1
|
Mei X, Blanchard J, Luellen C, Conboy MJ, Conboy IM. Fail-tests of DNA methylation clocks, and development of a noise barometer for measuring epigenetic pressure of aging and disease. Aging (Albany NY) 2023; 15:8552-8575. [PMID: 37702598 PMCID: PMC10522373 DOI: 10.18632/aging.205046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/20/2023] [Indexed: 09/14/2023]
Abstract
This study shows that Elastic Net (EN) DNA methylation (DNAme) clocks have low accuracy of predictions for individuals of the same age and a low resolution between healthy and disease cohorts; caveats inherent in applying linear model to non-linear processes. We found that change in methylation of cytosines with age is, interestingly, not the determinant for their selection into the clocks. Moreover, an EN clock's selected cytosines change when non-clock cytosines are removed from the training data; as expected from optimization in a machine learning (ML) context, but inconsistently with the identification of health markers in a biological context. To address these limitations, we moved from predictions to measurement of biological age, focusing on the cytosines that on average remain invariable in their methylation through lifespan, postulated to be homeostatically vital. We established that dysregulation of such cytosines, measured as the sums of standard deviations of their methylation values, quantifies biological noise, which in our hypothesis is a biomarker of aging and disease. We term this approach a "noise barometer" - the pressure of aging and disease on an organism. These noise-detecting cytosines are particularly important as sums of SD on the entire 450K DNAme array data yield a random pattern through chronology. Testing how many cytosines of the 450K arrays become noisier with age, we found that the paradigm of DNAme noise as a biomarker of aging and disease remarkably manifests in ~1/4 of the total. In that large set even the cytosines that have on average constant methylation through age show increased SDs and can be used as noise detectors of the barometer.
Collapse
Affiliation(s)
- Xiaoyue Mei
- Department of Bioengineering and QB3, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joshua Blanchard
- Department of Bioengineering and QB3, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Connor Luellen
- Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael J. Conboy
- Department of Bioengineering and QB3, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Irina M. Conboy
- Department of Bioengineering and QB3, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Marsh LJ, Kemble S, Reis Nisa P, Singh R, Croft AP. Fibroblast pathology in inflammatory joint disease. Immunol Rev 2021; 302:163-183. [PMID: 34096076 DOI: 10.1111/imr.12986] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis is an immune-mediated inflammatory disease in which fibroblasts contribute to both joint damage and inflammation. Fibroblasts are a major cell constituent of the lining of the joint cavity called the synovial membrane. Under resting conditions, fibroblasts have an important role in maintaining joint homeostasis, producing extracellular matrix and joint lubricants. In contrast, during joint inflammation, fibroblasts contribute to disease pathology by producing pathogenic levels of inflammatory mediators that drive the recruitment and retention of inflammatory cells within the joint. Recent advances in single-cell profiling techniques have transformed our ability to examine fibroblast biology, leading to the identification of specific fibroblast subsets, defining a previously underappreciated heterogeneity of disease-associated fibroblast populations. These studies are challenging the previously held dogma that fibroblasts are homogeneous and are providing unique insights into their role in inflammatory joint pathology. In this review, we discuss the recent advances in our understanding of how fibroblast heterogeneity contributes to joint pathology in rheumatoid arthritis. Finally, we address how these insights could lead to the development of novel therapies that directly target selective populations of fibroblasts in the future.
