1
|
Kao SY, Nikonova E, Chaabane S, Sabani A, Martitz A, Wittner A, Heemken J, Straub T, Spletter ML. A Candidate RNAi Screen Reveals Diverse RNA-Binding Protein Phenotypes in Drosophila Flight Muscle. Cells 2021; 10:2505. [PMID: 34685485 PMCID: PMC8534295 DOI: 10.3390/cells10102505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 12/30/2022] Open
Abstract
The proper regulation of RNA processing is critical for muscle development and the fine-tuning of contractile ability among muscle fiber-types. RNA binding proteins (RBPs) regulate the diverse steps in RNA processing, including alternative splicing, which generates fiber-type specific isoforms of structural proteins that confer contractile sarcomeres with distinct biomechanical properties. Alternative splicing is disrupted in muscle diseases such as myotonic dystrophy and dilated cardiomyopathy and is altered after intense exercise as well as with aging. It is therefore important to understand splicing and RBP function, but currently, only a small fraction of the hundreds of annotated RBPs expressed in muscle have been characterized. Here, we demonstrate the utility of Drosophila as a genetic model system to investigate basic developmental mechanisms of RBP function in myogenesis. We find that RBPs exhibit dynamic temporal and fiber-type specific expression patterns in mRNA-Seq data and display muscle-specific phenotypes. We performed knockdown with 105 RNAi hairpins targeting 35 RBPs and report associated lethality, flight, myofiber and sarcomere defects, including flight muscle phenotypes for Doa, Rm62, mub, mbl, sbr, and clu. Knockdown phenotypes of spliceosome components, as highlighted by phenotypes for A-complex components SF1 and Hrb87F (hnRNPA1), revealed level- and temporal-dependent myofibril defects. We further show that splicing mediated by SF1 and Hrb87F is necessary for Z-disc stability and proper myofibril development, and strong knockdown of either gene results in impaired localization of kettin to the Z-disc. Our results expand the number of RBPs with a described phenotype in muscle and underscore the diversity in myofibril and transcriptomic phenotypes associated with splicing defects. Drosophila is thus a powerful model to gain disease-relevant insight into cellular and molecular phenotypes observed when expression levels of splicing factors, spliceosome components and splicing dynamics are altered.
Collapse
Affiliation(s)
- Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Sabrina Chaabane
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Albiona Sabani
- Department of Biology, University of Wisconsin at Madison, 1117 W. Johnson St., Madison, WI 53706, USA;
| | - Alexandra Martitz
- Molecular Nutrition Medicine, Else Kröner-Fresenius Center, Technical University of Munich, 85354 Freising, Germany;
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Jakob Heemken
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Tobias Straub
- Biomedical Center, Bioinformatics Core Facility, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany;
| | - Maria L. Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| |
Collapse
|
2
|
Xiong F, Ren JJ, Yu Q, Wang YY, Lu CC, Kong LJ, Otegui MS, Wang XL. AtU2AF65b functions in abscisic acid mediated flowering via regulating the precursor messenger RNA splicing of ABI5 and FLC in Arabidopsis. THE NEW PHYTOLOGIST 2019; 223:277-292. [PMID: 30790290 DOI: 10.1111/nph.15756] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/11/2019] [Indexed: 05/20/2023]
Abstract
In mammalians and yeast, the splicing factor U2AF65/Mud2p functions in precursor messenger RNA (pre-mRNA) processing. Arabidopsis AtU2AF65b encodes a putative U2AF65 but its specific functions in plants are unknown. This paper examines the function of AtU2AF65b as a negative regulator of flowering time in Arabidopsis. We investigated the expression and function of AtU2AF65b in abscisic acid (ABA)-regulated flowering as well as the transcript abundance and pre-mRNA splicing of flowering-related genes in the knock-out mutants of AtU2AF65b. The atu2af65b mutants show early-flowering phenotype under both long-day and short-day conditions. The transcript accumulation of the flowering repressor gene FLOWERING LOCUS C (FLC) is reduced in the shoot apex of atu2af65b, due to both increased intron retention and reduced transcription activation. Reduced transcription of FLC results, at least partially, from the abnormal splicing and reduced transcript abundance of ABSCISIC ACID-INSENSITIVE 5 (ABI5), which encodes an activator of FLC in ABA-regulated flowering signaling. Additionally, the expression of AtU2AF65b is promoted by ABA. Transition to flowering and splicing of FLC and ABI5 in the atu2af65b mutants are compromised during ABA-induced flowering. ABA-responsive AtU2AF65b functions in the pre-mRNA splicing of FLC and ABI5 in shoot apex, whereby AtU2AF65b is involved in ABA-mediated flowering transition in Arabidopsis.
