMC Cancer 2018; 18:1211. [PMID: 30514266 PMCID: PMC6280365 DOI: 10.1186/s12885-018-5113-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/20/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Breast neoplasms are the most common cancer among women in Taiwan. Cognitive deficits are common complications of breast cancer survivors treated with chemotherapy. The most frequently observed disorders involve executive function and memory impairment. With improvements in tumor intervention and the consequent increase in the number of cancer survivors, the quality of life of patients has become an important issue. We are interested in the early effects of chemotherapy on the brain structures of patients. In addition, generalized q-sampling imaging (GQI), a wide range of q-space datasets for a more accurate and sophisticated diffusion MR approach, was first used in this topic. METHODS As diffusion tensor imaging (DTI) is associated with restrictions in the resolution of crossing fibers, we attempted to use GQI, which can overcome these difficulties and is advantageous over DTI for tractography of the crossing fibers. This cross-sectional study included two groups: breast cancer survivors who had completed their chemotherapy (n = 19) and healthy controls (n = 20). All participants underwent diffusion MRI exams and neuropsychological assessments. We included four parts in our image analysis, i.e., voxel-based statistical analysis, multiple regression analysis, graph theoretical analysis and network-based statistical analysis. RESULTS The results from the voxel-based statistical analysis showed significantly lower GFA and NQA values in the breast cancer group than those in the control group. We found significant positive correlations between the FACT-Cog and GQI indices. In the graph theoretical analysis, the breast cancer group demonstrated significantly longer characteristic path length. Adjuvant chemotherapy affected the integrity of white matter and resulted in poor cognitive performance, as indicated by the correlations between the neuropsychological assessment scales and the GQI indices. In addition, it was found that the characteristic path lengths in the breast cancer group increased, indicating that the brain network integration became worse. CONCLUSIONS Our study demonstrated alterations in structural brain networks and associated neuropsychological deficits among breast cancer survivors.
Collapse
Affiliation(s)
- Tsung-Yuan Li
- Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Vincent Chin-Hung Chen
- School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Dah-Cherng Yeh
- Breast Medical Center, Cheng Ching Hospital Chung Kang Branch, Taichung, Taiwan
| | - Shu-Ling Huang
- Department of Psychology, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Nan Chen
- Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jyh-Wen Chai
- Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Clayton Chi-Chang Chen
- Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jun-Cheng Weng
- Department of Psychiatry, Chang Gung Memorial Hospital, Chiayi, Taiwan. .,Department of Medical Imaging and Radiological Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 33302, Taiwan.
| |
Collapse
|
13
|
Einarsson EJ, Patel M, Petersen H, Wiebe T, Fransson PA, Magnusson M, Moëll C. Elevated visual dependency in young adults after chemotherapy in childhood. PLoS One 2018; 13:e0193075. [PMID: 29466416 PMCID: PMC5821353 DOI: 10.1371/journal.pone.0193075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 02/05/2018] [Indexed: 11/21/2022] Open
Abstract
Chemotherapy in childhood can result in long-term neurophysiological side-effects, which could extend to visual processing, specifically the degree to which a person relies on vision to determine vertical and horizontal (visual dependency). We investigated whether adults treated with chemotherapy in childhood experience elevated visual dependency compared to controls and whether any difference is associated with the age at which subjects were treated. Visual dependency was measured in 23 subjects (mean age 25.3 years) treated in childhood with chemotherapy (CTS) for malignant, solid, non-CNS tumors. We also stratified CTS into two groups: those treated before 12 years of age and those treated from 12 years of age and older. Results were compared to 25 healthy, age-matched controls. The subjective visual horizontal (SVH) and vertical (SVV) orientations was recorded by having subjects position an illuminated rod to their perceived horizontal and vertical with and without a surrounding frame tilted clockwise and counter-clockwise 20° from vertical. There was no significant difference in rod accuracy between any CTS groups and controls without a frame. However, when assessing visual dependency using a frame, CTS in general (p = 0.006) and especially CTS treated before 12 years of age (p = 0.001) tilted the rod significantly further in the direction of the frame compared to controls. Our findings suggest that chemotherapy treatment before 12 years of age is associated with elevated visual dependency compared to controls, implying a visual bias during spatial activities. Clinicians should be aware of symptoms such as visual vertigo in adults treated with chemotherapy in childhood.
