1
|
Maraslioglu-Sperber A, Pizzi E, Fisch JO, Kattler K, Ritter T, Friauf E. Molecular and functional profiling of cell diversity and identity in the lateral superior olive, an auditory brainstem center with ascending and descending projections. Front Cell Neurosci 2024; 18:1354520. [PMID: 38846638 PMCID: PMC11153811 DOI: 10.3389/fncel.2024.1354520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 06/09/2024] Open
Abstract
The lateral superior olive (LSO), a prominent integration center in the auditory brainstem, contains a remarkably heterogeneous population of neurons. Ascending neurons, predominantly principal neurons (pLSOs), process interaural level differences for sound localization. Descending neurons (lateral olivocochlear neurons, LOCs) provide feedback into the cochlea and are thought to protect against acoustic overload. The molecular determinants of the neuronal diversity in the LSO are largely unknown. Here, we used patch-seq analysis in mice at postnatal days P10-12 to classify developing LSO neurons according to their functional and molecular profiles. Across the entire sample (n = 86 neurons), genes involved in ATP synthesis were particularly highly expressed, confirming the energy expenditure of auditory neurons. Two clusters were identified, pLSOs and LOCs. They were distinguished by 353 differentially expressed genes (DEGs), most of which were novel for the LSO. Electrophysiological analysis confirmed the transcriptomic clustering. We focused on genes affecting neuronal input-output properties and validated some of them by immunohistochemistry, electrophysiology, and pharmacology. These genes encode proteins such as osteopontin, Kv11.3, and Kvβ3 (pLSO-specific), calcitonin-gene-related peptide (LOC-specific), or Kv7.2 and Kv7.3 (no DEGs). We identified 12 "Super DEGs" and 12 genes showing "Cluster similarity." Collectively, we provide fundamental and comprehensive insights into the molecular composition of individual ascending and descending neurons in the juvenile auditory brainstem and how this may relate to their specific functions, including developmental aspects.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Erika Pizzi
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Jonas O. Fisch
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Kathrin Kattler
- Genetics/Epigenetics Group, Department of Biological Sciences, Saarland University, Saarbrücken, Germany
| | - Tamara Ritter
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
2
|
Frank MM, Sitko AA, Suthakar K, Torres Cadenas L, Hunt M, Yuk MC, Weisz CJC, Goodrich LV. Experience-dependent flexibility in a molecularly diverse central-to-peripheral auditory feedback system. eLife 2023; 12:e83855. [PMID: 36876911 PMCID: PMC10147377 DOI: 10.7554/elife.83855] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/03/2023] [Indexed: 03/07/2023] Open
Abstract
Brainstem olivocochlear neurons (OCNs) modulate the earliest stages of auditory processing through feedback projections to the cochlea and have been shown to influence hearing and protect the ear from sound-induced damage. Here, we used single-nucleus sequencing, anatomical reconstructions, and electrophysiology to characterize murine OCNs during postnatal development, in mature animals, and after sound exposure. We identified markers for known medial (MOC) and lateral (LOC) OCN subtypes, and show that they express distinct cohorts of physiologically relevant genes that change over development. In addition, we discovered a neuropeptide-enriched LOC subtype that produces Neuropeptide Y along with other neurotransmitters. Throughout the cochlea, both LOC subtypes extend arborizations over wide frequency domains. Moreover, LOC neuropeptide expression is strongly upregulated days after acoustic trauma, potentially providing a sustained protective signal to the cochlea. OCNs are therefore poised to have diffuse, dynamic effects on early auditory processing over timescales ranging from milliseconds to days.
