1
|
Bai Z, Hu K, Shou Z, Yu J, Meng H, Zhou H, Chen L, Yu T, Lu R, Li N, Chen C. Layer-by-layer assembly of procyanidin and collagen promotes mesenchymal stem cell proliferation and osteogenic differentiation in vitro and in vivo. Regen Biomater 2022; 10:rbac107. [PMID: 36683760 PMCID: PMC9847536 DOI: 10.1093/rb/rbac107] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/13/2022] [Accepted: 12/09/2022] [Indexed: 12/27/2022] Open
Abstract
Collagen, commonly used in tissue engineering, is widespread in various tissues. During bone tissue regeneration, collagen can stimulate the cellular response and determine the fate of cells. In this work, we integrated collagen type II with procyanidin (PC) onto an implant coating by applying a layer-by-layer technique to demonstrate that collagen and PC can participate in the construction of new biomaterials and serve as multifunctional components. The effects of PC/collagen multilayers on the viability of cocultured bone marrow mesenchymal stem cells (BMSCs) were analyzed by cell counting kit-8 analysis and phalloidin staining. The reactive oxygen species level of BMSCs was revealed through immunofluorescent staining and flow cytometry. Osteogenesis-related genes were detected, and in vivo experiment was performed to reveal the effect of newly designed material on the osteogenic differentiation of BMSCs. Our data demonstrated that in BMSCs PC/collagen multilayers accelerated the proliferation and osteogenic differentiation through Wnt/β-catenin signaling pathway and enhanced bone generation around the implant in the bone defect model of rabbit femurs. In summary, combination of collagen and PC provided a new sight for the research and development of implant materials or coatings in the future.
Collapse
Affiliation(s)
- Zhibiao Bai
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, P.R. China.,Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Kai Hu
- Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Zeyu Shou
- Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Jiahuan Yu
- Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Hongming Meng
- Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Han Zhou
- Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Liangyan Chen
- Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Tiantian Yu
- Wenzhou Key Laboratory of Perioperative Medicine, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, P.R. China.,Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| | - Ruofei Lu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| | - Na Li
- Wenzhou Key Laboratory of Perioperative Medicine, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, P.R. China
| | - Chun Chen
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, P.R. China.,Wenzhou Medical University, Wenzhou 325000, P.R. China
| |
Collapse
|
2
|
Wegner KA, Mueller BR, Unterberger CJ, Avila EJ, Ruetten H, Turco AE, Oakes SR, Girardi NM, Halberg RB, Swanson SM, Marker PC, Vezina CM. Prostate epithelial-specific expression of activated PI3K drives stromal collagen production and accumulation. J Pathol 2019; 250:231-242. [PMID: 31674011 DOI: 10.1002/path.5363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 10/27/2019] [Indexed: 01/01/2023]
Abstract
We genetically engineered expression of an activated form of P110 alpha, the catalytic subunit of PI3K, in mouse prostate epithelium to create a mouse model of direct PI3K activation (Pbsn-cre4Prb;PI3KGOF/+ ). We hypothesized that direct activation would cause rapid neoplasia and cancer progression. Pbsn-cre4Prb;PI3KGOF/+ mice developed widespread prostate intraepithelial hyperplasia, but stromal invasion was limited and overall progression was slower than anticipated. However, the model produced profound and progressive stromal remodeling prior to explicit epithelial neoplasia. Increased stromal cellularity and inflammatory infiltrate were evident as early as 4 months of age and progressively increased through 12 months of age, the terminal endpoint of this study. Prostatic collagen density and phosphorylated SMAD2-positive prostatic stromal cells were expansive and accumulated with age, consistent with pro-fibrotic TGF-β pathway activation. Few reported mouse models accumulate prostate-specific collagen to the degree observed in Pbsn-cre4Prb;PI3KGOF/+ . Our results indicate a signaling process beginning with prostatic epithelial PI3K and TGF-β signaling that drives prostatic stromal hypertrophy and collagen accumulation. These mice afford a unique opportunity to explore molecular mechanisms of prostatic collagen accumulation that is relevant to cancer progression, metastasis, inflammation and urinary dysfunction. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kyle A Wegner