Collapse
Affiliation(s)
- Einar-Jón Einarsson
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Mitesh Patel
- Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Hannes Petersen
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Otorhinolaryngology, Landspitali University Hospital, Reykjavik, Iceland
| | - Thomas Wiebe
- Department of Pediatrics, Skåne University Hospital, Lund, Sweden
| | | | - Måns Magnusson
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Otorhinolaryngology, Skåne University Hospital, Lund, Sweden
| | - Christian Moëll
- Department of Pediatrics, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
14
|
Matsos A, Loomes M, Zhou I, Macmillan E, Sabel I, Rotziokos E, Beckwith W, Johnston I. Chemotherapy-induced cognitive impairments: White matter pathologies. Cancer Treat Rev 2017; 61:6-14. [DOI: 10.1016/j.ctrv.2017.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
|
15
|
Othman R, Abdullah KG. Serial MRI Scan of Posterior Fossa Tumours Predict Patients at Risk of Developing Neurocognitive Impairment. Asian Pac J Cancer Prev 2017; 18:1729-1735. [PMID: 28748803 PMCID: PMC5648372 DOI: 10.22034/apjcp.2017.18.7.1729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Brain tumours are the most common solid tumours in children. More than 50% of these tumours develop in the posterior cranial fossa. Long term survivors of posterior fossa tumours (PFT) suffer from neurocognitive and memory issues. We hypothesized that serial MRI scanning of brain would show differences in hippocampal and ACC volume change in PFT patients treated with and without chemo-radiotherapy. Material and Methods: Twelve patients (8 females and 4 males) underwent 76 serial MR imaging examinations before and during treatment for posterior fossa tumours. Seven patients (4 medulloblastoma, 2 as ependymoma and 1 high grade glioma) were treated with maximum surgical resection followed by adjuvant radiotherapy and chemotherapy (Group 1). The other five patients were diagnosed as pilocytic astrocytoma who were treated only with surgery (Group 2). Hippocampal volumes were obtained manually on high-resolution 3Tesla T1-weighted images and normalised to intracranial volume, while ACC thickness and volume were obtained automatically using FreeSurfer software. Results: After the treatment period, the change in normalised hippocampal volume from baseline was significantly lower in group 1 patients compared to group 2 (mean change -0.0001470 ± 8.981e-005; Mean ± SEM vs 0.0002765 ± 9.151e-005; Mean ± SEM, respectively, P=0.004). Displayed graphically, the negative hippocampal growth trajectory in group 1 gradually returned to a positive growth pattern. There were no statistically significant changes in ACC volume and thickness. Both groups had similar rates of pre-operative hydrocephalus. Conclusion: Compared to PFT patients treated with surgery alone, PFT patients treated with chemo-radiotherapy showed lower hippocampal volumes and altered hippocampal growth trajectory. Serial quantitative MRI measures of brain may provide a neuroanatomical substrate for assessing functional impact on normal brain function following treatment of posterior fossa tumours.
Collapse
Affiliation(s)
- Ramadhan Othman
- Department of Internal Medicine, College of medicine, University of Duhok, Duhok, Iraq.
