1
|
Wang Y, Abrams KS, Youngman M, Henry KS. Histological Correlates of Auditory Nerve Injury from Kainic Acid in the Budgerigar (Melopsittacus undulatus). J Assoc Res Otolaryngol 2023; 24:473-485. [PMID: 37798548 PMCID: PMC10695905 DOI: 10.1007/s10162-023-00910-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
PURPOSE Loss of auditory nerve afferent synapses with cochlear hair cells, called cochlear synaptopathy, is a common pathology in humans caused by aging and noise overexposure. The perceptual consequences of synaptopathy in isolation from other cochlear pathologies are still unclear. Animal models provide an effective approach to resolve uncertainty regarding the physiological and perceptual consequences of auditory nerve loss, because neural lesions can be induced and readily quantified. The budgerigar, a parakeet species, has recently emerged as an animal model for synaptopathy studies based on its capacity for vocal learning and ability to behaviorally discriminate simple and complex sounds with acuity similar to humans. Kainic acid infusions in the budgerigar produce a profound reduction of compound auditory nerve responses, including wave I of the auditory brainstem response, without impacting physiological hair cell measures. These results suggest selective auditory nerve damage. However, histological correlates of neural injury from kainic acid are still lacking. METHODS We quantified the histological effects caused by intracochlear infusion of kainic acid (1 mM; 2.5 µL), and evaluated correlations between the histological and physiological assessments of auditory nerve status. RESULTS Kainic acid infusion in budgerigars produced pronounced loss of neural auditory nerve soma (60% on average) in the cochlear ganglion, and of peripheral axons, at time points 2 or more months following injury. The hair cell epithelium was unaffected by kainic acid. Neural loss was significantly correlated with reduction of compound auditory nerve responses and auditory brainstem response wave I. CONCLUSION Compound auditory nerve responses and wave I provide a useful index of cochlear synaptopathy in this animal model.
Collapse
Affiliation(s)
- Yingxuan Wang
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Kristina S Abrams
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Margaret Youngman
- Department of Otolaryngology, University of Rochester, Rochester, NY 14642, USA
| | - Kenneth S Henry
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA.
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA.
- Department of Otolaryngology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
2
|
Maldarelli G, Firzlaff U, Luksch H. Azimuthal sound localization in the chicken. PLoS One 2022; 17:e0277190. [PMID: 36413534 PMCID: PMC9681088 DOI: 10.1371/journal.pone.0277190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022] Open
Abstract
Sound localization is crucial for the survival and reproduction of animals, including non-auditory specialist animals such as the majority of avian species. The chicken (Gallus gallus) is a well-suited representative of a non-auditory specialist bird and several aspects of its auditory system have been well studied in the last decades. We conducted a behavioral experiment where 3 roosters performed a sound localization task with broad-band noise, using a 2-alternative forced choice paradigm. We determined the minimum audible angle (MAA) as measure for localization acuity. In general, our results compare to previous MAA measurements with hens in Go/NoGo tasks. The chicken has high localization acuity compared to other auditory generalist bird species tested so far. We found that chickens were better at localizing broadband noise with long duration (1 s; MAA = 16°) compared to brief duration (0.1 s; MAA = 26°). Moreover, the interaural difference in time of arrival and level (ITD and ILD, respectively) at these MAAs are comparable to what measured in other non-auditory specialist bird species, indicating that they might be sufficiently broad to be informative for azimuthal sound localization.
Collapse
Affiliation(s)
- Gianmarco Maldarelli
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
- * E-mail:
| | - Uwe Firzlaff
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Harald Luksch
- Chair of Zoology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| |
Collapse
|
3
|
Hanson M, Hoffman EA, Norell MA, Bhullar BAS. The early origin of a birdlike inner ear and the evolution of dinosaurian movement and vocalization. Science 2021; 372:601-609. [PMID: 33958471 DOI: 10.1126/science.abb4305] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/09/2021] [Indexed: 12/27/2022]
Abstract
Reptiles, including birds, exhibit a range of behaviorally relevant adaptations that are reflected in changes to the structure of the inner ear. These adaptations include the capacity for flight and sensitivity to high-frequency sound. We used three-dimensional morphometric analyses of a large sample of extant and extinct reptiles to investigate inner ear correlates of locomotor ability and hearing acuity. Statistical analyses revealed three vestibular morphotypes, best explained by three locomotor categories-quadrupeds, bipeds and simple fliers (including bipedal nonavialan dinosaurs), and high-maneuverability fliers. Troodontids fall with Archaeopteryx among the extant low-maneuverability fliers. Analyses of cochlear shape revealed a single instance of elongation, on the stem of Archosauria. We suggest that this transformation coincided with the origin of both high-pitched juvenile location, alarm, and hatching-synchronization calls and adult responses to them.
