1
|
Newton A, McCann L, Huo L, Liu A. Kynurenine Pathway Regulation at Its Critical Junctions with Fluctuation of Tryptophan. Metabolites 2023; 13:metabo13040500. [PMID: 37110158 PMCID: PMC10143591 DOI: 10.3390/metabo13040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
The kynurenine pathway (KP) is the primary route for the catabolism of the essential amino acid tryptophan. The central KP metabolites are neurologically active molecules or biosynthetic precursors to critical molecules, such as NAD+. Within this pathway are three enzymes of interest, HAO, ACMSD, and AMSDH, whose substrates and/or products can spontaneously cyclize to form side products such as quinolinic acid (QA or QUIN) and picolinic acid. Due to their unstable nature for spontaneous autocyclization, it might be expected that the levels of these side products would be dependent on tryptophan intake; however, this is not the case in healthy individuals. On top of that, the regulatory mechanisms of the KP remain unknown, even after a deeper understanding of the structure and mechanism of the enzymes that handle these unstable KP metabolic intermediates. Thus, the question arises, how do these enzymes compete with the autocyclization of their substrates, especially amidst increased tryptophan levels? Here, we propose the formation of a transient enzyme complex as a regulatory mechanism for metabolite distribution between enzymatic and non-enzymatic routes during periods of increased metabolic intake. Amid high levels of tryptophan, HAO, ACMSD, and AMSDH may bind together, forming a tunnel to shuttle the metabolites through each enzyme, consequently regulating the autocyclization of their products. Though further research is required to establish the formation of transient complexation as a solution to the regulatory mysteries of the KP, our docking model studies support this new hypothesis.
Collapse
Affiliation(s)
- Ashley Newton
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Luree McCann
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Lu Huo
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
2
|
Zhao J, Chen J, Wang C, Liu Y, Li M, Li Y, Li R, Han Z, Wang J, Chen L, Shu Y, Cheng G, Sun C. Kynurenine-3-monooxygenase (KMO) broadly inhibits viral infections via triggering NMDAR/Ca2+ influx and CaMKII/ IRF3-mediated IFN-β production. PLoS Pathog 2022; 18:e1010366. [PMID: 35235615 PMCID: PMC8920235 DOI: 10.1371/journal.ppat.1010366] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/14/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Tryptophan (Trp) metabolism through the kynurenine pathway (KP) is well known to play a critical function in cancer, autoimmune and neurodegenerative diseases. However, its role in host-pathogen interactions has not been characterized yet. Herein, we identified that kynurenine-3-monooxygenase (KMO), a key rate-limiting enzyme in the KP, and quinolinic acid (QUIN), a key enzymatic product of KMO enzyme, exerted a novel antiviral function against a broad range of viruses. Mechanistically, QUIN induced the production of type I interferon (IFN-I) via activating the N-methyl-d-aspartate receptor (NMDAR) and Ca2+ influx to activate Calcium/calmodulin-dependent protein kinase II (CaMKII)/interferon regulatory factor 3 (IRF3). Importantly, QUIN treatment effectively inhibited viral infections and alleviated disease progression in mice. Furthermore, kmo-/- mice were vulnerable to pathogenic viral challenge with severe clinical symptoms. Collectively, our results demonstrated that KMO and its enzymatic product QUIN were potential therapeutics against emerging pathogenic viruses. The outbreaks of emerging infectious diseases have become a severe challenge worldwide, and therefore it is a public health priority to explore novel broad-spectrum antiviral agents with various mechanisms. This study reported that kynurenine-3-monooxygenase (KMO), a key rate-limiting enzyme during tryptophan metabolism, showed promise as a novel broad-spectrum antiviral factor against emerging pathogenic viruses. We further found that quinolinic acid (QUIN), an enzymatic product of KMO, could also act as a novel broad-spectrum antiviral agent. We then systematically studied the underlying mechanisms and broadly antiviral function of KMO and QUIN in vitro and in vivo. Our data highlight the importance of exploring novel antiviral targets from the key enzymes and their metabolites in tryptophan metabolism.
Collapse
Affiliation(s)
- Jin Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Jiaoshan Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Congcong Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Yajie Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Minchao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Yanjun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Ruiting Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Zirong Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Junjian Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- * E-mail: (GC); (CS)
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
- * E-mail: (GC); (CS)
| |
Collapse
|
3
|
Atlas A, Franzen-Röhl E, Söderlund J, Jönsson EG, Samuelsson M, Schwieler L, Sköldenberg B, Engberg G. Sustained elevation of kynurenic Acid in the cerebrospinal fluid of patients with herpes simplex virus type 1 encephalitis. Int J Tryptophan Res 2013; 6:89-96. [PMID: 24324341 PMCID: PMC3855257 DOI: 10.4137/ijtr.s13256] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Herpes simplex virus (HSV) type 1 encephalitis (HSE) is a viral infectious disease with commonly occurring neurodegeneration and neurological/cognitive long-term sequelae. Kynurenic acid (KYNA) is a neuroactive tryptophan metabolite, which is elevated in the cerebrospinal fluid (CSF) during viral infection as a result of immune activation. The aim of the study was to investigate the role of endogenous brain KYNA for the long-term outcome of the disease. CSF KYNA concentration was analyzed in 25 HSE patients along the course of the disease and compared with that of 25 age-matched healthy volunteers. Within 3 weeks of admission CSF KYNA of HSE patients was markedly elevated (median 33.6 nM) compared to healthy volunteers (median 1.45 nM). Following a decline observed after 1-2 months, levels of CSF KYNA were elevated more than 1 year after admission (median 3.4 nM range: 1-9 years). A negative correlation was found between initial CSF KYNA concentrations and severity of the long-term sequelae. This study show a marked elevation in CSF KYNA from patients with HSE, most pronounced during the acute phase of the disease and slowly declining along the recovery. We propose that brain KYNA might potentially protect against neurodegeneration while causing a long-lasting loss in cognitive function associated with the disease.
