1
|
Vamosi JC, Magallón S, Mayrose I, Otto SP, Sauquet H. Macroevolutionary Patterns of Flowering Plant Speciation and Extinction. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:685-706. [PMID: 29489399 DOI: 10.1146/annurev-arplant-042817-040348] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Species diversity is remarkably unevenly distributed among flowering plant lineages. Despite a growing toolbox of research methods, the reasons underlying this patchy pattern have continued to perplex plant biologists for the past two decades. In this review, we examine the present understanding of transitions in flowering plant evolution that have been proposed to influence speciation and extinction. In particular, ploidy changes, transitions between tropical and nontropical biomes, and shifts in floral form have received attention and have offered some surprises in terms of which factors influence speciation and extinction rates. Mating systems and dispersal characteristics once predominated as determining factors, yet recent evidence suggests that these changes are not as influential as previously thought or are important only when paired with range shifts. Although range extent is an important correlate of speciation, it also influences extinction and brings an applied focus to diversification research. Recent studies that find that past diversification can predict present-day extinction risk open an exciting avenue for future research to help guide conservation prioritization.
Collapse
Affiliation(s)
- Jana C Vamosi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada;
| | - Susana Magallón
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Itay Mayrose
- Department of Molecular Biology and Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sarah P Otto
- Department of Zoology and the Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Hervé Sauquet
- Laboratoire Écologie, Systématique, Évolution, Université Paris-Sud, CNRS UMR 8079, 91405 Orsay, France
- National Herbarium of New South Wales (NSW), Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia
| |
Collapse
|
2
|
Kenyon JC. MODELS OF RETICULATE EVOLUTION IN THE CORAL GENUSACROPORABASED ON CHROMOSOME NUMBERS: PARALLELS WITH PLANTS. Evolution 2017; 51:756-767. [DOI: 10.1111/j.1558-5646.1997.tb03659.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/1995] [Accepted: 01/28/1997] [Indexed: 11/30/2022]
Affiliation(s)
- Jean C. Kenyon
- Department of Zoology; University of Hawaii at Manoa; Honolulu Hawaii 96822
| |
Collapse
|
3
|
Dawley RM, Goddard KA. DIPLOID-TRIPLOID MOSAICS AMONG UNISEXUAL HYBRIDS OF THE MINNOWS PHOXINUS EOS
AND PHOXINUS NEOGAEUS. Evolution 2017; 42:649-659. [DOI: 10.1111/j.1558-5646.1988.tb02484.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/1987] [Accepted: 01/29/1988] [Indexed: 11/30/2022]
Affiliation(s)
- Robert M. Dawley
- Section of Ecology and Systematics; Cornell University; Ithaca NY 14850
| | - Kathryn A. Goddard
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT 06268
| |
Collapse
|
4
|
Gompert Z, Mock KE. Detection of individual ploidy levels with genotyping‐by‐sequencing (GBS) analysis. Mol Ecol Resour 2017; 17:1156-1167. [DOI: 10.1111/1755-0998.12657] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Zachariah Gompert
- Department of Biology and the Ecology Center Utah State University 5305 Old Main Hill Logan UT 84322‐5305 USA
| | - Karen E. Mock
- Wildland Resources Department and the Ecology Center Utah State University Logan UT 84322 USA
| |
Collapse
|
5
|
Wang X, Gan X, Li J, Chen Y, He S. Cyprininae phylogeny revealed independent origins of the Tibetan Plateau endemic polyploid cyprinids and their diversifications related to the Neogene uplift of the plateau. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1149-1165. [PMID: 27646682 DOI: 10.1007/s11427-016-0007-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/13/2016] [Indexed: 11/28/2022]
Abstract
Origin and diversification of the Tibetan polyploid cyprinids (schizothoracins) may help us to explore relationships between diversification of the cyprinids and the Tibetan Plateau uplift. Cyprininae phylogeny was analyzed using mitochondrial and nuclear DNA sequences to trace origins of polyploidy and diversifications of schizothoracins. Ancestral states reconstruction for ploidy levels indicated that the Cyprininae was diploid origin and the schizothoracin clades tetraploid origins. There were two diversification rate shifts along with diversification of the cyprinine fishes in response to the Tibetan uplift. The unusual diversification shifts were located to branches subtending the clades of Tibetan polyploid cyprinids. Our analyses suggested that (i) phylogeny of Cyprininae recovered two independent origins of the Tibetan polyploidy schizothoracins; (ii) diversifications of the schizothoracins were closely related to the Neogene uplift of the Tibetan plateau in the following ways: the relatively ancient Late Oligocene-Middle Miocene adaptive radiation may be associated with the uplift of the southern Tibet and Himalaya; the Middle Miocene-Early Pleistocene lineage-specific diversification broadly coincident with major phase of the Neogene Tibetan uplift; and the most recent Pleistocene diversification shift in Schizothorax closely coincident with the successive Kunlun-Huanghe and Gonghe movements of the Tibetan uplift and the glaciation-induced climate oscillations on the plateau.
Collapse
Affiliation(s)
- Xuzhen Wang
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaoni Gan
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Junbing Li
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yiyu Chen
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shunping He
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
6
|
Abstract
This review summarizes the current status of the known extant genuine polyploid anuran and urodelan species, as well as spontaneously originated and/or experimentally produced amphibian polyploids. The mechanisms by which polyploids can originate, the meiotic pairing configurations, the diploidization processes operating in polyploid genomes, the phenomenon of hybridogenesis, and the relationship between polyploidization and sex chromosome evolution are discussed. The polyploid systems in some important amphibian taxa are described in more detail.