Collapse
Affiliation(s)
- Lucy-Jayne Marsh
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - Samuel Kemble
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - Patricia Reis Nisa
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - Ruchir Singh
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - Adam P Croft
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Nygaard G, Firestein GS. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat Rev Rheumatol 2020; 16:316-333. [PMID: 32393826 DOI: 10.1038/s41584-020-0413-5] [Citation(s) in RCA: 438] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/31/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic immune-mediated disease that primarily affects the synovium of diarthrodial joints. During the course of RA, the synovium transforms into a hyperplastic invasive tissue that causes destruction of cartilage and bone. Fibroblast-like synoviocytes (FLS), which form the lining of the joint, are epigenetically imprinted with an aggressive phenotype in RA and have an important role in these pathological processes. In addition to producing the extracellular matrix and joint lubricants, FLS in RA produce pathogenic mediators such as cytokines and proteases that contribute to disease pathogenesis and perpetuation. The development of multi-omics integrative analyses have enabled new ways to dissect the mechanisms that imprint FLS, have helped to identify potential FLS subsets with distinct functions and have identified differences in FLS phenotypes between joints in individual patients. This Review provides an overview of advances in understanding of FLS biology and highlights omics approaches and studies that hold promise for identifying future therapeutic targets.
Collapse
Affiliation(s)
- Gyrid Nygaard
- Division of Rheumatology, Allergy and Immunology, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California San Diego School of Medicine, San Diego, CA, USA.
| |
Collapse
|
4
|
METTL3 Attenuates LPS-Induced Inflammatory Response in Macrophages via NF- κB Signaling Pathway. Mediators Inflamm 2019; 2019:3120391. [PMID: 31772500 PMCID: PMC6854952 DOI: 10.1155/2019/3120391] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022] Open
Abstract
Methyltransferase-like 3 (METTL3), an RNA N6-methyladenosine (m6A) methyltransferase, is essential for the m6A mRNA modification. As a key enzyme of m6A methylation modification, METTL3 has been implicated in immune and inflammation regulation. However, little is known of the role and underlying mechanism of METTL3 in rheumatoid arthritis (RA). The aim of the present study is to elucidate the function and potential mechanism of METTL3 in RA pathogenesis. We used quantitative real-time polymerase chain reaction to detect the expression of METTL3 in RA patients and controls as well as the macrophage cell line. CCK-8 was used for cell proliferation assay. Enzyme-linked immunosorbent assay (ELISA) was adopted to estimate the generation of IL-6 and TNF-α in macrophages. Western blot and immunofluorescence were applied to evaluate the activation of NF-κB in macrophages. The expression of METTL3 was significantly elevated in patients with RA. It was positively associated with CRP and ESR, two common markers for RA disease activity. Besides, LPS could enhance the expression and biological activity of METTL3 in macrophages, while overexpression of METTL3 significantly attenuated the inflammatory response induced by LPS in macrophages. Moreover, the effect of METTL3 on LPS-induced inflammation in macrophages was dependent on NF-κB. This study firstly demonstrates the critical role of METTL3 in RA, which provides novel insights into recognizing the pathogenesis of RA and a promising biomarker for RA.
Collapse
|
5
|
Karouzakis E, Raza K, Kolling C, Buckley CD, Gay S, Filer A, Ospelt C. Analysis of early changes in DNA methylation in synovial fibroblasts of RA patients before diagnosis. Sci Rep 2018; 8:7370. [PMID: 29743579 PMCID: PMC5943364 DOI: 10.1038/s41598-018-24240-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/26/2018] [Indexed: 12/13/2022] Open
Abstract
DNA methylation is an important epigenetic modification that is known to be altered in rheumatoid arthritis synovial fibroblasts (RASF). Here, we compared the status of promoter DNA methylation of SF from patients with very early RA with SF from patients with resolving arthritis, fully established RA and from non-arthritic patients. DNA was hybridized to Infinium Human methylation 450k and 850k arrays and differential methylated genes and pathways were identified. We could identify a significant number of CpG sites that differed between the SF of different disease stages, showing that epigenetic changes in SF occur early in RA development. Principal component analysis confirmed that the different groups of SF were separated according to their DNA methylation state. Furthermore, pathway analysis showed that important functional pathways were altered in both very early and late RASF. By focusing our analysis on CpG sites in CpG islands within promoters, we identified genes that have significant hypermethylated promoters in very early RASF. Our data show that changes in DNA methylation differ in RASF compared to other forms of arthritis and occur at a very early, clinically yet unspecific stage of disease. The identified differential methylated genes might become valuable prognostic biomarkers for RA development.
