1
|
Votra SD, Alsalih D, Bourboulia D. Methods to Assess the Impact of Hsp90 Chaperone Function on Extracellular Client MMP2 Activity. Methods Mol Biol 2023; 2693:221-232. [PMID: 37540438 PMCID: PMC10594791 DOI: 10.1007/978-1-0716-3342-7_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Secreted, or extracellular, heat shock protein 90 (eHsp90) is considered a recent discovery in eukaryotes. Over the last two decades, studies have provided significant supporting evidence that implicates eHsp90 both in normal cellular processes such as wound healing and in the development of human pathologies and diseases including fibrosis and cancer. In the early 2000s, Eustace et al. demonstrated that eHsp90 promotes the invasion of breast cancer cells by binding to and regulating the activity of an extracellular matrix (ECM) remodeling enzyme, the matrix metalloproteinase 2 or MMP2. Interestingly, inside mammalian cells, Hsp90 is an essential chaperone that interacts with hundreds of newly synthesized proteins, known as "clients," that require Hsp90's assistance to perform their function. Several methods are routinely used to characterize the role and impact of Hsp90 on a client protein's functionality in vitro and in vivo. However, the mechanistic role of eHsp90 is less well-defined since, so far, only a handful of extracellular client proteins have been identified. Here, we describe methods to characterize the impact of the secreted chaperone on MMP2 activity, the most characterized extracellular client of eHsp90. The procedures described here can be applied and adapted to characterize other extracellular clients, particularly members of the MMP family.
Collapse
Affiliation(s)
- SarahBeth D Votra
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Deema Alsalih
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
2
|
Sil H, Chatterjee A. Integrin Alpha-V Beta-3-Matrix Metalloproteinase-2 (MMP-2), Cross-Talk. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jct.2015.69087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Li H, Daculsi R, Bareille R, Bourget C, Amedee J. uPA and MMP-2 were involved in self-assembled network formation in a two dimensional co-culture model of bone marrow stromal cells and endothelial cells. J Cell Biochem 2013; 114:650-7. [DOI: 10.1002/jcb.24407] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/21/2012] [Indexed: 11/11/2022]
|
4
|
Jourdan MM, Lopez A, Olasz EB, Duncan NE, Demara M, Kittipongdaja W, Fish BL, Mäder M, Schock A, Morrow NV, Semenenko VA, Baker JE, Moulder JE, Lazarova Z. Laminin 332 deposition is diminished in irradiated skin in an animal model of combined radiation and wound skin injury. Radiat Res 2011; 176:636-48. [PMID: 21854211 PMCID: PMC3227557 DOI: 10.1667/rr2422.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Skin exposure to ionizing radiation affects the normal wound healing process and greatly impacts the prognosis of affected individuals. We investigated the effect of ionizing radiation on wound healing in a rat model of combined radiation and wound skin injury. Using a soft X-ray beam, a single dose of ionizing radiation (10-40 Gy) was delivered to the skin without significant exposure to internal organs. At 1 h postirradiation, two skin wounds were made on the back of each rat. Control and experimental animals were euthanized at 3, 7, 14, 21 and 30 days postirradiation. The wound areas were measured, and tissue samples were evaluated for laminin 332 and matrix metalloproteinase (MMP) 2 expression. Our results clearly demonstrate that radiation exposure significantly delayed wound healing in a dose-related manner. Evaluation of irradiated and wounded skin showed decreased deposition of laminin 332 protein in the epidermal basement membrane together with an elevated expression of all three laminin 332 genes within 3 days postirradiation. The elevated laminin 332 gene expression was paralleled by an elevated gene and protein expression of MMP2, suggesting that the reduced amount of laminin 332 in irradiated skin is due to an imbalance between laminin 332 secretion and its accelerated processing by elevated tissue metalloproteinases. Western blot analysis of cultured rat keratinocytes showed decreased laminin 332 deposition by irradiated cells, and incubation of irradiated keratinocytes with MMP inhibitor significantly increased the amount of deposited laminin 332. Furthermore, irradiated keratinocytes exhibited a longer time to close an artificial wound, and this delay was partially corrected by seeding keratinocytes on laminin 332-coated plates. These data strongly suggest that laminin 332 deposition is inhibited by ionizing radiation and, in combination with slower keratinocyte migration, can contribute to the delayed wound healing of irradiated skin.