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Brett R Mueller
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher J Unterberger
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Enrique J Avila
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Hannah Ruetten
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne E Turco
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Steven R Oakes
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicholas M Girardi
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard B Halberg
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Steven M Swanson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul C Marker
- University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Chad M Vezina
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA.,University of Wisconsin-Madison/UMASS Boston George M. O'Brien Center for Benign Urologic Research, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Lee JY, Chang JK, Dominguez AA, Lee HP, Nam S, Chang J, Varma S, Qi LS, West RB, Chaudhuri O. YAP-independent mechanotransduction drives breast cancer progression. Nat Commun 2019; 10:1848. [PMID: 31015465 PMCID: PMC6478686 DOI: 10.1038/s41467-019-09755-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
Increased tissue stiffness is a driver of breast cancer progression. The transcriptional regulator YAP is considered a universal mechanotransducer, based largely on 2D culture studies. However, the role of YAP during in vivo breast cancer remains unclear. Here, we find that mechanotransduction occurs independently of YAP in breast cancer patient samples and mechanically tunable 3D cultures. Mechanistically, the lack of YAP activity in 3D culture and in vivo is associated with the absence of stress fibers and an order of magnitude decrease in nuclear cross-sectional area relative to 2D culture. This work highlights the context-dependent role of YAP in mechanotransduction, and establishes that YAP does not mediate mechanotransduction in breast cancer.
Collapse
Affiliation(s)
- Joanna Y Lee
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jessica K Chang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Antonia A Dominguez
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Hong-Pyo Lee
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sungmin Nam
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Julie Chang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
4
|
Qi Y, Xu F, Chen L, Li Y, Xu Z, Zhang Y, Wei W, Su N, Zhang T, Fan F, Wang X, Qin X, Zhang L, Liu Y, Xu P. Quantitative proteomics reveals FLNC as a potential progression marker for the development of hepatocellular carcinoma. Oncotarget 2018; 7:68242-68252. [PMID: 27626164 PMCID: PMC5354476 DOI: 10.18632/oncotarget.11921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 09/02/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) caused by hepatitis B virus (HBV) infection is one of the most life-threatening human cancers in China. However, the pathogenesis of HCC development is still unclear. Here, we systemically analyzed liver tissues from different stages of HCC patients through 8-plex Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) approach. A total of 4,620 proteins were identified and 3,781 proteins were quantified. When T1, T2 and T3 tumor tissues were compared with T1 non-tumor cells, 330, 365 and 387 differentially expressed proteins were identified respectively. IPA (Ingenuity Pathway Analysis) analysis revealed that these differentially expressed proteins were involved in endothelial cancer, cell spreading, cell adhesion and cell movement of tumor cell lines pathway and so on. Further study showed that the filamin C (FLNC) protein was significantly overexpressed with the development of HCC, which might play an important role in HCC invasion and metastasis. These results were also confirmed with western blot (WB). The mRNA levels were significantly increased in 50 pairs of tumor and adjacent non-tumor tissues from TCGA database. The higher expression of FLNC in HCC might be a common phenomenon, thereby shedding new light on molecular mechanism and biomarker for the diagnosis purpose of HCC development.