Collapse
Affiliation(s)
- Emmanuel Karouzakis
- Center of Experimental Rheumatology, Department of Rheumatology, University of Zurich, Zurich, CH-8952, Switzerland.
| | - Karim Raza
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, B15 2TT, UK.,Sandwell and West Birmingham Hospitals NHS Trust, West Bromwich, B71 4HJ, UK
| | | | - Christopher D Buckley
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Steffen Gay
- Center of Experimental Rheumatology, Department of Rheumatology, University of Zurich, Zurich, CH-8952, Switzerland
| | - Andrew Filer
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, B15 2TT, UK.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2 GW, UK
| | - Caroline Ospelt
- Center of Experimental Rheumatology, Department of Rheumatology, University of Zurich, Zurich, CH-8952, Switzerland
| |
Collapse
|
6
|
Effects of Wutou Decoction on DNA Methylation and Histone Modifications in Rats with Collagen-Induced Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5836879. [PMID: 27042192 PMCID: PMC4799822 DOI: 10.1155/2016/5836879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/11/2016] [Indexed: 01/12/2023]
Abstract
Background. Wutou decoction (WTD) has been wildly applied in the treatment of rheumatoid arthritis and experimental arthritis in rats for many years. Epigenetic deregulation is associated with the aetiology of rheumatoid arthritis; however, the effects of WTD on epigenetic changes are unclear. This study is set to explore the effects of WTD on DNA methylation and histone modifications in rats with collagen-induced arthritis (CIA). Methods. The CIA model was established by the stimulation of collagen and adjuvant. The knee synovium was stained with hematoxylin and eosin. The DNA methyltransferase 1 (DNMT1) and methylated CpG binding domain 2 (MBD2) expression of peripheral blood mononuclear cells (PBMCs) were determined by Real-Time PCR. The global DNA histone H3-K4/H3-K27 methylation and total histones H3 and H4 acetylation of PBMCs were detected. Results. Our data demonstrated that the DNMT1 mRNA expression was significantly lowered in group WTD compared to that in group CIA (P < 0.05). The DNA methylation level was significantly reduced in group WTD compared to that in group CIA (P < 0.05). Moreover, H3 acetylation of PBMCs was overexpressed in WTD compared with CIA (P < 0.05). Conclusions. WTD may modulate DNA methylation and histone modifications, functioning as anti-inflammatory potential.
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Rheumatoid arthritis (RA) is a heterogeneous chronic immune-mediated inflammatory disease, associated with significant morbidity and reduced life expectancy. Here, we review recent discoveries; particularly those which have attempted to integrate genome-wide association studies (GWAS) with biological pathways and cell types known to play a role in disease pathology in order to expand our current understanding of the pathogenesis of RA. As the role of stromal cells in the pathogenesis of RA has been reviewed in detail in Current Opinions in Rheumatology, this area will not be covered in this review. RECENT FINDINGS Although our understandings of the pathogenic processes that drive disease in RA remain incomplete, remarkable advances over the past year can be highlighted. GWAS have raised awareness of important new risk loci with genes that either are the targets of approved therapies for RA, or involve pathways for drugs that could be repurposed from other disease indications such as cancer. Furthermore, promising strides have been made in predicting the likelihood of developing RA in those at risk using human leukocyte antigen (HLA), smoking, and autoantibody status prediction models. These findings give a fresh insight into RA pathogenesis and help identify new, or repurpose known therapeutic targets from other disease areas. SUMMARY The findings discussed in this review underscore the progress made to date and the need for future studies, investigating disease mechanisms in RA, with particular interest in at-risk RA gene loci, their function in immune and stromal cells within the synovium, and how they interact with environmental factors to initiate and perpetuate disease.