Collapse
Affiliation(s)
- Ann Atlas
- Infectious Diseases Unit, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
4
|
O'Connor MA, Green WR. The role of indoleamine 2,3-dioxygenase in LP-BPM5 murine retroviral disease progression. Virol J 2013; 10:154. [PMID: 23680027 PMCID: PMC3751850 DOI: 10.1186/1743-422x-10-154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/06/2013] [Indexed: 11/10/2022] Open
Abstract
Background Indoleamine 2,3-dioxygenase (IDO) is an immunomodulatory intracellular enzyme involved in tryptophan degradation. IDO is induced during cancer and microbial infections by cytokines, ligation of co-stimulatory molecules and/or activation of pattern recognition receptors, ultimately leading to modulation of the immune response. LP-BM5 murine retroviral infection induces murine AIDS (MAIDS), which is characterized by profound and broad immunosuppression of T- and B-cell responses. Our lab has previously described multiple mechanisms regulating the development of immunodeficiency of LP-BM5-induced disease, including Programmed Death 1 (PD-1), IL-10, and T-regulatory (Treg) cells. Immunosuppressive roles of IDO have been demonstrated in other retroviral models, suggesting a possible role for IDO during LP-BM5-induced retroviral disease progression and/or development of viral load. Methods Mice deficient in IDO (B6.IDO−/−) and wildtype C57BL/6 (B6) mice were infected with LP-BM5 murine retrovirus. MAIDS and LP-BM5 viral load were assessed at termination. Results As expected, IDO was un-inducible in B6.IDO−/− during LP-BM5 infection. B6.IDO−/− mice infected with LP-BM5 retrovirus succumbed to MAIDS as indicated by splenomegaly, serum hyper IgG2a and IgM, decreased responsiveness to B- and T-cell mitogens, conversion of a proportion of CD4+ T cells from Thy1.2+ to Thy1.2-, and increased percentages of CD11b+Gr-1+ cells. LP-BM5 infected B6.IDO−/− mice also demonstrated the development of roughly equivalent disease kinetics as compared to infected B6 mice. Splenic viral loads of B6 and B6.IDO−/− mice were also equivalent after infection as measured by LP-BM5-specific Def Gag and Eco Gag viral mRNA, determined by qRT-PCR. Conclusions Collectively, these results demonstrate IDO neither plays an essential role, nor is required, in LP-BM5-induced disease progression or LP-BM5 viral load.
Collapse
Affiliation(s)
- Megan A O'Connor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | | |
Collapse
|
5
|
Tu H, Rady PL, Juelich T, Smith EM, Tyring SK, Hughes TK. Cytokine regulation of tryptophan metabolism in the hypothalamic-pituitary-adrenal (HPA) axis: implications for protective and toxic consequences in neuroendocrine regulation. Cell Mol Neurobiol 2005; 25:673-80. [PMID: 16075385 DOI: 10.1007/s10571-005-4007-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 04/14/2004] [Indexed: 10/25/2022]
Abstract
AIM Indoleamine 2,3-dioxygenase (IDO) catalyzation of tryptophan is the first rate-limiting step of the kynurenine pathway in the majority of tissues. The kynurenine pathway produces neurotoxic metabolites such as 3-hydroxykinurenine and quinolinic acid. IDO is inducible by the cytokine interferon-gamma (IFN-gamma) and has been proposed to mediate the sickness behavior of patients with infectious or other inflammatory diseases.To better understand the neuroendocrine component of cytokine induced sickness behavior we determined the effects of the pro-inflammatory cytokine IFN-gamma and the anti-inflammatory cytokine IL-10 on IDO expression in cells derived from the hypothalamic-pituitary-adrenal axis (HPA): GT1-7 hypothalamic, AtT-20 pituitary, and Y-1 adrenal cells. METHODS Reverse transcriptase polymerase chain reaction (RT-PCR) was performed to check the IDO expression from IFN-gamma and IL-10 treated cells such as GT1-7, AtT-20 and Y-1 cells. RESULTS We found that IFN-gamma induces IDO expression after 4 h treatment in GT1-7 and AtT-20 cells. IL-10 was also able to suppress IFN-gamma induced IDO expression in these cells. In Y-1 adrenal cells, IFN-gamma treatment had no effect on IDO expression. CONCLUSIONS Our results indicate that cytokines such as IFN-gamma and IL-10 are able to regulate IDO expression in cells of hypothalamic and pituitary origin. The ability of IL-10 to suppress IFN-gamma induced IDO expression implies that IL-10 has a putative neuroprotective role in the HPA axis. It can act at two levels, systemically by inhibiting sickness behavior-related Th1 cytokine synthesis and more centrally by inhibiting the kynurenine pathway.
Collapse
Affiliation(s)
- Huolin Tu
- Department of Microbiology, University of Texas Medical Branch, Medical Research Building. 4.174, Galveston, Texas 77555, USA
| | | | | | | | | | | |
Collapse
|