| | | |
Collapse
|
16
|
Role of ketogenic metabolic therapy in malignant glioma: A systematic review. Crit Rev Oncol Hematol 2017; 112:41-58. [DOI: 10.1016/j.critrevonc.2017.02.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/30/2017] [Accepted: 02/14/2017] [Indexed: 12/22/2022] Open
|
17
|
Kesler SR, Blayney DW. Neurotoxic Effects of Anthracycline- vs Nonanthracycline-Based Chemotherapy on Cognition in Breast Cancer Survivors. JAMA Oncol 2016; 2:185-92. [PMID: 26633037 DOI: 10.1001/jamaoncol.2015.4333] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Chemotherapy exposure is a known risk factor for cancer-related cognitive impairments. Anthracycline-based regimens are commonly used chemotherapies that have been shown to be associated with cognitive impairment and brain changes in clinical studies. OBJECTIVE To directly compare the effects of anthracycline and nonanthracycline regimens on cognitive status and functional brain connectivity. DESIGN, SETTING, AND PARTICIPANTS In this observational study, we retrospectively examined cognitive and resting state functional magnetic resonance imaging data acquired from 62 primary breast cancer survivors (mean [SD] age, 54.7 [8.5] years) who were more than 2 years off-therapy, on average. Twenty of these women received anthracycline-based chemotherapy as part of their primary treatment, 19 received nonanthracycline regimens, and 23 did not receive any chemotherapy. Participants were enrolled at a single academic institution (Stanford University) from 2008 to 2014, and the study analyses were performed at this time. MAIN OUTCOMES AND MEASURES Cognitive status was measured using standardized neuropsychological tests, and functional brain connectivity was evaluated using resting state functional magnetic resonance imaging with a focus on the brain's default mode network. RESULTS The anthracycline group demonstrated significantly lower verbal memory performance including immediate recall (F = 3.73; P = .03) and delayed recall (F = 11.11; P < .001) as well as lower left precuneus connectivity (F = 7.48; P = .001) compared with the other 2 groups. Patient-reported outcomes related to cognitive dysfunction (F = 7.27; P = .002) and psychological distress (F = 5.64; P = .006) were similarly elevated in both chemotherapy groups compared with the non-chemotherapy-treated controls. CONCLUSIONS AND RELEVANCE These results suggest that anthracyclines may have greater negative effects than nonanthracycline regimens on particular cognitive domains and brain network connections. Both anthracycline and nonanthracycline regimens may have nonspecific effects on other cognitive domains as well as certain patient reported outcomes. Further research is needed to identify potential methods for protecting the brain against the effects of various chemotherapeutic agents.
Collapse
Affiliation(s)
- Shelli R Kesler
- Department of Neuro-oncology, University of Texas MD Anderson Cancer Center, Houston
| | - Douglas W Blayney
- Division of Medical Oncology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
18
|
Correa DD, Wang Y, West JD, Peck KK, Root JC, Baser RE, Thaler HT, Shore TB, Jakubowski A, Saykin AJ, Relkin N. Prospective assessment of white matter integrity in adult stem cell transplant recipients. Brain Imaging Behav 2016; 10:486-96. [PMID: 26153467 PMCID: PMC4706509 DOI: 10.1007/s11682-015-9423-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) is often used in the treatment of hematologic disorders. Although it can be curative, the pre-transplant conditioning regimen can be associated with neurotoxicity. In this prospective study, we examined white matter (WM) integrity with diffusion tensor imaging (DTI) and neuropsychological functioning before and one year after HSCT in twenty-two patients with hematologic disorders and ten healthy controls evaluated at similar intervals. Eighteen patients received conditioning treatment with high-dose (HD) chemotherapy, and four had full dose total body irradiation (fTBI) and HD chemotherapy prior to undergoing an allogeneic or autologous HSCT. The results showed a significant decrease in mean diffusivity (MD) and axial diffusivity (AD) in diffuse WM regions one year after HSCT (p-corrected <0.05) in the patient group compared to healthy controls. At baseline, patients treated with allogeneic HSCT had higher MD and AD in the left hemisphere WM than autologous HSCT patients (p-corrected <0.05). One year post-transplant, patients treated with allogeneic HSCT had lower fractional anisotropy (FA) and higher radial diffusivity (RD) in the right hemisphere and left frontal WM compared to patients treated with autologous HSCT (p-corrected <0.05).There were modest but significant correlations between MD values and cognitive test scores, and these were greatest for timed tests and in projection tracts. Patients showed a trend toward a decline in working memory, and had lower cognitive test scores than healthy controls at the one-year assessment. The findings suggest a relatively diffuse pattern of alterations in WM integrity in adult survivors of HSCT.