Collapse
Affiliation(s)
- M. M. Jourdan
- Department of Dermatology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - A. Lopez
- Department of Dermatology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - E. B. Olasz
- Department of Dermatology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - N. E. Duncan
- Department of Dermatology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - M. Demara
- Department of Dermatology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - W. Kittipongdaja
- Department of Dermatology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - B. L. Fish
- Department of Radiation Oncology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - M. Mäder
- Department of Radiation Oncology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - A. Schock
- Department of Radiation Oncology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - N. V. Morrow
- Department of Radiation Oncology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - V. A. Semenenko
- Department of Radiation Oncology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - J. E. Baker
- Department of Surgery, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - J. E. Moulder
- Department of Radiation Oncology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Z. Lazarova
- Department of Dermatology, Center for Medical Countermeasures against Radiological Terrorism, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
5
|
Fernandez CA, Roy R, Lee S, Yang J, Panigrahy D, Van Vliet KJ, Moses MA. The anti-angiogenic peptide, loop 6, binds insulin-like growth factor-1 receptor. J Biol Chem 2010; 285:41886-95. [PMID: 20940305 DOI: 10.1074/jbc.m110.166439] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs), the endogenous inhibitors of matrix metalloproteinases, have been shown to possess biological functions that are independent of their ability to inhibit matrix metalloproteinases. We have previously shown that the C-terminal domain of TIMP-2 and, in particular, Loop 6 inhibit capillary endothelial cell proliferation and angiogenesis both in vitro and in vivo. To elucidate the mechanism by which Loop 6 inhibits angiogenesis, we sought to determine whether its biological effects were the result of a known TIMP-2 protein-protein interaction or of a receptor-mediated event. In this study, we identify insulin-like growth factor-1 receptor as a binding partner of Loop 6/TIMP-2 and characterize this interaction on the endothelial cell surface and the consequences of this interaction on downstream receptor signaling.
Collapse
Affiliation(s)
- Cecilia A Fernandez
- Vascular Biology Program, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Rupp PA, Visconti RP, Czirók A, Cheresh DA, Little CD. Matrix metalloproteinase 2-integrin alpha(v)beta3 binding is required for mesenchymal cell invasive activity but not epithelial locomotion: a computational time-lapse study. Mol Biol Cell 2008; 19:5529-40. [PMID: 18923152 DOI: 10.1091/mbc.e07-05-0480] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cellular invasive behavior through three-dimensional collagen gels was analyzed using computational time-lapse imaging. A subpopulation of endocardial cells, derived from explanted quail cardiac cushions, undergoes an epithelial-to-mesenchymal transition and invades the substance of the collagen gels when placed in culture. In contrast, other endocardial cells remain epithelial and move over the gel surface. Here, we show that integrin alpha(v)beta3 and matrix metalloproteinase (MMP)2 are present and active in cushion mesenchymal tissue. More importantly, functional assays show that mesenchymal invasive behavior is dependent on MMP2 activity and integrin alpha(v)beta3 binding. Inhibitors of MMP enzymatic activity and molecules that prevent integrin alpha(v)beta3 binding to MMP2, via its hemopexin domain, result in significantly reduced cellular protrusive activity and invasive behavior. Computational analyses show diminished intensity and persistence time of motility in treated invasive mesenchymal cells, but no reduction in motility of the epithelial-like cells moving over the gel surface. Thus, quantitative time-lapse data show that mesenchymal cell invasive behavior, but not epithelial cell locomotion over the gel surface, is partially regulated by the MMP2-integrin interactions.