Collapse
Affiliation(s)
- Feng Xiong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Jing-Jing Ren
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Qin Yu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Yu-Yi Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Chong-Chong Lu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Lan-Jing Kong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Marisa S Otegui
- Department of Botany and Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xiu-Ling Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
3
|
Jenkins JL, Kielkopf CL. Splicing Factor Mutations in Myelodysplasias: Insights from Spliceosome Structures. Trends Genet 2017; 33:336-348. [PMID: 28372848 PMCID: PMC5447463 DOI: 10.1016/j.tig.2017.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 01/08/2023]
Abstract
Somatic mutations of pre-mRNA splicing factors recur among patients with myelodysplastic syndrome (MDS) and related malignancies. Although these MDS-relevant mutations alter the splicing of a subset of transcripts, the mechanisms by which these single amino acid substitutions change gene expression remain controversial. New structures of spliceosome intermediates and associated protein complexes shed light on the molecular interactions mediated by 'hotspots' of the SF3B1 and U2AF1 pre-mRNA splicing factors. The frequently mutated SF3B1 residues contact the pre-mRNA splice site. Based on structural homology with other spliceosome subunits, and recent findings of altered RNA binding by mutant U2AF1 proteins, we suggest that affected U2AF1 residues also contact pre-mRNA. Altered pre-mRNA recognition emerges as a molecular theme among MDS-relevant mutations of pre-mRNA splicing factors.
Collapse
Affiliation(s)
- Jermaine L Jenkins
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Clara L Kielkopf
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
4
|
The Evolutionarily-conserved Polyadenosine RNA Binding Protein, Nab2, Cooperates with Splicing Machinery to Regulate the Fate of pre-mRNA. Mol Cell Biol 2016; 36:2697-2714. [PMID: 27528618 PMCID: PMC5064217 DOI: 10.1128/mcb.00402-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Numerous RNA binding proteins are deposited onto an mRNA transcript to modulate post-transcriptional processing events ensuring proper mRNA maturation. Defining the interplay between RNA binding proteins that couple mRNA biogenesis events is crucial for understanding how gene expression is regulated. To explore how RNA binding proteins control mRNA processing, we investigated a role for the evolutionarily conserved polyadenosine RNA binding protein, Nab2, in mRNA maturation within the nucleus. This work reveals that nab2 mutant cells accumulate intron-containing pre-mRNA in vivo We extend this analysis to identify genetic interactions between mutant alleles of nab2 and genes encoding the splicing factor, MUD2, and the RNA exosome, RRP6, with in vivo consequences of altered pre-mRNA splicing and poly(A) tail length control. As further evidence linking Nab2 proteins to splicing, an unbiased proteomic analysis of vertebrate Nab2, ZC3H14, identifies physical interactions with numerous components of the spliceosome. We validated the interaction between ZC3H14 and U2AF2/U2AF65 Taking all the findings into consideration, we present a model where Nab2/ZC3H14 interacts with spliceosome components to allow proper coupling of splicing with subsequent mRNA processing steps contributing to a kinetic proofreading step that allows properly processed mRNA to exit the nucleus and escape Rrp6-dependent degradation.