Collapse
Affiliation(s)
- Michelle M Frank
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Austen A Sitko
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Kirupa Suthakar
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Mackenzie Hunt
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Mary Caroline Yuk
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Catherine JC Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
3
|
Crozier RA, Wismer ZQ, Parra-Munevar J, Plummer MR, Davis RL. Amplification of input differences by dynamic heterogeneity in the spiral ganglion. J Neurophysiol 2022; 127:1317-1333. [PMID: 35389760 PMCID: PMC9054264 DOI: 10.1152/jn.00544.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
A defining feature of type I primary auditory afferents that compose ∼95% of the spiral ganglion is their intrinsic electrophysiological heterogeneity. This diversity is evident both between and within unitary, rapid, and slow adaptation (UA, RA, and SA) classes indicative of specializations designed to shape sensory receptor input. But to what end? Our initial impulse is to expect the opposite: that auditory afferents fire uniformly to represent acoustic stimuli with accuracy and high fidelity. Yet this is clearly not the case. One explanation for this neural signaling strategy is to coordinate a system in which differences between input stimuli are amplified. If this is correct, then stimulus disparity enhancements within the primary afferents should be transmitted seamlessly into auditory processing pathways that utilize population coding for difference detection. Using sound localization as an example, one would expect to observe separately regulated differences in intensity level compared with timing or spectral cues within a graded tonotopic distribution. This possibility was evaluated by examining the neuromodulatory effects of cAMP on immature neurons with high excitability and slow membrane kinetics. We found that electrophysiological correlates of intensity and timing were indeed independently regulated and tonotopically distributed, depending on intracellular cAMP signaling level. These observations, therefore, are indicative of a system in which differences between signaling elements of individual stimulus attributes are systematically amplified according to auditory processing constraints. Thus, dynamic heterogeneity mediated by cAMP in the spiral ganglion has the potential to enhance the representations of stimulus input disparities transmitted into higher level difference detection circuitry.NEW & NOTEWORTHY Can changes in intracellular second messenger signaling within primary auditory afferents shift our perception of sound? Results presented herein lead to this conclusion. We found that intracellular cAMP signaling level systematically altered the kinetics and excitability of primary auditory afferents, exemplifying how dynamic heterogeneity can enhance differences between electrophysiological correlates of timing and intensity.
Collapse
Affiliation(s)
| | - Zachary Q Wismer
- AtlantiCare Regional Medical Center, Department of Family Medicine, Atlantic City, New Jersey
| | - Jeffrey Parra-Munevar
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Mark R Plummer
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Robin L Davis
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
4
|
Lee C, Sinha AK, Henry K, Walbaum AW, Crooks PA, Holt JC. Characterizing the Access of Cholinergic Antagonists to Efferent Synapses in the Inner Ear. Front Neurosci 2022; 15:754585. [PMID: 34970112 PMCID: PMC8712681 DOI: 10.3389/fnins.2021.754585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Stimulation of cholinergic efferent neurons innervating the inner ear has profound, well-characterized effects on vestibular and auditory physiology, after activating distinct ACh receptors (AChRs) on afferents and hair cells in peripheral endorgans. Efferent-mediated fast and slow excitation of vestibular afferents are mediated by α4β2*-containing nicotinic AChRs (nAChRs) and muscarinic AChRs (mAChRs), respectively. On the auditory side, efferent-mediated suppression of distortion product otoacoustic emissions (DPOAEs) is mediated by α9α10nAChRs. Previous characterization of these synaptic mechanisms utilized cholinergic drugs, that when systemically administered, also reach the CNS, which may limit their utility in probing efferent function without also considering central effects. Use of peripherally-acting cholinergic drugs with local application strategies may be useful, but this approach has remained relatively unexplored. Using multiple administration routes, we performed a combination of vestibular afferent and DPOAE recordings during efferent stimulation in mouse and turtle to determine whether charged mAChR or α9α10nAChR antagonists, with little CNS entry, can still engage efferent synaptic targets in the inner ear. The charged mAChR antagonists glycopyrrolate and methscopolamine blocked efferent-mediated slow excitation of mouse vestibular afferents following intraperitoneal, middle ear, or direct perilymphatic administration. Both mAChR antagonists were effective when delivered to the middle ear, contralateral to the side of afferent recordings, suggesting they gain vascular access after first entering the perilymphatic compartment. In contrast, charged α9α10nAChR antagonists blocked efferent-mediated suppression of DPOAEs only upon direct perilymphatic application, but failed to reach efferent synapses when systemically administered. These data show that efferent mechanisms are viable targets for further characterizing drug access in the inner ear.