Collapse
Affiliation(s)
- D D Correa
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Y Wang
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - J D West
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - K K Peck
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, Brooklyn, NY, USA
| | - J C Root
- Department of Psychiatry & Behavioral Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - R E Baser
- Department of Epidemiology & Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - H T Thaler
- Department of Epidemiology & Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - T B Shore
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - A Jakubowski
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - A J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N Relkin
- Department ofNeurology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
19
|
Chaddock-Heyman L, Mackenzie MJ, Zuniga K, Cooke GE, Awick E, Roberts S, Erickson KI, McAuley E, Kramer AF. Higher cardiorespiratory fitness levels are associated with greater hippocampal volume in breast cancer survivors. Front Hum Neurosci 2015; 9:465. [PMID: 26379528 PMCID: PMC4549568 DOI: 10.3389/fnhum.2015.00465] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/10/2015] [Indexed: 11/17/2022] Open
Abstract
As breast cancer treatment is associated with declines in brain and cognitive health, it is important to identify strategies to enhance the cognitive vitality of cancer survivors. In particular, the hippocampus is known to play an important role in brain and memory declines following cancer treatment. The hippocampus is also known for its plasticity and positive association with cardiorespiratory fitness (CRF). The present study explores whether CRF may hold promise for lessening declines in brain and cognitive health of a sample of breast cancer survivors within 3 years of completion of primary cancer treatment. We explored the role of cardiovascular fitness in hippocampal structure in breast cancer survivors and non-cancer female controls, as well as performed a median split to compare differences in hippocampal volume in relatively higher fit and lower fit cancer survivors and non-cancer controls. Indeed, CRF and total hippocampal volume were positively correlated in the cancer survivors. In particular, higher fit breast cancer survivors had comparable hippocampal volumes to non-cancer control participants (Cohen's d = 0.13; p > 0.3), whereas lower fit breast cancer survivors showed significantly smaller hippocampal volumes compared to both lower fit and higher fit control participants (Cohen's d = 0.87, p < 0.05). These results are the first to identify that CRF may protect the brain health of breast cancer survivors within 3 years of treatment. The present study uniquely contributes to the field of cancer and cognition and emphasizes the importance of investigating how individual differences in CRF play a role in brain changes of breast cancer survivors.
Collapse
Affiliation(s)
- Laura Chaddock-Heyman
- Department of Psychology, The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Michael J. Mackenzie
- Department of Behavioral Health and Nutrition, College of Health Sciences, University of DelawareNewark, DE, USA
| | - Krystle Zuniga
- School of Family and Consumer Sciences, Texas State UniversitySan Marcos, TX, USA
| | - Gillian E. Cooke
- Department of Psychology, The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Elizabeth Awick
- Department of Kinesiology and Community Health, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Sarah Roberts
- Department of Kinesiology and Community Health, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Kirk I. Erickson
- Department of Psychology, University of PittsburghPittsburgh, PA, USA
| | - Edward McAuley
- Department of Psychology, The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
- Department of Kinesiology and Community Health, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Arthur F. Kramer
- Department of Psychology, The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| |
Collapse
|
20
|
Kesler SR, Watson CL, Blayney DW. Brain network alterations and vulnerability to simulated neurodegeneration in breast cancer. Neurobiol Aging 2015; 36:2429-42. [PMID: 26004016 DOI: 10.1016/j.neurobiolaging.2015.04.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 01/11/2023]
Abstract
Breast cancer and its treatments are associated with mild cognitive impairment and brain changes that could indicate an altered or accelerated brain aging process. We applied diffusion tensor imaging and graph theory to measure white matter organization and connectivity in 34 breast cancer survivors compared with 36 matched healthy female controls. We also investigated how brain networks (connectomes) in each group responded to simulated neurodegeneration based on network attack analysis. Compared with controls, the breast cancer group demonstrated significantly lower fractional anisotropy, altered small-world connectome properties, lower brain network tolerance to systematic region (node), and connection (edge) attacks and significant cognitive impairment. Lower tolerance to network attack was associated with cognitive impairment in the breast cancer group. These findings provide further evidence of diffuse white matter pathology after breast cancer and extend the literature in this area with unique data demonstrating increased vulnerability of the post-breast cancer brain network to future neurodegenerative processes.