Collapse
|
8
|
Alvarez-Rodriguez L, Lopez-Hoyos M, Carrasco-Marín E, Tripathi G, Muñoz Cacho P, Mata C, Calvo-Alen J, Garcia-Unzueta M, Aurrecoechea E, Martinez-Taboada VM. Cytokine gene considerations in giant cell arteritis: IL10 promoter polymorphisms and a review of the literature. Clin Rev Allergy Immunol 2015; 47:56-64. [PMID: 24395029 DOI: 10.1007/s12016-013-8405-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polymorphisms of cytokine genes have been investigated as susceptibility markers of giant cell arteritis (GCA). Here, we have reviewed the evidence to date and especially addressed the functional consequences of IL10 (-592C/A and -1082A/G) gene polymorphisms and their association with susceptibility to and disease phenotype in GCA. A total number of 71 patients with GCA and 124 age-matched controls were genotyped using allele-specific primers and restriction fragment length polymorphism analysis. As previous studies in GCA showed inconsistent results, a meta-analysis of the existing studies was also conducted by using both fixed and random-effects models. The levels of circulating IL10 and the production of IL10 by peripheral blood mononuclear cells after in vitro stimulation were studied by Cytometric Bead Array. Data showed no significant differences in genotype or allele frequency distribution between patients and controls. The clinical characteristics and prognosis of these patients were also unrelated to the presence of these polymorphisms. However, the meta-analysis found a significant association of IL10 -592C/A polymorphism with susceptibility to GCA (odds ratio 2.205 (95% confidence interval 1.074-4.524); p = 0.031). In both patients and age-matched controls, no differences in circulating IL10 levels or IL10 production were observed depending on the genotypes of the IL10 gene. In conclusion, although our cohort results do not support the impact of IL10 variants in susceptibility or clinical phenotype of GCA patients, the meta-analysis revealed a significant association of -592C/A polymorphism with susceptibility to GCA. In this population, no functional association was found between IL10 gene variants and IL10 production.
Collapse
Affiliation(s)
- Lorena Alvarez-Rodriguez
- Division of Rheumatology, Hospital Universitario Marqués de Valdecilla-IFIMAV, Facultad de Medicina, Universidad de Cantabria, Avda. Valdecilla s/n, 39008, Santander, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
A unifying neuro-fasciagenic model of somatic dysfunction - underlying mechanisms and treatment - Part I. J Bodyw Mov Ther 2015; 19:310-26. [PMID: 25892388 DOI: 10.1016/j.jbmt.2015.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 02/06/2023]
Abstract
This paper offers an extensive review of the main fascia-mediated mechanisms underlying various dysfunctional and pathophysiological processes of clinical relevance for manual therapy. The concept of somatic dysfunction is revisited in light of the diverse fascial influences that may come into play in its genesis and maintenance. A change in perspective is thus proposed: from a nociceptive model that for decades has viewed somatic dysfunction as a neurologically-mediated phenomenon, to a unifying fascial model that integrates neural influences into a multifactorial and multidimensional interpretation of dysfunctional process as being partially, if not entirely, mediated by the fascia.