Collapse
Affiliation(s)
- Choongheon Lee
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
| | - Anjali K Sinha
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Kenneth Henry
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States.,Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Anqi W Walbaum
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Joseph C Holt
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States.,Department of Neuroscience, University of Rochester, Rochester, NY, United States.,Department of Pharmacology & Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
5
|
Liu W, Liu Q, Crozier RA, Davis RL. Analog Transmission of Action Potential Fine Structure in Spiral Ganglion Axons. J Neurophysiol 2021; 126:888-905. [PMID: 34346782 DOI: 10.1152/jn.00237.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Action potential waveforms generated at the axon initial segment (AIS) are specialized between and within neuronal classes. But is the fine structure of each electrical event retained when transmitted along myelinated axons or is it rapidly and uniformly transmitted to be modified again at the axon terminal? To address this issue action potential axonal transmission was evaluated in a class of primary sensory afferents that possess numerous types of voltage-gated ion channels underlying a complex repertoire of endogenous firing patterns. In addition to their signature intrinsic electrophysiological heterogeneity, spiral ganglion neurons are uniquely designed. The bipolar, myelinated somata of type I neurons are located within the conduction pathway, requiring that action potentials generated at the first heminode must be conducted through their electrically excitable membrane. We utilized this unusual axonal-like morphology to serve as a window into action potential transmission to compare locally-evoked action potential profiles to those generated peripherally at their glutamatergic synaptic connections with hair cell receptors. These comparisons showed that the distinctively-shaped somatic action potentials were highly correlated with the nodally-generated, invading ones for each neuron. This result indicates that the fine structure of the action potential waveform is maintained axonally, thus supporting the concept that analog signaling is incorporated into each digitally-transmitted action potential in the specialized primary auditory afferents.
Collapse
Affiliation(s)
- Wenke Liu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,Institute for System Genetics, New York University School of Medicine, New York, NY, United States
| | - Qing Liu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,Inscopix, Inc., Palo Alto, California, United States
| | - Robert A Crozier
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.,Synergy Pharmaceuticals Inc., New York, NY, United States
| | - Robin L Davis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
6
|
Kitcher SR, Pederson AM, Weisz CJC. Diverse identities and sites of action of cochlear neurotransmitters. Hear Res 2021; 419:108278. [PMID: 34108087 DOI: 10.1016/j.heares.2021.108278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022]
Abstract
Accurate encoding of acoustic stimuli requires temporally precise responses to sound integrated with cellular mechanisms that encode the complexity of stimuli over varying timescales and orders of magnitude of intensity. Sound in mammals is initially encoded in the cochlea, the peripheral hearing organ, which contains functionally specialized cells (including hair cells, afferent and efferent neurons, and a multitude of supporting cells) to allow faithful acoustic perception. To accomplish the demanding physiological requirements of hearing, the cochlea has developed synaptic arrangements that operate over different timescales, with varied strengths, and with the ability to adjust function in dynamic hearing conditions. Multiple neurotransmitters interact to support the precision and complexity of hearing. Here, we review the location of release, action, and function of neurotransmitters in the mammalian cochlea with an emphasis on recent work describing the complexity of signaling.
Collapse
Affiliation(s)
- Siân R Kitcher
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Alia M Pederson
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Catherine J C Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
7
|
Wu JS, Yi E, Manca M, Javaid H, Lauer AM, Glowatzki E. Sound exposure dynamically induces dopamine synthesis in cholinergic LOC efferents for feedback to auditory nerve fibers. eLife 2020; 9:52419. [PMID: 31975688 PMCID: PMC7043886 DOI: 10.7554/elife.52419] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/23/2020] [Indexed: 11/13/2022] Open
Abstract
Lateral olivocochlear (LOC) efferent neurons modulate auditory nerve fiber (ANF) activity using a large repertoire of neurotransmitters, including dopamine (DA) and acetylcholine (ACh). Little is known about how individual neurotransmitter systems are differentially utilized in response to the ever-changing acoustic environment. Here we present quantitative evidence in rodents that the dopaminergic LOC input to ANFs is dynamically regulated according to the animal's recent acoustic experience. Sound exposure upregulates tyrosine hydroxylase, an enzyme responsible for dopamine synthesis, in cholinergic LOC intrinsic neurons, suggesting that individual LOC neurons might at times co-release ACh and DA. We further demonstrate that dopamine down-regulates ANF firing rates by reducing both the hair cell release rate and the size of synaptic events. Collectively, our results suggest that LOC intrinsic neurons can undergo on-demand neurotransmitter re-specification to re-calibrate ANF activity, adjust the gain at hair cell/ANF synapses, and possibly to protect these synapses from noise damage.