Collapse
Affiliation(s)
- Shelli R Kesler
- Department of Neuro-oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Christa L Watson
- Memory and Aging Center, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Douglas W Blayney
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
21
|
Atangana EN, Homburg D, Vajkoczy P, Schneider UC. Mouse cerebral magnetic resonance imaging fails to visualize brain volume changes after experimental subarachnoid hemorrhage. Acta Neurochir (Wien) 2015; 157:37-42. [PMID: 25398554 DOI: 10.1007/s00701-014-2276-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/04/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Brain atrophy after subarachnoid hemorrhage (SAH) has been detected in humans and might serve as a functional read-out parameter for neuropsychological deficits. To determine whether serial magnetic resonance imaging (MRI) can provide information on brain atrophy in animals as well, mice that had undergone experimental SAH were scanned repeatedly after the bleeding. METHODS Using a 7-T rodent MRI, six mice were evaluated for total hemispheric, cerebrospinal fluid (CSF) and hippocampal volumes on days 1, 2, 4, 21, 28, 42 and 60 after experimental SAH or sham operation, respectively. RESULTS Repeated MRI scanning demonstrated a very high reproducibility with minimum standard deviation. Nevertheless, no significant differences were found between the two groups concerning hemispherical volumes or hippocampal volumes. A transient but significant increase in CSF volume was detected on days 2 and 60 after SAH. Compared with the existing method, no MRI data on brain atrophy in mice after experimental SAH have been published. CONCLUSION Repeated brain MRI in mice after experimental SAH did not provide additional information on brain atrophy. Our data suggest that this is not due to a lack of sensitivity of the method. Despite all promising details about MRI, our results should initiate careful consideration (additional sequences/other questions) before its further use in this certain area, especially since it is expensive and associated with demanding logistics.
Collapse
Affiliation(s)
- Etienne N Atangana
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | | | | |
Collapse
|
22
|
Seigers R, Loos M, Van Tellingen O, Boogerd W, Smit AB, Schagen SB. Cognitive impact of cytotoxic agents in mice. Psychopharmacology (Berl) 2015; 232:17-37. [PMID: 24894481 DOI: 10.1007/s00213-014-3636-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/05/2014] [Indexed: 01/12/2023]
Abstract
RATIONALE AND OBJECTIVES Adjuvant chemotherapy is associated with changes in cognition in a subgroup of cancer patients. Chemotherapy is generally given as a combination of cytotoxic agents, which makes it hard to define the agent responsible for these observed changes. Literature on animal experiments has been difficult to interpret due to variance in experimental setup. METHODS We examined the effects of cytotoxic agents administered separately on various cognitive measures in a standardized animal model. Male C57Bl/6 mice received cyclophosphamide, docetaxel, doxorubicin, 5-fluorouracil, methotrexate, or topotecan. These agents represent different compound classes based on their working mechanism and are frequently prescribed in the clinic. A control group received saline. Behavioral testing started 2 or 15 weeks after treatment and included testing general measures of behavior and cognitive task performance: spontaneous behavior in an automated home cage, open field, novel location recognition (NLR), novel object recognition (NOR), Barnes maze, contextual fear conditioning, and a simple choice reaction time task (SCRTT). RESULTS Cyclophosphamide, docetaxel, and doxorubicin administration affected spontaneous activity in the automated home cage. All cytotoxic agents affected memory (NLR and/or NOR). Spatial memory measured in the Barnes maze was affected after administration with doxorubicin, 5-fluorouracil, and topotecan. Decreased inhibition in the SCRTT was observed after treatment with cyclophosphamide, docetaxel, and topotecan. CONCLUSIONS Our data show that, in mice, a single treatment with a cytotoxic agent causes cognitive impairment. Not all cytotoxic agents affected the same cognitive domains, which might be explained by differences in working mechanisms of the various agents.