Collapse
|
10
|
Tieri P, Zhou X, Zhu L, Nardini C. Multi-omic landscape of rheumatoid arthritis: re-evaluation of drug adverse effects. Front Cell Dev Biol 2014; 2:59. [PMID: 25414848 PMCID: PMC4220167 DOI: 10.3389/fcell.2014.00059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/26/2014] [Indexed: 12/19/2022] Open
Abstract
Objective: To provide a frame to estimate the systemic impact (side/adverse events) of (novel) therapeutic targets by taking into consideration drugs potential on the numerous districts involved in rheumatoid arthritis (RA) from the inflammatory and immune response to the gut-intestinal (GI) microbiome. Methods: We curated the collection of molecules from high-throughput screens of diverse (multi-omic) biochemical origin, experimentally associated to RA. Starting from such collection we generated RA-related protein-protein interaction (PPI) networks (interactomes) based on experimental PPI data. Pharmacological treatment simulation, topological and functional analyses were further run to gain insight into the proteins most affected by therapy and by multi-omic modeling. Results: Simulation on the administration of MTX results in the activation of expected (apoptosis) and adverse (nitrogenous metabolism alteration) effects. Growth factor receptor-bound protein 2 (GRB2) and Interleukin-1 Receptor Associated Kinase-4 (IRAK4, already an RA target) emerge as relevant nodes. The former controls the activation of inflammatory, proliferative and degenerative pathways in host and pathogens. The latter controls immune alterations and blocks innate response to pathogens. Conclusions: This multi-omic map properly recollects in a single analytical picture known, yet complex, information like the adverse/side effects of MTX, and provides a reliable platform for in silico hypothesis testing or recommendation on novel therapies. These results can support the development of RA translational research in the design of validation experiments and clinical trials, as such we identify GRB2 as a robust potential new target for RA for its ability to control both synovial degeneracy and dysbiosis, and, conversely, warn on the usage of IRAK4-inhibitors recently promoted, as this involves potential adverse effects in the form of impaired innate response to pathogens.
Collapse
Affiliation(s)
- Paolo Tieri
- IAC - Istituto per le Applicazioni del Calcolo "Mauro Picone," CNR - Consiglio Nazionale delle Ricerche Rome, Italy ; Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, Chinese Academy of Sciences - Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences Shanghai, China
| | - XiaoYuan Zhou
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, Chinese Academy of Sciences - Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences Shanghai, China
| | - Lisha Zhu
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, Chinese Academy of Sciences - Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences Shanghai, China
| | - Christine Nardini
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, Chinese Academy of Sciences - Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences Shanghai, China
| |
Collapse
|
11
|
Garg SK, Delaney C, Toubai T, Ghosh A, Reddy P, Banerjee R, Yung R. Aging is associated with increased regulatory T-cell function. Aging Cell 2014; 13:441-8. [PMID: 24325345 PMCID: PMC4032602 DOI: 10.1111/acel.12191] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2013] [Indexed: 12/13/2022] Open
Abstract
Regulatory T-cell (Treg, CD4(+) CD25(+)) dysfunction is suspected to play a key role in immune senescence and contributes to increased susceptibility to diseases with age by suppressing T-cell responses. FoxP3 is a master regulator of Treg function, and its expression is under control of several epigenetically labile promoters and enhancers. Demethylation of CpG sites within these regions is associated with increased FoxP3 expression and development of a suppressive phenotype. We examined differences in FoxP3 expression between young (3-4 months) and aged (18-20 months) C57BL/6 mice. DNA from CD4(+) T cells is hypomethylated in aged mice, which also exhibit increased Treg numbers and FoxP3 expression. Additionally, Treg from aged mice also have greater ability to suppress effector T-cell (Teff) proliferation in vitro than Tregs from young mice. Tregs from aged mice exhibit greater redox remodeling-mediated suppression of Teff proliferation during coculture with DCs by decreasing extracellular cysteine availability to a greater extent than Tregs from young mice, creating an adverse environment for Teff proliferation. Tregs from aged mice produce higher IL-10 levels and suppress CD86 expression on DCs more strongly than Tregs from young mice, suggesting decreased T-cell activity. Taken together, these results reveal a potential mechanism of higher Treg-mediated activity that may contribute to increased immune suppression with age.