Collapse
|
5
|
Jacewicz A, Chico L, Smith P, Schwer B, Shuman S. Structural basis for recognition of intron branchpoint RNA by yeast Msl5 and selective effects of interfacial mutations on splicing of yeast pre-mRNAs. RNA (NEW YORK, N.Y.) 2015; 21:401-14. [PMID: 25587180 PMCID: PMC4338336 DOI: 10.1261/rna.048942.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Saccharomyces cerevisiae Msl5 orchestrates spliceosome assembly by binding the intron branchpoint sequence 5'-UACUAAC and, with its heterodimer partner protein Mud2, establishing cross intron-bridging interactions with the U1 snRNP at the 5' splice site. Here we define the central Msl5 KH-QUA2 domain as sufficient for branchpoint RNA recognition. The 1.8 Å crystal structure of Msl5-(KH-QUA2) bound to the branchpoint highlights an extensive network of direct and water-mediated protein-RNA and intra-RNA atomic contacts at the interface that illuminate how Msl5 recognizes each nucleobase of the UACUAAC element. The Msl5 structure rationalizes a large body of mutational data and inspires new functional studies herein, which reveal how perturbations of the Msl5·RNA interface impede the splicing of specific yeast pre-mRNAs. We also identify interfacial mutations in Msl5 that bypass the essentiality of Sub2, a DExD-box ATPase implicated in displacing Msl5 from the branchpoint in exchange for the U2 snRNP. These studies establish an atomic resolution framework for understanding splice site selection and early spliceosome dynamics.
Collapse
Affiliation(s)
- Agata Jacewicz
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Lidia Chico
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| | - Paul Smith
- Department of Chemistry, Fordham University, Bronx, New York 10458, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
6
|
O’Connor BP, Danhorn T, De Arras L, Flatley BR, Marcus RA, Farias-Hesson E, Leach SM, Alper S. Regulation of toll-like receptor signaling by the SF3a mRNA splicing complex. PLoS Genet 2015; 11:e1004932. [PMID: 25658809 PMCID: PMC4450051 DOI: 10.1371/journal.pgen.1004932] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022] Open
Abstract
The innate immune response plays a key role in fighting infection by activating inflammation and stimulating the adaptive immune response. However, chronic activation of innate immunity can contribute to the pathogenesis of many diseases with an inflammatory component. Thus, various negatively acting factors turn off innate immunity subsequent to its activation to ensure that inflammation is self-limiting and to prevent inflammatory disease. These negatively acting pathways include the production of inhibitory acting alternate proteins encoded by alternative mRNA splice forms of genes in Toll-like receptor (TLR) signaling pathways. We previously found that the SF3a mRNA splicing complex was required for a robust innate immune response; SF3a acts to promote inflammation in part by inhibiting the production of a negatively acting splice form of the TLR signaling adaptor MyD88. Here we inhibit SF3a1 using RNAi and subsequently perform an RNAseq study to identify the full complement of genes and splicing events regulated by SF3a in murine macrophages. Surprisingly, in macrophages, SF3a has significant preference for mRNA splicing events within innate immune signaling pathways compared with other biological pathways, thereby affecting the splicing of specific genes in the TLR signaling pathway to modulate the innate immune response. Within minutes after we are exposed to pathogens, our bodies react with a rapid response known as the “innate immune response.” This arm of the immune response regulates the process of inflammation, in which various immune cells are recruited to sites of infection and are activated to produce a host of antimicrobial compounds. This response is critical to fight infection. However, this response, if it is activated too strongly or if it becomes chronic, can do damage and can contribute to numerous very common diseases ranging from atherosclerosis to asthma to cancer. Thus it is essential that this response be tightly regulated, turned on when we have an infection, and turned off when not needed. We are investigating a mechanism that helps turn off this response, to ensure that inflammation is limited to prevent inflammatory disease. This mechanism involves the production of alternate forms of RNAs and proteins that control inflammation. We have discovered that a protein known as SF3a1 can regulate the expression of these alternate inhibitory RNA forms and are investigating how to use this knowledge to better control inflammation.