Collapse
Affiliation(s)
- R Seigers
- Department of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Lepage C, Smith AM, Moreau J, Barlow-Krelina E, Wallis N, Collins B, MacKenzie J, Scherling C. A prospective study of grey matter and cognitive function alterations in chemotherapy-treated breast cancer patients. SPRINGERPLUS 2014; 3:444. [PMID: 25184110 PMCID: PMC4149682 DOI: 10.1186/2193-1801-3-444] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/10/2022]
Abstract
PURPOSE Subsequent to chemotherapy treatment, breast cancer patients often report a decline in cognitive functioning that can adversely impact many aspects of their lives. Evidence has mounted in recent years indicating that a portion of breast cancer survivors who have undergone chemotherapy display reduced performance on objective measures of cognitive functioning relative to comparison groups. Neurophysiological support for chemotherapy-related cognitive impairment has been accumulating due to an increase in neuroimaging studies in this field; however, longitudinal studies are limited and have not examined the relationship between structural grey matter alterations and neuropsychological performance. The aim of this study was to extend the cancer-cognition literature by investigating the association between grey matter attenuation and objectively measured cognitive functioning in chemotherapy-treated breast cancer patients. METHODS Female breast cancer patients (n = 19) underwent magnetic resonance imaging after surgery but before commencing chemotherapy, one month following treatment, and one year after treatment completion. Individually matched controls (n = 19) underwent imaging at similar intervals. All participants underwent a comprehensive neuropsychological battery comprising four cognitive domains at these same time points. Longitudinal grey matter changes were investigated using voxel-based morphometry. RESULTS One month following chemotherapy, patients had distributed grey matter volume reductions. One year after treatment, a partial recovery was observed with alterations persisting predominantly in frontal and temporal regions. This course was not observed in the healthy comparison group. Processing speed followed a similar trajectory within the patient group, with poorest scores obtained one month following treatment and some improvement evident one year post-treatment. CONCLUSION This study provides further credence to patient claims of altered cognitive functioning subsequent to chemotherapy treatment.
Collapse
Affiliation(s)
- Chris Lepage
- School of Psychology, University of Ottawa, Vanier Hall, 136 Jean Jacques Lussier, Ottawa, ON K1N 6 N5 Canada
| | - Andra M Smith
- School of Psychology, University of Ottawa, Vanier Hall, 136 Jean Jacques Lussier, Ottawa, ON K1N 6 N5 Canada
| | - Jeremy Moreau
- School of Psychology, University of Ottawa, Vanier Hall, 136 Jean Jacques Lussier, Ottawa, ON K1N 6 N5 Canada
| | - Emily Barlow-Krelina
- School of Psychology, University of Ottawa, Vanier Hall, 136 Jean Jacques Lussier, Ottawa, ON K1N 6 N5 Canada
| | - Nancy Wallis
- School of Psychology, University of Ottawa, Vanier Hall, 136 Jean Jacques Lussier, Ottawa, ON K1N 6 N5 Canada
| | - Barbara Collins
- School of Psychology, University of Ottawa, Vanier Hall, 136 Jean Jacques Lussier, Ottawa, ON K1N 6 N5 Canada ; Ottawa Hospital, Civic Campus, 1053 Carling Avenue, Ottawa, ON K1Y 4E9 Canada
| | - Joyce MacKenzie
- Ottawa Hospital, Civic Campus, 1053 Carling Avenue, Ottawa, ON K1Y 4E9 Canada
| | - Carole Scherling
- Memory and Aging Center, Neurology, UCSF, Sandler Neuroscience Center, 675 Nelson Rising Lane, San Francisco, CA 94158 USA
| |
Collapse
|
24
|
Abstract
It is increasingly apparent that treatment with a variety of anticancer agents often is associated with adverse neurological consequences. Clinical studies indicate that exposure even to tamoxifen (TMX), a putatively benign antihormonal agent widely used in breast cancer treatment, causes cognitive dysfunction and changes in CNS metabolism, hippocampal volume, and brain structure. We found that TMX is toxic for a variety of CNS cell populations in vitro and also increased cell death in the corpus callosum and reduced cell division in the mouse subventricular zone, the hippocampal dentate gyrus, and the corpus callosum. We further discovered that MEK1/2 inhibition selectively rescued primary glial progenitors from TMX toxicity in vitro while enhancing TMX effects on MCF7 luminal human breast cancer cells. In vivo, MEK1/2 inhibition prevented TMX-induced cell death in systemically treated mice. Our results demonstrate unexpected cytotoxicity of this putatively benign antihormonal agent and offer a potential strategy for rescuing CNS cells from adverse effects of TMX.