Collapse
Affiliation(s)
- Yingzi Qi
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Institute of Radiation Medicine, Beijing 102206, China
| | - Feng Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Institute of Radiation Medicine, Beijing 102206, China
| | - Lingsheng Chen
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Institute of Radiation Medicine, Beijing 102206, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Yanchang Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Institute of Radiation Medicine, Beijing 102206, China
| | - Zhongwei Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Institute of Radiation Medicine, Beijing 102206, China
| | - Yao Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Institute of Radiation Medicine, Beijing 102206, China.,Institute of Microbiology, Chinese Academy of Science, Beijing 100101, China
| | - Wei Wei
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Institute of Radiation Medicine, Beijing 102206, China
| | - Na Su
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Institute of Radiation Medicine, Beijing 102206, China
| | - Tao Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Institute of Radiation Medicine, Beijing 102206, China
| | - Fengxu Fan
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Institute of Radiation Medicine, Beijing 102206, China.,Anhui Medical University, Hefei 230032, China
| | - Xing Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Institute of Radiation Medicine, Beijing 102206, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Institute of Radiation Medicine, Beijing 102206, China
| | - Yinkun Liu
- Cancer Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ping Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Institute of Radiation Medicine, Beijing 102206, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430072, China.,Anhui Medical University, Hefei 230032, China
| |
Collapse
|
5
|
Lee JY, Chaudhuri O. Regulation of Breast Cancer Progression by Extracellular Matrix Mechanics: Insights from 3D Culture Models. ACS Biomater Sci Eng 2017; 4:302-313. [DOI: 10.1021/acsbiomaterials.7b00071] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Joanna Y. Lee
- Department of Mechanical
Engineering, Stanford University, 452 Escondido Mall, Building 520,
Room 226, Stanford, California 94305-4038, United States
| | - Ovijit Chaudhuri
- Department of Mechanical
Engineering, Stanford University, 452 Escondido Mall, Building 520,
Room 226, Stanford, California 94305-4038, United States
| |
Collapse
|
6
|
Abstract
Collagen XVI, by structural analogy a member of the FACIT- (fibril-associated collagens with interrupted triple helices) family of collagens, is described as a minor collagen component of connective tissues. Collagen XVI is expressed in various cells and tissues without known occurrence of splice variants or isoforms. For skin and cartilage tissues its suprastructure is known. Presumably, there it acts as an adaptor protein connecting and organizing large fibrillar networks and thus modulates integrity and stability of the extracellular matrix (ECM). Collagen XVI is produced by myofibroblasts in the normal intestine and its synthesis is increased in the inflamed bowel wall where myofibroblasts develop increased numbers of focal adhesion contacts on collagen XVI. Consequently, recruitment of α1 integrin into the focal adhesions at the tip of the cells is induced followed by increased cell spreading on collagen XVI. This presumably adds to the maintenance of myofibroblasts in the inflamed intestinal regions and thus promotes fibrotic responses of the tissue. Notably, α1/α2 integrins interact with collagen XVI through an α1/α2β1 integrin binding site located in the COL 1-3 domains. Collagen XVI may act as a substrate for adhesion and invasion of connective tissue tumor cells. In glioblastoma it induces tumor invasiveness by modification of the β1-integrin activation pattern. Thus, altering the cell-matrix interaction through collagen XVI might be a molecular mechanism to further augment the invasive phenotype of glioma cells. In this line, in oral squamous cell carcinoma collagen XVI expression is induced which results in an upregulation of Kindlin-1 followed by an increased interaction with beta1-integrin. Consequently, collagen XVI induces a proliferative tumor phenotype by promoting an early S-phase entry. In summary, collagen XVI plays a decisive role in the interaction of connective tissue cells with their ECM, which is impaired in pathological situations. Alteration of tissue location and expression level of collagen XVI appears to promote tumorigenesis and to perpetuate inflammatory reactions.
Collapse
Affiliation(s)
- Susanne Grässel
- Orthopaedic Surgery, University of Regensburg, Centre for Medical Biotechnology, Oral and Maxillofacial Surgery, University Hospital Regensburg, BioPark 1, Regensburg, Germany.
| | | |
Collapse
|
7
|
Yu S, Yeh CR, Niu Y, Chang HC, Tsai YC, Moses HL, Shyr CR, Chang C, Yeh S. Altered prostate epithelial development in mice lacking the androgen receptor in stromal fibroblasts. Prostate 2012; 72:437-49. [PMID: 21739465 PMCID: PMC4402036 DOI: 10.1002/pros.21445] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 05/31/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Androgens and the androgen receptor (AR) play important roles in the development of male urogenital organs. We previously found that mice with total AR knockout (ARKO) and epithelial ARKO failed to develop normal prostate with loss of differentiation. We have recently knocked out AR gene in smooth muscle cells and found the reduced luminal infolding and IGF-1 production in the mouse prostate. However, AR roles of stromal fibroblasts in prostate development remain unclear. METHODS To further probe the stromal fibroblast AR roles in prostate development, we generated tissue-selective knockout mice with the AR gene deleted in stromal fibroblasts (FSP-ARKO). We also used primary culture stromal cells to confirm the in vivo data and investigate mechanisms related to prostate development. RESULTS The results showed cellular alterations in the FSP-ARKO mouse prostate with decreased epithelial proliferation, increased apoptosis, and decreased collagen composition. Further mechanistic studies demonstrated that FSP-ARKO mice have defects in the expression of prostate stromal growth factors. To further confirm these in vivo findings, we prepared primary cultured mouse prostate stromal cells and found knocking down the stromal AR could result in growth retardation of prostate stromal cells and co-cultured prostate epithelial cells, as well as decrease of some stromal growth factors. CONCLUSIONS Our FSP-ARKO mice not only provide the first in vivo evidence in Cre-loxP knockout system for the requirement of stromal fibroblast AR to maintain the normal development of the prostate, but may also suggest the selective knockdown of stromal AR might become a potential therapeutic approach to battle prostate hyperplasia and cancer.