Collapse
Affiliation(s)
- Michael Hanson
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.,Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Eva A Hoffman
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Mark A Norell
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Bhart-Anjan S Bhullar
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA. .,Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Willis KL, Carr CE. A circuit for detection of interaural time differences in the nucleus laminaris of turtles. ACTA ACUST UNITED AC 2017; 220:4270-4281. [PMID: 28947499 DOI: 10.1242/jeb.164145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/19/2017] [Indexed: 11/20/2022]
Abstract
The physiological hearing range of turtles is approximately 50-1000 Hz, as determined by cochlear microphonics ( Wever and Vernon, 1956a). These low frequencies can constrain sound localization, particularly in red-eared slider turtles, which are freshwater turtles with small heads and isolated middle ears. To determine if these turtles were sensitive to interaural time differences (ITDs), we investigated the connections and physiology of their auditory brainstem nuclei. Tract tracing experiments showed that cranial nerve VIII bifurcated to terminate in the first-order nucleus magnocellularis (NM) and nucleus angularis (NA), and the NM projected bilaterally to the nucleus laminaris (NL). As the NL received inputs from each side, we developed an isolated head preparation to examine responses to binaural auditory stimulation. Magnocellularis and laminaris units responded to frequencies from 100 to 600 Hz, and phase-locked reliably to the auditory stimulus. Responses from the NL were binaural, and sensitive to ITD. Measures of characteristic delay revealed best ITDs around ±200 μs, and NL neurons typically had characteristic phases close to 0, consistent with binaural excitation. Thus, turtles encode ITDs within their physiological range, and their auditory brainstem nuclei have similar connections and cell types to other reptiles.
Collapse
Affiliation(s)
- Katie L Willis
- University of Maryland, Department of Biology, Center for Comparative and Evolutionary Biology of Hearing, Neuroscience and Cognitive Science Graduate Program, College Park, MD 20742, USA
| | - Catherine E Carr
- University of Maryland, Department of Biology, Center for Comparative and Evolutionary Biology of Hearing, Neuroscience and Cognitive Science Graduate Program, College Park, MD 20742, USA
| |
Collapse
|
5
|
Ladich F, Winkler H. Acoustic communication in terrestrial and aquatic vertebrates. J Exp Biol 2017; 220:2306-2317. [DOI: 10.1242/jeb.132944] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Sound propagates much faster and over larger distances in water than in air, mainly because of differences in the density of these media. This raises the question of whether terrestrial (land mammals, birds) and (semi-)aquatic animals (frogs, fishes, cetaceans) differ fundamentally in the way they communicate acoustically. Terrestrial vertebrates primarily produce sounds by vibrating vocal tissue (folds) directly in an airflow. This mechanism has been modified in frogs and cetaceans, whereas fishes generate sounds in quite different ways mainly by utilizing the swimbladder or pectoral fins. On land, vertebrates pick up sounds with light tympana, whereas other mechanisms have had to evolve underwater. Furthermore, fishes differ from all other vertebrates by not having an inner ear end organ devoted exclusively to hearing. Comparing acoustic communication within and between aquatic and terrestrial vertebrates reveals that there is no ‘aquatic way’ of sound communication, as compared with a more uniform terrestrial one. Birds and mammals display rich acoustic communication behaviour, which reflects their highly developed cognitive and social capabilities. In contrast, acoustic signaling seems to be the exception in fishes, and is obviously limited to short distances and to substrate-breeding species, whereas all cetaceans communicate acoustically and, because of their predominantly pelagic lifestyle, exploit the benefits of sound propagation in a dense, obstacle-free medium that provides fast and almost lossless signal transmission.
Collapse
Affiliation(s)
- Friedrich Ladich
- Department of Behavioural Biology, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Hans Winkler
- Konrad Lorenz-Institute of Comparative Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna 1160, Austria
| |
Collapse
|
6
|
Manley GA. Comparative Auditory Neuroscience: Understanding the Evolution and Function of Ears. J Assoc Res Otolaryngol 2016; 18:1-24. [PMID: 27539715 DOI: 10.1007/s10162-016-0579-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/01/2016] [Indexed: 11/25/2022] Open
Abstract
Comparative auditory studies make it possible both to understand the origins of modern ears and the factors underlying the similarities and differences in their performance. After all lineages of land vertebrates had independently evolved tympanic middle ears in the early Mesozoic era, the subsequent tens of millions of years led to the hearing organ of lizards, birds, and mammals becoming larger and their upper frequency limits higher. In extant species, lizard papillae remained relatively small (<2 mm), but avian papillae attained a maximum length of 11 mm, with the highest frequencies in both groups near 12 kHz. Hearing-organ sizes in modern mammals vary more than tenfold, up to >70 mm (made possible by coiling), as do their upper frequency limits (from 12 to >200 kHz). The auditory organs of the three amniote groups differ characteristically in their cellular structure, but their hearing sensitivity and frequency selectivity within their respective hearing ranges hardly differ. In the immediate primate ancestors of humans, the cochlea became larger and lowered its upper frequency limit. Modern humans show an unusual trend in frequency selectivity as a function of frequency. It is conceivable that the frequency selectivity patterns in humans were influenced in their evolution by the development of speech.