Collapse
|
25
|
Default mode network connectivity distinguishes chemotherapy-treated breast cancer survivors from controls. Proc Natl Acad Sci U S A 2013; 110:11600-5. [PMID: 23798392 DOI: 10.1073/pnas.1214551110] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Breast cancer (BC) chemotherapy is associated with cognitive changes including persistent deficits in some individuals. We tested the accuracy of default mode network (DMN) resting state functional connectivity patterns in discriminating chemotherapy treated (C+) from non-chemotherapy (C-) treated BC survivors and healthy controls (HC). We also examined the relationship between DMN connectivity patterns and cognitive function. Multivariate pattern analysis was used to classify 30 C+, 27 C-, and 24 HC, which showed significant accuracy for discriminating C+ from C- (91.23%, P < 0.0001) and C+ from HC (90.74%, P < 0.0001). The C- group did not differ significantly from HC (47.06%, P = 0.60). Lower subjective memory function was correlated (P < 0.002) with greater hyperplane distance (distance from the linear decision function that optimally separates the groups). Disrupted DMN connectivity may help explain long-term cognitive difficulties following BC chemotherapy.
Collapse
|
26
|
Kesler S, Janelsins M, Koovakkattu D, Palesh O, Mustian K, Morrow G, Dhabhar FS. Reduced hippocampal volume and verbal memory performance associated with interleukin-6 and tumor necrosis factor-alpha levels in chemotherapy-treated breast cancer survivors. Brain Behav Immun 2013; 30 Suppl:S109-16. [PMID: 22698992 PMCID: PMC3665606 DOI: 10.1016/j.bbi.2012.05.017] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/29/2012] [Accepted: 05/31/2012] [Indexed: 11/16/2022] Open
Abstract
Many survivors of breast cancer show significant cognitive impairments, including memory deficits. Inflammation induced by chemotherapy may contribute to hippocampal changes that underlie these deficits. In this cross-sectional study, we measured bilateral hippocampal volumes from high-resolution magnetic resonance images in 42 chemotherapy-treated breast cancer survivors and 35 healthy female controls. Patients with breast cancer were, on average, 4.8 ± 3.4 years off-therapy. In a subset of these participants (20 breast cancer, 23 controls), we quantified serum cytokine levels. Left hippocampal volumes and memory performance were significantly reduced and interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNFα) concentrations were significantly elevated in the breast cancer group compared to controls. In the breast cancer group, lower left hippocampal volume was associated with higher levels of TNFα and lower levels of IL-6 with a significant interaction between these two cytokines suggesting a potential modulatory effect of IL-6 on TNFα. Verbal memory performance was associated with cytokine levels and left hippocampal volume in both groups. These findings provide evidence of altered hippocampal volume and verbal memory difficulties following breast cancer chemotherapy that may be mediated by TNFα and IL-6.
Collapse
Affiliation(s)
- Shelli Kesler
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Michelle Janelsins
- Department of Radiation Oncology, University of Rochester, Rochester, NY 14642, United States
| | - Della Koovakkattu
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Oxana Palesh
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Karen Mustian
- Department of Radiation Oncology, University of Rochester, Rochester, NY 14642, United States
| | - Gary Morrow
- Department of Radiation Oncology, University of Rochester, Rochester, NY 14642, United States
| | - Firdaus S. Dhabhar
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| |
Collapse
|
27
|
Bruno J, Hosseini SMH, Kesler S. Altered resting state functional brain network topology in chemotherapy-treated breast cancer survivors. Neurobiol Dis 2012; 48:329-38. [PMID: 22820143 DOI: 10.1016/j.nbd.2012.07.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/26/2012] [Accepted: 07/09/2012] [Indexed: 11/30/2022] Open
Abstract
Many women with breast cancer, especially those treated with chemotherapy, experience cognitive decline due in part to neurotoxic brain injury. Recent neuroimaging studies suggest widespread brain structural abnormalities pointing to disruption of large-scale brain networks. We applied resting state functional magnetic resonance imaging and graph theoretical analysis to examine the connectome in breast cancer survivors treated with chemotherapy relative to healthy comparison women. Compared to healthy females, the breast cancer group displayed altered global brain network organization characterized by significantly decreased global clustering as well as disrupted regional network characteristics in frontal, striatal and temporal areas. Breast cancer survivors also showed significantly increased self-report of executive function and memory difficulties compared to healthy females. These results suggest that topological organization of both global and regional brain network properties may be disrupted following breast cancer and chemotherapy. This pattern of altered network organization is believed to result in reduced efficiency of parallel information transfer. This is the first report of alterations in large-scale functional brain networks in this population and contributes novel information regarding the neurobiologic mechanisms underlying breast cancer-related cognitive impairment.