Collapse
Affiliation(s)
- Shengqiang Yu
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Chiuan-Ren Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Yuanjie Niu
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, The 2 nd Hospital of Tianjin Medical University, Tianjin, China
| | - Hong-Chiang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
- Departments of Urology and Oncology, National Taiwan University/Hospital, Taipei, Taiwan
| | - Yu-Chieh Tsai
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, The 2 nd Hospital of Tianjin Medical University, Tianjin, China
| | - Harold L Moses
- Department of Cancer Biology and Urology, Vanderbilt University, Nashville, Tennessee
| | - Chih-Rong Shyr
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
- Sex Hormone Research Center, China Medical University & Hospital, Taichung, Taiwan
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
- Sex Hormone Research Center, China Medical University & Hospital, Taichung, Taiwan
- Correspondence to: Chawnshang Chang and Shuyuan Yeh, George Whipple Lab for Cancer Research, Departments of Pathology and Urology, The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642. ,
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology, The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
- Correspondence to: Chawnshang Chang and Shuyuan Yeh, George Whipple Lab for Cancer Research, Departments of Pathology and Urology, The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14642. ,
| |
Collapse
|
8
|
Chen JH, He HC, Jiang FN, Militar J, Ran PY, Qin GQ, Cai C, Chen XB, Zhao J, Mo ZY, Chen YR, Zhu JG, Liu X, Zhong WD. Analysis of the specific pathways and networks of prostate cancer for gene expression profiles in the Chinese population. Med Oncol 2011; 29:1972-84. [PMID: 22038724 DOI: 10.1007/s12032-011-0088-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/07/2011] [Indexed: 01/04/2023]
Abstract
The global physiological function of specifically expressed genes of prostate cancer in Chinese patients is unclear. This study aims to determine the genome-wide expression of genes related to prostate cancer in the Chinese population. Genes that were differentially expressed in prostate cancer were identified using DNA microarray technology. Expressions were validated by using real-time PCR. The identified genes were analyzed using the ingenuity pathway analysis (IPA) to investigate the gene ontology, functional pathway and network. A total of 1,444 genes (Fold time ≥ 1.5; P ≤ 0.05) were differentially expressed in prostate primary tumor tissue compared with benign tissue. IPA revealed a unique landscape where inductions of certain pathways were involved in Cell Cycle Regulation and proliferation. Network analysis not only confirmed that protein interactions lead to the deregulation of DNA Replication, Recombination and Repair, Cellular Compromise and Cell Cycle, Genetic Disorders and Connective Tissue Disorders, but it was also observed that many of the genes regulated by Myc contributed to the modulation of lipid Metabolism and Nucleic Acid Metabolism. Both pathway and network analysis exhibited some remarkable characteristics of prostate cancer for Chinese patients, which showed profound differences from that of other non-Chinese populations. These differences may provide new insights into the molecular cascade of prostate cancer that occurs in Chinese patients.