Collapse
Affiliation(s)
- Jingjing Sherry Wu
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Eunyoung Yi
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Republic of Korea
| | - Marco Manca
- The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hamad Javaid
- The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Amanda M Lauer
- The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Elisabeth Glowatzki
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, United States.,The Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
8
|
Frank MM, Goodrich LV. Talking back: Development of the olivocochlear efferent system. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:e324. [PMID: 29944783 PMCID: PMC6185769 DOI: 10.1002/wdev.324] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/27/2018] [Accepted: 05/17/2018] [Indexed: 02/02/2023]
Abstract
Developing sensory systems must coordinate the growth of neural circuitry spanning from receptors in the peripheral nervous system (PNS) to multilayered networks within the central nervous system (CNS). This breadth presents particular challenges, as nascent processes must navigate across the CNS-PNS boundary and coalesce into a tightly intermingled wiring pattern, thereby enabling reliable integration from the PNS to the CNS and back. In the auditory system, feedforward spiral ganglion neurons (SGNs) from the periphery collect sound information via tonotopically organized connections in the cochlea and transmit this information to the brainstem for processing via the VIII cranial nerve. In turn, feedback olivocochlear neurons (OCNs) housed in the auditory brainstem send projections into the periphery, also through the VIII nerve. OCNs are motor neuron-like efferent cells that influence auditory processing within the cochlea and protect against noise damage in adult animals. These aligned feedforward and feedback systems develop in parallel, with SGN central axons reaching the developing auditory brainstem around the same time that the OCN axons extend out toward the developing inner ear. Recent findings have begun to unravel the genetic and molecular mechanisms that guide OCN development, from their origins in a generic pool of motor neuron precursors to their specialized roles as modulators of cochlear activity. One recurrent theme is the importance of efferent-afferent interactions, as afferent SGNs guide OCNs to their final locations within the sensory epithelium, and efferent OCNs shape the activity of the developing auditory system. This article is categorized under: Nervous System Development > Vertebrates: Regional Development.
Collapse
|
9
|
Tziridis K, Buerbank S, Eulenburg V, Dlugaiczyk J, Schulze H. Deficit in acoustic signal-in-noise detection in glycine receptor α3 subunit knockout mice. Eur J Neurosci 2017; 45:581-586. [PMID: 27891689 DOI: 10.1111/ejn.13489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/24/2016] [Accepted: 11/21/2016] [Indexed: 12/31/2022]
Abstract
Hearing is an essential sense for communication in animals and humans. Normal function of the cochlea of higher vertebrates relies on a fine-tuned interplay of afferent and efferent innervation of both inner and outer hair cells. Efferent inhibition is controlled via olivocochlear feedback loops, mediated mainly by acetylcholine, γ-aminobutyric acid (GABA) and glycine, and is one of the first sites affected by synapto- and neuropathy in the development of hearing loss. While the functions of acetylcholine, GABA and other inhibitory transmitters within these feedback loops are at least partially understood, especially the function of glycine still remains elusive. To address this question, we investigated hearing in glycine receptor (GlyR) α3 knockout (KO) and wildtype (WT) mice. We found no differences in pure tone hearing thresholds at 11.3 and 16 kHz between the two groups as assessed by auditory brainstem response (ABR) measurements. Detailed analysis of the ABR waves at 11.3 kHz, however, revealed a latency decrease of wave III and an amplitude increase of wave IV in KO compared to WT animals. GlyRα3 KO animals showed significantly impaired prepulse inhibition of the auditory startle response in a noisy environment, indicating that GlyRα3-mediated glycinergic inhibition is important for signal-in-noise detection.