Collapse
Affiliation(s)
- Paul A Rupp
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
7
|
Glassberg MK, Elliot SJ, Fritz J, Catanuto P, Potier M, Donahue R, Stetler-Stevenson W, Karl M. Activation of the estrogen receptor contributes to the progression of pulmonary lymphangioleiomyomatosis via matrix metalloproteinase-induced cell invasiveness. J Clin Endocrinol Metab 2008; 93:1625-33. [PMID: 18285421 DOI: 10.1210/jc.2007-1283] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CONTEXT The role of estrogens in the pathogenesis of lymphangioleiomyomatosis (LAM), an aggressive and destructive, eventually fatal lung disease of women, is poorly understood. OBJECTIVE The study was conducted to test the hypothesis that the lung disease in LAM is estrogen mediated and to determine whether estrogens contribute to the invasiveness of LAM. DESIGN In vitro cell culture of spindle-shaped LAM cells (LAMD-SM) were isolated and propagated from affected lungs. Estrogen receptor (ER)-alpha and ERbeta analyses were conducted by RT-PCR. ERalpha and ERbeta, tissue inhibitor of metalloproteinase-2, and matrix metalloproteinases (MMP)-2 had Western blot analysis for protein assessment. Activity assays were performed for MT1-MMP, MMP-2, and tissue inhibitor of metalloproteinase-2. Assessment of MMP-2 promoter function was done via transfection assays. Cell invasion chambers were used to determine and quantitate cell invasiveness. SETTING The study was conducted at an academic medical center. PATIENTS Tissue and cells were obtained from patients as outlined in approved institution review board protocol (97/007). INTERVENTION LAMD-SM cells were treated with a specific MMP-2 antibody or a nonspecific inhibitor, doxycycline. MAIN OUTCOME MEASURES Activity of MMP-2 and invasiveness of LAMD-SM cells were measured. RESULTS LAMD-SM cells express functional ERs (ERalpha and ERbeta), which undergo rapid intracellular turnover in their unbound state. 17beta-estradiol (E(2)) enhances the transcriptional ER activity. E(2)-induced ER activation increases synthesis and activity of MMP-2 through posttranscriptional mechanisms in LAMD-SM. The E(2)/ER-mediated increase of MMP-2 promotes LAMD-SM invasiveness, in assays in vitro, which can be inhibited by specific antibodies against MMP-2 or doxycycline, an inhibitor of MMPs. CONCLUSION The invasion and destruction of lung parenchyma in LAM is, at least partially, an estrogen-MMP-driven process, which has major implications for therapeutic interventions.
Collapse
Affiliation(s)
- Marilyn K Glassberg
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Miami Miller School of Medicine, 1600 N.W. 10th Avenue, Miami, FL 33136, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Gaiotto MAM, Focchi J, Ribalta JLC, Stávale JN, Baracat EC, Lima GR, Guerreiro da Silva IDC. Comparative study of MMP-2 (matrix metalloproteinase 2) immune expression in normal uterine cervix, intraepithelial neoplasias, and squamous cells cervical carcinoma. Am J Obstet Gynecol 2004; 190:1278-82. [PMID: 15167830 DOI: 10.1016/j.ajog.2003.12.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE This study was undertaken to evaluate the levels of matrix metalloproteinase 2 (MMP-2) in the precursors lesions and in the invasive cervical carcinoma and to quantify the immune reactive expression of MMP-2, using MMP-2 immunohistochemistry, in intraepithelial cervical neoplasias and in the invading cervical carcinoma. STUDY DESIGN We evaluated 60 samples of cervical tissues using immunohistochemistry for MMP-2 in 5 distinct groups. The groups were divided in control, cervical intraepithelial neoplasia I (CIN I), CIN II, CIN III, and cervical invading carcinoma. RESULTS MMP-2 expression was found gradually increased according to the degree of cervical intraepithelial neoplasia and cervical carcinoma. (Control<CIN I<CIN II<CIN III<Carcinoma) CONCLUSION Our results suggest that the expression of MMP-2 can distinguish CIN I, II, and III grades and the invading carcinoma.