Collapse
Affiliation(s)
- Sanjay K Garg
- Division of Geriatrics and Palliative MedicineAnn Arbor, MI-48109, USA
| | - Colin Delaney
- Division of Geriatrics and Palliative MedicineAnn Arbor, MI-48109, USA
| | - Tomomi Toubai
- Division of Hematology and Oncology, Department of Internal MedicineAnn Arbor, MI-48109, USA
| | - Amiya Ghosh
- Division of Geriatrics and Palliative MedicineAnn Arbor, MI-48109, USA
| | - Pavan Reddy
- Division of Hematology and Oncology, Department of Internal MedicineAnn Arbor, MI-48109, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical SchoolAnn Arbor, MI-48109, USA
| | - Raymond Yung
- Division of Geriatrics and Palliative MedicineAnn Arbor, MI-48109, USA
- Geriatrics Research, Education and Clinical Care Center (GRECC), VA Ann Arbor Healthcare System, 2215 Fuller RoadAnn Arbor, MI-48105, USA
| |
Collapse
|
12
|
Zhu H, Deng FY, Mo XB, Qiu YH, Lei SF. Pharmacogenetics and pharmacogenomics for rheumatoid arthritis responsiveness to methotrexate treatment: the 2013 update. Pharmacogenomics 2014; 15:551-66. [DOI: 10.2217/pgs.14.25] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis (RA) is a complex, systemic autoimmune disease characterized by chronic inflammation of multiple peripheral joints, which leads to serious destruction of cartilage and bone, progressive deformity and severe disability. Methotrexate (MTX) is one of the first-line drugs commonly used in RA therapy owing to its excellent long-term efficacy and cheapness. However, the efficacy and toxicity of MTX treatment have significant interpatient variability. Genetic factors contribute to this variability. In this review, we have summarized and updated the progress of RA response to MTX treatment since 2009 by focusing on the fields of pharmacogenetics and pharmacogenomics. Identification of genetic factors involved in MTX treatment response will increase the understanding of RA pathology and the development of new personalized treatments.
Collapse
Affiliation(s)
- Hong Zhu
- Center for Genetic Epidemiology & Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology & Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xing-Bo Mo
- Center for Genetic Epidemiology & Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Ying-Hua Qiu
- Center for Genetic Epidemiology & Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology & Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, PR China
| |
Collapse
|
13
|
Miao CG, Yang YY, He X, Li J. New advances of DNA methylation and histone modifications in rheumatoid arthritis, with special emphasis on MeCP2. Cell Signal 2013; 25:875-82. [DOI: 10.1016/j.cellsig.2012.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 12/21/2012] [Indexed: 01/04/2023]
|
14
|
The critical importance of epigenetics in autoimmunity. J Autoimmun 2013; 41:1-5. [PMID: 23375849 DOI: 10.1016/j.jaut.2013.01.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/13/2013] [Indexed: 11/21/2022]
Abstract
Autoimmune diseases are characterized by aberrant immune responses against healthy cells and tissues, in which a given individual's genetic susceptibilities play a central role; however, the exact mechanisms underlying the development of these conditions remain for the most part unknown. In recent years, accumulating evidence has demonstrated that, in addition to genetics, other complementary mechanisms are involved in the pathogenesis of autoimmunity, in particular, epigenetics. Epigenetics is defined as stable and heritable patterns of gene expression that do not entail any alterations to the original DNA sequence. Epigenetic mechanisms primarily consist of DNA methylation, histone modifications and small non-coding RNA transcripts. Epigenetic marks can be affected by age and other environmental triggers, providing a plausible link between environmental factors and the onset and development of various human diseases. Because of their primary function in regulating timely gene expression, epigenetic mechanisms offer potential advantages in terms of interpreting the molecular basis of complicated diseases and providing new promising therapeutic avenues for their treatment. The present review focuses on recent progress made in elucidating the relationship between epigenetics and the pathogenesis of autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis, primary Sjögren's syndrome, primary biliary cirrhosis, psoriasis and type 1 diabetes.