Collapse
Affiliation(s)
- Jia-hong Chen
- Department of Urology, Guangzhou First Municipal People's Hospital, Affiliated Guangzhou Medical College, 510180 Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cook KL, Metheny-Barlow LJ, Tallant EA, Gallagher PE. Angiotensin-(1-7) reduces fibrosis in orthotopic breast tumors. Cancer Res 2010; 70:8319-28. [PMID: 20837666 DOI: 10.1158/0008-5472.can-10-1136] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin-(1-7) [Ang-(1-7)] is an endogenous 7-amino acid peptide hormone of the renin-angiotensin system that has antiproliferative properties. In this study, Ang-(1-7) inhibited the growth of cancer-associated fibroblasts (CAF) and reduced fibrosis in the tumor microenvironment. A marked decrease in tumor volume and weight was observed in orthotopic human breast tumors positive for the estrogen receptor (BT-474 or ZR-75-1) and HER2 (BT-474) following Ang-(1-7) administration to athymic mice. Ang-(1-7) concomitantly reduced interstitial fibrosis in association with a significant decrease in collagen I deposition, along with a similar reduction in perivascular fibrosis. In CAFs isolated from orthotopic breast tumors, the heptapeptide markedly attenuated in vitro growth as well as reduced fibronectin, transforming growth factor-β (TGF-β), and extracellular signal-regulated kinase 1/2 kinase activity. An associated increase in the mitogen-activated protein kinase (MAPK) phosphatase DUSP1 following treatment with Ang-(1-7) suggested a potential mechanism by which the heptapeptide reduced MAPK signaling. Consistent with these in vitro observations, immunohistochemical analysis of Ang-(1-7)-treated orthotopic breast tumors revealed reduced TGF-β and increased DUSP1. Together, our findings indicate that Ang-(1-7) targets the tumor microenvironment to inhibit CAF growth and tumor fibrosis.
Collapse
Affiliation(s)
- Katherine L Cook
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
10
|
Sheffer Y, Leon O, Pinthus JH, Nagler A, Mor Y, Genin O, Iluz M, Kawada N, Yoshizato K, Pines M. Inhibition of fibroblast to myofibroblast transition by halofuginone contributes to the chemotherapy-mediated antitumoral effect. Mol Cancer Ther 2007; 6:570-7. [PMID: 17267660 DOI: 10.1158/1535-7163.mct-06-0468] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stromal myofibroblasts play an important role in tumor progression. The transition of fibroblasts to myofibroblasts is characterized by expression of smooth muscle genes and profuse synthesis of extracellular matrix proteins. We evaluated the efficacy of targeting fibroblast-to-myofibroblast transition with halofuginone on tumor progression in prostate cancer and Wilms' tumor xenografts. In both xenografts, low doses of halofuginone treatment, independent of the route of administration, resulted in a trend toward inhibition in tumor development. Moreover, halofuginone synergizes with low dose of docetaxel in prostate cancer and vincristine and dactinomycin in Wilms' tumor xenografts, resulting in significant reduction in tumor volume and weight comparable to the effect observed by high doses of the respective chemotherapies. In prostate cancer and Wilms' tumor xenografts, halofuginone, but not the respective chemotherapies, inhibited the synthesis of collagen type I, alpha-smooth muscle actin, transgelin, and cytoglobin, all of which are characteristics of activated myofibroblasts. Halofuginone, as the respective chemotherapies, increased the synthesis of Wilms' tumor suppressor gene product (WT-1) and prostate apoptosis response gene-4 (Par-4), resulting in apoptosis/necrosis. These results suggest that targeting the fibroblast-to-myofibroblast transition with halofuginone may synergize with low doses of chemotherapy in achieving a significant antitumoral effect, avoiding the need of high-dose chemotherapy and its toxicity without impairing treatment efficacy.
Collapse
Affiliation(s)
- Yuval Sheffer
- Institute of Animal Sciences, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wernert N, Kaminski A, Haddouti EM, Hahne JC. Tumor-stroma interactions of metastatic prostate cancer cell lines: analyses using microarrays. Methods Mol Biol 2007; 382:223-237. [PMID: 18220234 DOI: 10.1007/978-1-59745-304-2_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Tumor-stroma interactions are of great importance not only for the development and progression of primary prostate carcinoma but probably also for the establishment of metastasis. Fibroblasts are an important stromal cell type encountered by metastatic tumor cells at different sites. In previous investigations, we had found that media conditioned by three metastatic prostate cancer cell lines (LNCaP, PC-3, and DU-145) induced cultured nonprostatic fibroblasts to proliferate or to express matrix-metalloproteinase-1 considered important for tumor invasion. Fibroblast-conditioned media in turn stimulate proliferation of DU-145 cells and migration of PC-3 cells. Both tumor cells and fibroblasts secrete VEGF suggesting that not only metastatic but also stromal cells at metastatic sites contribute to the vascularization of metastasis necessary for continuous growth. In order to better understand the reciprocal tumor-stroma cross-talk in molecular terms we used the mRNA extracted from stimulated and unstimulated neoplastic and fibroblastic stromal cells for cDNA array hybridization using Affymetrix chips. The three prostate cell lines influenced the fibroblasts nearly in the same manner. In particular proteins involved in cell adhesion, cell-cell contact, and cell cycle regulation were downregulated in stimulated fibroblasts. In contrast, fibroblasts affected every prostate cancer cell line in different ways, which may be because of the different origin of the metastatic prostate cancer cell lines.