Collapse
Affiliation(s)
- Maria Angélica M Gaiotto
- Departments of Gynecology and Pathology, Federal University of São Paulo-Escola Paulista de Medicina, SP, UNIFESP-EPM Brazil
| | | | | | | | | | | | | |
Collapse
|
9
|
Nezi L, Greco D, Nitsch L, Garbi C. The role of proteases in fibronectin matrix remodeling in thyroid epithelial cell monolayer cultures. Biol Chem 2002; 383:167-76. [PMID: 11928811 DOI: 10.1515/bc.2002.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fischer rat thyroid (FRT) cells organize a matrix of extracellular fibronectin (FN) fibrils, which undergoes extensive remodeling according to cell culture confluence. In non-confluent cells FN forms a fibrillar array associated with the ventral cell surface. However, basal FN is progressively removed in confluent cultures and substituted by non-fibrillar FN deposits at lateral cell domains in regions of cell-cell contacts. FRT cells secrete and expose on the plasma membrane the tissue-type plasminogen activator and, in serum-free cultures, plasminogen induces a rapid loss of FN fibrils. Incubation with plasmin inhibitors greatly reduces this effect. FRT cells also express annexin II, a plasminogen receptor, suggesting that plasmin activity is associated with the pericellular enviroment. This is in agreement with the observation that a great reduction in FN degradation is observed if the cells are pre-incubated with carboxypeptidase B, which prevents plasminogen binding to the cells. A gelatinolytic activity with a molecular weigth equivalent to MMP-2 has been demonstrated by zymography of culture media, and the presence of MMP-2 and MT1-MMP on the cell plasma membrane has been detected by immunofluorescence. These results indicate that in the FN remodeling process, occurring during FRT epithelium maturation, both plasmin-dependent (tPA activated) and plasmin-independent proteolytic activities are involved.
Collapse
Affiliation(s)
- Luigi Nezi
- Centro di Endocrinologia ed Oncologia Sperimentale, CNR, Dpt. Biologia e Patologia Cellulare e Molecolare, Napoli, Italy
| | | | | | | |
Collapse
|
10
|
Xu P, Wang Y, Piao Y, Bai S, Xiao Z, Jia Y, Luo S, Zhuang L. Effects of matrix proteins on the expression of matrix metalloproteinase-2, -9, and -14 and tissue inhibitors of metalloproteinases in human cytotrophoblast cells during the first trimester. Biol Reprod 2001; 65:240-6. [PMID: 11420245 DOI: 10.1095/biolreprod65.1.240] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The activity of matrix metalloproteinases (MMPs) specifies the ability of the trophoblast cell to degrade extracellular matrix (ECM) substrates. Usually the process of normal human placentation involves a coordinated interaction between the fetal-derived trophoblast cells and their microenvironment in the uterus. In this study, the effects of ECM proteins on the expression of MMP-2, -9, and -14 (membrane-type MMP-1); and the production of tissue inhibitors of metalloproteinase (TIMP) types -1, -2, and -3 have been investigated. Cytotrophoblast cells at 9 or 10 wk of gestation were cultured on various ECM coated dishes under serum-free conditions. Gelatin zymography analysis showed that cells grown on fibronectin (FN), laminin (LN), and vitronectin (VN) secreted more MMP-9 (about 1.5- to 3-fold more) than cells cultured on collagen I (Col I), whereas the secretion of MMP-9 by cells cultured on collagen IV (Col IV) was only half that by the cells on Col I. Northern Blot analysis gave the same results as zymography, indicating that expression of the MMP-9 gene in cytotrophoblast cells can be affected by matrix proteins. There was no significant difference in the expression of MMP-2 either at protein or mRNA levels among the cells cultured on the different matrix substrates. The expression of MMP-14 was regulated in a manner similar to that of MMP-2. Using ELISA, we detected higher levels of TIMP-1 in the culture medium of cells grown on VN, LN, and FN compared with that grown on Col I. But the expression of TIMP-3 mRNA was remarkably inhibited by VN, and ECM proteins had no effect on TIMP-1 and TIMP-2 mRNA expression. It was also observed that cultured cytotrophoblast cells expressed the corresponding receptors for the tested matrix proteins, such as integrins alpha(1), alpha(5), alpha(6), beta(1), and beta(4). Furthermore, the adhesiveness of cytotrophoblast cells on Col I, Col IV, FN, and LN was increased by 62%, 45%, 21%, and 22%, respectively, when compared with adhesiveness on VN. Isolated cytotrophoblast cells remained stationary when cultured on dishes coated with Col I and Col IV, but they assumed a more motile morphology and aggregated into a network when cultured on LN and VN. These data indicate that human trophoblast cells interact with their microenvironment to control their behavior and function.