Collapse
Affiliation(s)
- Geoffrey A Manley
- Cochlear and Auditory Brainstem Physiology, Department of Neuroscience, School of Medicine and Health Sciences, Cluster of Excellence "Hearing4all", Research Centre Neurosensory Science, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Strasse 9-11, 26129, Oldenburg, Germany.
| |
Collapse
|
7
|
Basch ML, Brown RM, Jen H, Groves AK. Where hearing starts: the development of the mammalian cochlea. J Anat 2016; 228:233-54. [PMID: 26052920 PMCID: PMC4718162 DOI: 10.1111/joa.12314] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2015] [Indexed: 12/11/2022] Open
Abstract
The mammalian cochlea is a remarkable sensory organ, capable of perceiving sound over a range of 10(12) in pressure, and discriminating both infrasonic and ultrasonic frequencies in different species. The sensory hair cells of the mammalian cochlea are exquisitely sensitive, responding to atomic-level deflections at speeds on the order of tens of microseconds. The number and placement of hair cells are precisely determined during inner ear development, and a large number of developmental processes sculpt the shape, size and morphology of these cells along the length of the cochlear duct to make them optimally responsive to different sound frequencies. In this review, we briefly discuss the evolutionary origins of the mammalian cochlea, and then describe the successive developmental processes that lead to its induction, cell cycle exit, cellular patterning and the establishment of topologically distinct frequency responses along its length.
Collapse
Affiliation(s)
- Martin L. Basch
- Department of NeuroscienceBaylor College of MedicineHoustonTXUSA
| | - Rogers M. Brown
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
| | - Hsin‐I Jen
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
| | - Andrew K. Groves
- Department of NeuroscienceBaylor College of MedicineHoustonTXUSA
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
8
|
A unique cellular scaling rule in the avian auditory system. Brain Struct Funct 2015; 221:2675-93. [DOI: 10.1007/s00429-015-1064-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 05/12/2015] [Indexed: 12/31/2022]
|
9
|
Manley GA. Fundamentals of Hearing in Amniote Vertebrates. PERSPECTIVES ON AUDITORY RESEARCH 2014. [DOI: 10.1007/978-1-4614-9102-6_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Abstract
Sensory hair cells are exquisitely sensitive vertebrate mechanoreceptors that mediate the senses of hearing and balance. Understanding the factors that regulate the development of these cells is important, not only to increase our understanding of ear development and its functional physiology but also to shed light on how these cells may be replaced therapeutically. In this review, we describe the signals and molecular mechanisms that initiate hair cell development in vertebrates, with particular emphasis on the transcription factor Atoh1, which is both necessary and sufficient for hair cell development. We then discuss recent findings on how microRNAs may modulate the formation and maturation of hair cells. Last, we review recent work on how hair cells are regenerated in many vertebrate groups and the factors that conspire to prevent this regeneration in mammals.
Collapse
Affiliation(s)
- Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
11
|
Corfield JR, Kubke MF, Parsons S, Köppl C. Inner-ear morphology of the New Zealand kiwi (Apteryx mantelli) suggests high-frequency specialization. J Assoc Res Otolaryngol 2012; 13:629-39. [PMID: 22772440 DOI: 10.1007/s10162-012-0341-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/20/2012] [Indexed: 11/29/2022] Open
Abstract
The sensory systems of the New Zealand kiwi appear to be uniquely adapted to occupy a nocturnal ground-dwelling niche. In addition to well-developed tactile and olfactory systems, the auditory system shows specializations of the ear, which are maintained along the central nervous system. Here, we provide a detailed description of the auditory nerve, hair cells, and stereovillar bundle orientation of the hair cells in the North Island brown kiwi. The auditory nerve of the kiwi contained about 8,000 fibers. Using the number of hair cells and innervating nerve fibers to calculate a ratio of average innervation density showed that the afferent innervation ratio in kiwi was denser than in most other birds examined. The average diameters of cochlear afferent axons in kiwi showed the typical gradient across the tonotopic axis. The kiwi basilar papilla showed a clear differentiation of tall and short hair cells. The proportion of short hair cells was higher than in the emu and likely reflects a bias towards higher frequencies represented on the kiwi basilar papilla. The orientation of the stereovillar bundles in the kiwi basilar papilla showed a pattern similar to that in most other birds but was most similar to that of the emu. Overall, many features of the auditory nerve, hair cells, and stereovilli bundle orientation in the kiwi are typical of most birds examined. Some features of the kiwi auditory system do, however, support a high-frequency specialization, specifically the innervation density and generally small size of hair-cell somata, whereas others showed the presumed ancestral condition similar to that found in the emu.