Collapse
Affiliation(s)
- Brian P. O’Connor
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, United States of America
| | - Thomas Danhorn
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Lesly De Arras
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Brenna R. Flatley
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, United States of America
| | - Roland A. Marcus
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Eveline Farias-Hesson
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Sonia M. Leach
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
| | - Scott Alper
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, United States of America
- Department of Biomedical Research, National Jewish Health, Denver, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
7
|
Pérez-Valle J, Vilardell J. Intronic features that determine the selection of the 3' splice site. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:707-17. [PMID: 22807288 DOI: 10.1002/wrna.1131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Most eukaryotic primary transcripts include segments, or introns, that will be accurately removed during RNA biogenesis. This process, known as pre-messenger RNA splicing, is catalyzed by the spliceosome, accurately selecting a set of intronic marks from others apparently equivalent. This identification is critical, as incorrectly spliced RNAs can be toxic for the organism. One of these marks, the dinucleotide AG, signals the intronic 3' end, or 3' splice site (ss). In this review we will focus on those intronic features that have an impact on 3' ss selection. These include the location and type of neighboring sequences, and their distance to the 3' end. We will see that their interplay is needed to select the right intronic end, and that this can be modulated by additional intronic elements that contribute to alternative splicing, whereby diverse RNAs can be generated from identical precursors. This complexity, still poorly understood, is fundamental for the accuracy of gene expression. In addition, a clear knowledge of 3' ss selection is needed to fully decipher the coding potential of genomes.
Collapse
Affiliation(s)
- Jorge Pérez-Valle
- Department of Molecular Genòmics, Institute of Molecular Biology of Barcelona (IBMB), Barcelona, Spain
| | | |
Collapse
|
8
|
Chang J, Schwer B, Shuman S. Structure-function analysis and genetic interactions of the yeast branchpoint binding protein Msl5. Nucleic Acids Res 2012; 40:4539-52. [PMID: 22287628 PMCID: PMC3378887 DOI: 10.1093/nar/gks049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Saccharomyces cerevisiae Msl5 (branchpoint binding protein) orchestrates spliceosome assembly by binding the branchpoint sequence 5′-UACUAAC and establishing cross intron-bridging interactions with other components of the splicing machinery. Reciprocal tandem affinity purifications verify that Msl5 exists in vivo as a heterodimer with Mud2 and that the Msl5–Mud2 complex is associated with the U1 snRNP. By gauging the ability of mutants of Msl5 to complement msl5Δ, we find that the Mud2-binding (amino acids 35–54) and putative Prp40-binding (PPxY100) elements of the Msl5 N-terminal domain are inessential, as are the C-terminal proline-rich domain (amino acids 382–476) and two zinc-binding CxxCxxxxHxxxxC motifs (amino acids 273–286 and 299–312). A subset of conserved branchpoint RNA-binding amino acids in the central KH-QUA2 domain (amino acids 146–269) are essential pairwise (Ile198–Arg190; Leu256–Leu259) or in trios (Leu169–Arg172–Leu176), whereas other pairs of RNA-binding residues are dispensable. We used our collection of viable Msl5 mutants to interrogate synthetic genetic interactions, in cis between the inessential structural elements of the Msl5 polypeptide and in trans between Msl5 and yeast splicing factors (Mud2, Nam8 and Tgs1) that are optional for vegetative growth. The results suggest a network of important but functionally buffered protein–protein and protein–RNA interactions between the Mud2–Msl5 complex at the branchpoint and the U1 snRNP at the 5′ splice site.
Collapse
Affiliation(s)
- Jonathan Chang
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | |
Collapse
|