Collapse
Affiliation(s)
- Konstantin Tziridis
- Experimental Otolaryngology, ENT Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Waldstrasse 1, 91054, Erlangen, Germany
| | - Stefanie Buerbank
- Experimental Otolaryngology, ENT Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Waldstrasse 1, 91054, Erlangen, Germany
| | - Volker Eulenburg
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Julia Dlugaiczyk
- Department of Otorhinolaryngology, Saarland University Hospital, Homburg/Saar, Germany
| | - Holger Schulze
- Experimental Otolaryngology, ENT Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Waldstrasse 1, 91054, Erlangen, Germany
| |
Collapse
|
10
|
Radtke-Schuller S, Seeler S, Grothe B. Restricted loss of olivocochlear but not vestibular efferent neurons in the senescent gerbil (Meriones unguiculatus). Front Aging Neurosci 2015; 7:4. [PMID: 25762929 PMCID: PMC4327622 DOI: 10.3389/fnagi.2015.00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/11/2015] [Indexed: 11/19/2022] Open
Abstract
Degeneration of hearing and vertigo are symptoms of age-related auditory and vestibular disorders reflecting multifactorial changes in the peripheral and central nervous system whose interplay remains largely unknown. Originating bilaterally in the brain stem, vestibular and auditory efferent cholinergic projections exert feedback control on the peripheral sensory organs, and modulate sensory processing. We studied age-related changes in the auditory and vestibular efferent systems by evaluating number of cholinergic efferent neurons in young adult and aged gerbils, and in cholinergic trigeminal neurons serving as a control for efferents not related to the inner ear. We observed a significant loss of olivocochlear (OC) neurons in aged compared to young adult animals, whereas the overall number of lateral superior olive (LSO) cells was not reduced in aging. Although the loss of lateral and medial olivocochlear (MOC) neurons was uniform and equal on both sides of the brain, there were frequency-related differences within the lateral olivocochlear (LOC) neurons, where the decline was larger in the medial limb of the superior olivary nucleus (high frequency representation) than in the lateral limb (middle-to-low frequency representation). In contrast, neither the number of vestibular efferent neurons, nor the population of motor trigeminal neurons were significantly reduced in the aged animals. These observations suggest differential effects of aging on the respective cholinergic efferent brainstem systems.
Collapse
Affiliation(s)
- Susanne Radtke-Schuller
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Germany ; IFB German Center for Vertigo and Balance Disorders Munich, Germany
| | - Sabine Seeler
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Germany ; IFB German Center for Vertigo and Balance Disorders Munich, Germany
| |
Collapse
|
11
|
Katz E, Elgoyhen AB. Short-term plasticity and modulation of synaptic transmission at mammalian inhibitory cholinergic olivocochlear synapses. Front Syst Neurosci 2014; 8:224. [PMID: 25520631 PMCID: PMC4251319 DOI: 10.3389/fnsys.2014.00224] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/06/2014] [Indexed: 12/23/2022] Open
Abstract
The organ of Corti, the mammalian sensory epithelium of the inner ear, has two types of mechanoreceptor cells, inner hair cells (IHCs) and outer hair cells (OHCs). In this sensory epithelium, vibrations produced by sound waves are transformed into electrical signals. When depolarized by incoming sounds, IHCs release glutamate and activate auditory nerve fibers innervating them and OHCs, by virtue of their electromotile property, increase the amplification and fine tuning of sound signals. The medial olivocochlear (MOC) system, an efferent feedback system, inhibits OHC activity and thereby reduces the sensitivity and sharp tuning of cochlear afferent fibers. During neonatal development, IHCs fire Ca2+ action potentials which evoke glutamate release promoting activity in the immature auditory system in the absence of sensory stimuli. During this period, MOC fibers also innervate IHCs and are thought to modulate their firing rate. Both the MOC-OHC and the MOC-IHC synapses are cholinergic, fast and inhibitory and mediated by the α9α10 nicotinic cholinergic receptor (nAChR) coupled to the activation of calcium-activated potassium channels that hyperpolarize the hair cells. In this review we discuss the biophysical, functional and molecular data which demonstrate that at the synapses between MOC efferent fibers and cochlear hair cells, modulation of transmitter release as well as short term synaptic plasticity mechanisms, operating both at the presynaptic terminal and at the postsynaptic hair-cell, determine the efficacy of these synapses and shape the hair cell response pattern.
Collapse
Affiliation(s)
- Eleonora Katz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina ; Departamento de Fisiología, Biología Molecular y Celular "Prof. Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina ; Tercera Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires Buenos Aires, Argentina
| |
Collapse
|
12
|
Sienknecht UJ, Köppl C, Fritzsch B. Evolution and Development of Hair Cell Polarity and Efferent Function in the Inner Ear. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:150-61. [DOI: 10.1159/000357752] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/03/2013] [Indexed: 11/19/2022]
|