Collapse
Affiliation(s)
- Jennifer Bruno
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
28
|
Glushakova OY, Jeromin A, Martinez J, Johnson D, Denslow N, Streeter J, Hayes RL, Mondello S. Cerebrospinal fluid protein biomarker panel for assessment of neurotoxicity induced by kainic acid in rats. Toxicol Sci 2012; 130:158-67. [PMID: 22790971 DOI: 10.1093/toxsci/kfs224] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Glutamate excitotoxicity plays a key role in the etiology of a variety of neurological, psychiatric, and neurodegenerative disorders. The goal of this study was to investigate spatiotemporal distribution in the brain and cerebrospinal fluid (CSF) concentrations of ubiquitin C-terminal hydrolase-1 (UCH-L1), glial fibrillary acidic protein (GFAP), αII-spectrin breakdown products (SBDP150, SBDP145, and SBDP120), and their relationship to neuropathology in an animal model of kainic acid (KA) excitotoxicity. Triple fluorescent labeling and Fluoro-Jade C staining revealed a reactive gliosis in brain and specific localization of degenerating neurons in hippocampus and entorhinal cortex of KA-treated rats. Immunohistochemistry showed upregulation of GFAP expression in hippocampus and cortex beginning 24h post KA injection and peaking at 48h. At these time points concurrent with extensive neurodegeneration all SBDPs were observed throughout the brain. At 24h post KA injection, a loss of structural integrity was observed in cellular distribution of UCH-L1 that correlated with an increase in immunopositive material in the extracellular matrix. CSF levels of UCH-L1, GFAP, and SBDPs were significantly increased in KA-treated animals compared with controls. The temporal increase in CSF biomarkers correlated with brain tissue distribution and neurodegeneration. This study provided evidence supporting the use of CSF levels of glial and neuronal protein biomarkers to assess neurotoxic damage in preclinical animal models that could prove potentially translational to the clinic. The molecular nature of these biomarkers can provide critical information on the underlying mechanisms of neurotoxicity that might facilitate the development of novel drugs and allow physicians to monitor drug safety.
Collapse
Affiliation(s)
- Olena Y Glushakova
- Banyan Biomarkers. Inc., 13400 Progress Blvd, Alachua, Florida 32615, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Schagen SB, Das E, Vermeulen I. Information about chemotherapy-associated cognitive problems contributes to cognitive problems in cancer patients. Psychooncology 2011; 21:1132-5. [PMID: 21769988 DOI: 10.1002/pon.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/29/2011] [Accepted: 05/30/2011] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Although increasing attention is directed at identifying biological mechanisms underlying cognitive changes observed in cancer patients without central nervous system disease following chemotherapy, psychological factors that can contribute to these cognitive changes are much less studied. METHODS In an online experiment, the influence of informing patients about the association between cognitive problems and chemotherapy on self-reported cognitive functioning and neuropsychological test performance was investigated. RESULTS Cancer patients treated with chemotherapy (n = 150) reported higher levels of cognitive complaints after receiving such information (M = 21.20) than without such information (M = 18.98; p = 0.032). No difference was found for patients without (a history of) chemotherapy (n = 86; M = 18.85 vs. 20.08; NS). A similar interaction pattern was observed on a word-learning test. Patients treated with chemotherapy recalled fewer words after being informed about the association between cognitive problems and chemotherapy (M = 24.44) than without such information (M = 27.63; p = 0.010). No difference was found for patients not treated with chemotherapy (M = 26.35 vs. 25.38; NS). CONCLUSION Patient information may induce a stereotype threat, which affects self-reported cognitive function and neuropsychological test performance in cancer patients for whom this information is relevant.
Collapse
Affiliation(s)
- Sanne B Schagen
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands.
| | | | | |
Collapse
|