Collapse
|
15
|
Bottini N, Firestein GS. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat Rev Rheumatol 2012; 9:24-33. [PMID: 23147896 DOI: 10.1038/nrrheum.2012.190] [Citation(s) in RCA: 663] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by hyperplastic synovial pannus tissue, which mediates destruction of cartilage and bone. Fibroblast-like synoviocytes (FLS) are a key component of this invasive synovium and have a major role in the initiation and perpetuation of destructive joint inflammation. The pathogenic potential of FLS in RA stems from their ability to express immunomodulating cytokines and mediators as well as a wide array of adhesion molecule and matrix-modelling enzymes. FLS can be viewed as 'passive responders' to the immunoreactive process in RA, their activated phenotype reflecting the proinflammatory milieu. However, FLS from patients with RA also display unique aggressive features that are autonomous and vertically transmitted, and these cells can behave as primary promoters of inflammation. The molecular bases of this 'imprinted aggressor' phenotype are being clarified through genetic and epigenetic studies. The dual behaviour of FLS in RA suggests that FLS-directed therapies could become a complementary approach to immune-directed therapies in this disease. Pathophysiological characteristics of FLS in RA, as well as progress in targeting these cells, are reviewed in this manuscript.
Collapse
Affiliation(s)
- Nunzio Bottini
- Division of Cellular Biology, La Jolla Institute of Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | |
Collapse
|
16
|
Kupfer P, Guthke R, Pohlers D, Huber R, Koczan D, Kinne RW. Batch correction of microarray data substantially improves the identification of genes differentially expressed in rheumatoid arthritis and osteoarthritis. BMC Med Genomics 2012; 5:23. [PMID: 22682473 PMCID: PMC3528008 DOI: 10.1186/1755-8794-5-23] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/21/2012] [Indexed: 11/10/2022] Open
Abstract
Background Batch effects due to sample preparation or array variation (type, charge, and/or platform) may influence the results of microarray experiments and thus mask and/or confound true biological differences. Of the published approaches for batch correction, the algorithm “Combating Batch Effects When Combining Batches of Gene Expression Microarray Data” (ComBat) appears to be most suitable for small sample sizes and multiple batches. Methods Synovial fibroblasts (SFB; purity > 98%) were obtained from rheumatoid arthritis (RA) and osteoarthritis (OA) patients (n = 6 each) and stimulated with TNF-α or TGF-β1 for 0, 1, 2, 4, or 12 hours. Gene expression was analyzed using Affymetrix Human Genome U133 Plus 2.0 chips, an alternative chip definition file, and normalization by Robust Multi-Array Analysis (RMA). Data were batch-corrected for different acquiry dates using ComBat and the efficacy of the correction was validated using hierarchical clustering. Results In contrast to the hierarchical clustering dendrogram before batch correction, in which RA and OA patients clustered randomly, batch correction led to a clear separation of RA and OA. Strikingly, this applied not only to the 0 hour time point (i.e., before stimulation with TNF-α/TGF-β1), but also to all time points following stimulation except for the late 12 hour time point. Batch-corrected data then allowed the identification of differentially expressed genes discriminating between RA and OA. Batch correction only marginally modified the original data, as demonstrated by preservation of the main Gene Ontology (GO) categories of interest, and by minimally changed mean expression levels (maximal change 4.087%) or variances for all genes of interest. Eight genes from the GO category “extracellular matrix structural constituent” (5 different collagens, biglycan, and tubulointerstitial nephritis antigen-like 1) were differentially expressed between RA and OA (RA > OA), both constitutively at time point 0, and at all time points following stimulation with either TNF-α or TGF-β1. Conclusion Batch correction appears to be an extremely valuable tool to eliminate non-biological batch effects, and allows the identification of genes discriminating between different joint diseases. RA-SFB show an upregulated expression of extracellular matrix components, both constitutively following isolation from the synovial membrane and upon stimulation with disease-relevant cytokines or growth factors, suggesting an “imprinted” alteration of their phenotype.
Collapse
Affiliation(s)
- Peter Kupfer
- Experimental Rheumatology Unit, Department of Orthopedics, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Pisetsky DS. The BRIC-GARN Meeting 2011: of mice and men. Arthritis Res Ther 2012; 14:107. [PMID: 22404910 PMCID: PMC3392809 DOI: 10.1186/ar3698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- David S Pisetsky
- Duke University Medical Center, 151G, Durham VAMC, Durham, NC 27705, USA
| |
Collapse
|