Collapse
|
12
|
Arya M, Bott SR, Shergill IS, Ahmed HU, Williamson M, Patel HR. The metastatic cascade in prostate cancer. Surg Oncol 2006; 15:117-28. [PMID: 17150354 DOI: 10.1016/j.suronc.2006.10.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 09/28/2006] [Accepted: 10/18/2006] [Indexed: 11/22/2022]
Abstract
Morbidity and mortality due to prostate cancer are mainly a result of prostate cancer metastases. After the initial neoplastic transformation of cells, the process of metastasis involves a series of sequential steps, which involve neoangiogenesis and lymphangiogenesis, loss of adhesion with migration away from the primary tumour and entry into the systemic vasculature or lymphatics. Metastatic growth in sites such as lymph nodes and bone marrow then involves the specific non-random homing of prostate cancer cells. An appreciation and understanding of this metastatic cascade in relation to prostate cancer is clinically important in order to stratify men with prostate cancer into prognostic groups. Moreover, it is crucial in the future development of therapies that can prevent metastases.
Collapse
Affiliation(s)
- Manit Arya
- Prostate Cancer Research Centre, University College London, The Institute of Urology, 67 Riding House Street, London W1W 7EJ, UK.
| | | | | | | | | | | |
Collapse
|
13
|
Sun D, McCrae KR. Endothelial-cell apoptosis induced by cleaved high-molecular-weight kininogen (HKa) is matrix dependent and requires the generation of reactive oxygen species. Blood 2006; 107:4714-20. [PMID: 16418331 PMCID: PMC1895807 DOI: 10.1182/blood-2005-09-3584] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
High-molecular-weight kininogen (HK) is an abundant plasma protein that plays a central role in activation of the kallikrein-kinin system. Cleavage of HK by plasma kallikrein results in release of the nonapeptide bradykinin (BK), leaving behind cleaved high-molecular-weight kininogen (HKa). Previous studies have demonstrated that HKa induces apoptosis of proliferating endothelial cells and inhibits angiogenesis in vivo, activities mediated primarily through its domain 5. However, the mechanisms by which these effects occur are not well understood. Here, we demonstrate that HKa induces apoptosis of endothelial cells cultured on gelatin, vitronectin, fibronectin, or laminin but not collagen type I or IV. The ability of HKa to induce endothelial-cell apoptosis is dependent on the generation of intracellular reactive oxygen species and associated with depletion of glutathione and peroxidation of endothelial-cell lipids, effects that occur only in cells cultured on matrix proteins permissive for HKa-induced apoptosis. Finally, the ability of HKa to induce endothelial-cell apoptosis is blocked by the addition of reduced glutathione or N-acetylcysteine. These studies demonstrate a unique role for oxidant stress in mediating the activity of an antiangiogenic polypeptide and highlight the importance of the extracellular matrix in regulating endothelial-cell survival.
Collapse
Affiliation(s)
- Danyu Sun
- Division of Hematology-Oncology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
14
|
Abstract
In the vast majority of cases, cancer continues to be an incurable disease when it has spread beyond the primary organ. Most cancer research and therapy design to date has focused on chemotherapy directed at killing the replicating tumor cells. Little attention has been placed on targeting the microenvironments of the primary tumor site, the circulating tumor cells, or the metastatic or secondary (target) tumor site and how cancer cells move among them. To develop these targets, a better understanding of metastasis and the mechanisms underlying the spread of tumors is required. This review describes the steps of metastasis using a paradigm of emigration to migration to immigration, with prostate cancer as a model system.
Collapse
Affiliation(s)
- Kenneth J Pienta
- University of Michigan Urology Center, Ann Arbor, MI 48109-0946, USA.
| | | |
Collapse
|