Collapse
Affiliation(s)
- Jeremy R Corfield
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand.
| | | | | | | |
Collapse
|
12
|
Groves AK, Fekete DM. Shaping sound in space: the regulation of inner ear patterning. Development 2012; 139:245-57. [PMID: 22186725 DOI: 10.1242/dev.067074] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The inner ear is one of the most morphologically elaborate tissues in vertebrates, containing a group of mechanosensitive sensory organs that mediate hearing and balance. These organs are arranged precisely in space and contain intricately patterned sensory epithelia. Here, we review recent studies of inner ear development and patterning which reveal that multiple stages of ear development - ranging from its early induction from the embryonic ectoderm to the establishment of the three cardinal axes and the fine-grained arrangement of sensory cells - are orchestrated by gradients of signaling molecules.
Collapse
Affiliation(s)
- Andrew K Groves
- Departments of Neuroscience and Molecular and Human Genetics, BCM295, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
13
|
Sienknecht UJ, Fekete DM. Comprehensive Wnt-related gene expression during cochlear duct development in chicken. J Comp Neurol 2008; 510:378-95. [PMID: 18671253 DOI: 10.1002/cne.21791] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The avian cochlear duct houses both a vestibular and auditory sensory organ (the lagena macula and basilar papilla, respectively), which each have a distinct structure and function. Comparative mRNA in situ hybridization mapping conducted over the time course of chicken cochlear duct development reveals that Wnt-related gene expression is concomitant with various developmental processes such as regionalization, convergent extension of the cochlear duct, cell fate specification, synaptogenesis, and the establishment of planar cell polarity. Wnts mostly originate from nonsensory tissue domains, whereas the sensory primordia preferentially transcribe Frizzled receptors, suggesting that paracrine Wnt signaling predominates in the cochlear duct. Superimposed over this is the strong expression of two secreted Frizzled-related Wnt inhibitors that tend to show complementary expression patterns. Frzb (SFRP3) is confined to the nonsensory cochlear duct and the lagena macula, whereas SFRP2 is maintained in the basilar papilla along with Fzd10 and Wnt7b. Flanking the basilar papilla are Wnt7a, Wnt9a, Wnt11, and SFRP2 on the neural side and Wnt5a, Wnt5b, and Wnt7a on the abneural side. The lateral nonsensory cochlear duct continuously expresses Frzb and temporarily expresses Wnt6 and SFRP1. Characteristic for the entire lagena is the expression of Frzb; in the lagena macula are Fzd1, Fzd7, and Wnt7b, and in the nonsensory tissues are Wnt4 and Wnt5a. Auditory hair cells preferentially express Fzd2 and Fzd9, whereas the main receptors expressed in vestibular hair cells are Fzd1 and Fzd7, in addition to Fzd2 and Fzd9.
Collapse
Affiliation(s)
- Ulrike J Sienknecht
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
14
|
Köppl C, Gleich O. Evoked cochlear potentials in the barn owl. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:601-12. [PMID: 17318655 DOI: 10.1007/s00359-007-0215-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 01/22/2007] [Accepted: 02/03/2007] [Indexed: 11/28/2022]
Abstract
Gross electrical responses to tone bursts were measured in adult barn owls, using a single-ended wire electrode placed onto the round window. Cochlear microphonic (CM) and compound action potential (CAP) responses were evaluated separately. Both potentials were physiologically vulnerable. Selective abolishment of neural responses at high frequencies confirmed that the CAP was of neural origin, while the CM remained unaffected. CAP latencies decreased with increasing stimulus frequency and CAP amplitudes were correlated with known variations in afferent fibre numbers from the different papillar regions. This suggests a local origin of the CAP along the tonotopic gradient within the basilar papilla. The audiograms derived from CAP and CM threshold responses both showed a broad frequency region of optimal sensitivity, very similar to behavioural and single-unit data, but shifted upward in absolute sensitivity. CAP thresholds rose above 8 kHz, while CM responses showed unchanged sensitivity up to 10 kHz.
Collapse
Affiliation(s)
- Christine Köppl
- Lehrstuhl für Zoologie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany.
| | | |
Collapse
|