Collapse
Affiliation(s)
- P Xu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
This review concentrates on how the major component of extracellular matrix, collagen, is catabolized. This process is important in a number of aspects of orthodontics since matrix is constantly turning over, the rate of which differs in embryogenesis, ageing, disease, and physiological processes, such as orthodontic tooth movement. It is not the purpose of this review to consider each process in detail. The aim is to give a clear account of the matrix metalloproteinases (a major family of proteinases) including their classification, properties, and functions.
Collapse
Affiliation(s)
- J J Kerrigan
- Division of Child Dental Health, University of Bristol Dental School, Lower Maudlin Street, Bristol BS1 2LY, UK
| | | | | |
Collapse
|
12
|
Owen CA, Campbell EJ. Extracellular proteolysis: new paradigms for an old paradox. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1999; 134:341-51. [PMID: 10521080 DOI: 10.1016/s0022-2143(99)90148-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- C A Owen
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, USA
| | | |
Collapse
|
13
|
Farr M, Pieper M, Calvete J, Tschesche H. The N-terminus of collagenase MMP-8 determines superactivity and inhibition: a relation of structure and function analyzed by biomolecular interaction analysis. Biochemistry 1999; 38:7332-8. [PMID: 10353844 DOI: 10.1021/bi982618f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are the physiological, specific inhibitors of matrix metalloproteinases (MMPs) forming tight, noncovalent complexes. Therefore they control the proteolytic activity of MMPs toward the extracellular matrix. To analyze the inhibition of the "activated" and "superactivated" variants of human neutrophil collagenase (MMP-8) by TIMP-2, we determined complex dissociation constants using biomolecular interaction analysis (BIA). As it is known that the association rate constants can exceed the limits of the BIA instruments, the biomolecular interaction analysis was used to examine the equlibrium situation. The dissociation constants were determined by fitting the parameters of the mathematical term for the binding of collagenase onto the TIMP-coupled sensor chip surface to the saturation curve derived from individual sensorgrams. The resulting values are in the nanomolar range and correlate with the results of fluorescence kinetics. These data reveal that TIMP-2 (the recombinant inhibitory domain of human TIMP-2 and bovine TIMP-2 isolated from seminal plama) is a better inhibitor of the activated neutrophil collagenase than of the superactivated variant (the recombinant catalytic domain of human MMP-8). It has been demonstrated by X-ray analysis that the N-terminal heptapeptide only of superactivated MMP-8 is attached by a salt bridge and hydrophobic interaction to the C-terminal helix. Because these interactions have to be disrupted in the complex formation with TIMP we assume that the activated variant enables higher flexibility and a tighter induced fit in the complex formation. Therefore superactivation of MMP-8 correlates with weaker inhibition by TIMP-2.
Collapse
Affiliation(s)
- M Farr
- University of Bielefeld, Faculty of Chemistry and Biochemistry, Germany
| | | | | | | |
Collapse
|
14
|
Haas TL, Madri JA. Extracellular matrix-driven matrix metalloproteinase production in endothelial cells: implications for angiogenesis. Trends Cardiovasc Med 1999; 9:70-7. [PMID: 10578520 DOI: 10.1016/s1050-1738(99)00014-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The process of new blood vessel growth, angiogenesis, involves orchestrated alterations in endothelial cell interactions with adjacent cells and with components of the underlying basement membrane matrix. The activity of matrix metalloproteinases (MMPs), proteases that can cleave basement membrane and interstitial matrix molecules, has been shown to be necessary for angiogenesis as it occurs in several different in vivo and in vitro models. This review discusses the potential roles of two particular MMPs, MMP-2 and MT1-MMP, in angiogenesis, with emphasis on current understanding of how endothelial cell-extracellular matrix interactions may regulate the production of these MMPs via matrix-induced signaling leading to transcriptional activation and subsequent formation of active multiprotease complexes on the cell surface.
Collapse
Affiliation(s)
- T L Haas
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
15
|
Towards the Therapeutic Targeting of Matrix Metalloproteinases in Breast Cancer. Breast Cancer 1999. [DOI: 10.1007/978-1-59259-456-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|