Collapse
|
7
|
Betto-Colliard C, Sermier R, Litvinchuk S, Perrin N, Stöck M. Origin and genome evolution of polyploid green toads in Central Asia: evidence from microsatellite markers. Heredity (Edinb) 2015; 114:300-8. [PMID: 25370211 PMCID: PMC4815583 DOI: 10.1038/hdy.2014.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 09/10/2014] [Accepted: 09/22/2014] [Indexed: 02/08/2023] Open
Abstract
Polyploidization, which is expected to trigger major genomic reorganizations, occurs much less commonly in animals than in plants, possibly because of constraints imposed by sex-determination systems. We investigated the origins and consequences of allopolyploidization in Palearctic green toads (Bufo viridis subgroup) from Central Asia, with three ploidy levels and different modes of genome transmission (sexual versus clonal), to (i) establish a topology for the reticulate phylogeny in a species-rich radiation involving several closely related lineages and (ii) explore processes of genomic reorganization that may follow polyploidization. Sibship analyses based on 30 cross-amplifying microsatellite markers substantiated the maternal origins and revealed the paternal origins and relationships of subgenomes in allopolyploids. Analyses of the synteny of linkage groups identified three markers affected by translocation events, which occurred only within the paternally inherited subgenomes of allopolyploid toads and exclusively affected the linkage group that determines sex in several diploid species of the green toad radiation. Recombination rates did not differ between diploid and polyploid toad species, and were overall much reduced in males, independent of linkage group and ploidy levels. Clonally transmitted subgenomes in allotriploid toads provided support for strong genetic drift, presumably resulting from recombination arrest. The Palearctic green toad radiation seems to offer unique opportunities to investigate the consequences of polyploidization and clonal transmission on the dynamics of genomes in vertebrates.
Collapse
Affiliation(s)
- C Betto-Colliard
- Department of Ecology and Evolution, Biophore Building University of Lausanne, Lausanne, Switzerland
| | - R Sermier
- Department of Ecology and Evolution, Biophore Building University of Lausanne, Lausanne, Switzerland
| | - S Litvinchuk
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - N Perrin
- Department of Ecology and Evolution, Biophore Building University of Lausanne, Lausanne, Switzerland
| | - M Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| |
Collapse
|
8
|
A nuclear DNA perspective on delineating evolutionarily significant lineages in polyploids: the case of the endangered shortnose sturgeon (Acipenser brevirostrum). PLoS One 2014; 9:e102784. [PMID: 25166503 PMCID: PMC4148239 DOI: 10.1371/journal.pone.0102784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 06/24/2014] [Indexed: 11/19/2022] Open
Abstract
The shortnose sturgeon, Acipenser brevirostrum, oft considered a phylogenetic relic, is listed as an “endangered species threatened with extinction” in the US and “Vulnerable” on the IUCN Red List. Effective conservation of A. brevirostrum depends on understanding its diversity and evolutionary processes, yet challenges associated with the polyploid nature of its nuclear genome have heretofore limited population genetic analysis to maternally inherited haploid characters. We developed a suite of polysomic microsatellite DNA markers and characterized a sample of 561 shortnose sturgeon collected from major extant populations along the North American Atlantic coast. The 181 alleles observed at 11 loci were scored as binary loci and the data were subjected to multivariate ordination, Bayesian clustering, hierarchical partitioning of variance, and among-population distance metric tests. The methods uncovered moderately high levels of gene diversity suggesting population structuring across and within three metapopulations (Northeast, Mid-Atlantic, and Southeast) that encompass seven demographically discrete and evolutionarily distinct lineages. The predicted groups are consistent with previously described behavioral patterns, especially dispersal and migration, supporting the interpretation that A. brevirostrum exhibit adaptive differences based on watershed. Combined with results of prior genetic (mitochondrial DNA) and behavioral studies, the current work suggests that dispersal is an important factor in maintaining genetic diversity in A. brevirostrum and that the basic unit for conservation management is arguably the local population.
Collapse
|
9
|
Polymeropoulos ET, Plouffe D, LeBlanc S, Elliott NG, Currie S, Frappell PB. Growth hormone transgenesis and polyploidy increase metabolic rate, alter the cardiorespiratory response and influence HSP expression in response to acute hypoxia in Atlantic salmon (Salmo salar) yolk-sac alevins. ACTA ACUST UNITED AC 2014; 217:2268-76. [PMID: 24675560 DOI: 10.1242/jeb.098913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Growth hormone (GH)-transgenic Atlantic salmon display accelerated growth rates compared with non-transgenics. GH-transgenic fish also display cardiorespiratory and metabolic modifications that accompany the increased growth rate. An elevated routine metabolic rate has been described for pre- and post-smolt GH-transgenic salmon that also display improvements in oxygen delivery to support the increased aerobic demand. The early ontogenic effects of GH transgenesis on the respiratory and cellular physiology of fish, especially during adverse environmental conditions, and the effect of polyploidy are unclear. Here, we investigated the effects of GH transgenesis and polyploidy on metabolic, heart and ventilation rates and heat shock protein (HSP) levels after exposure to acute hypoxia in post-hatch Atlantic salmon yolk-sac alevins. Metabolic rate decreased with decreasing partial pressures of oxygen in all genotypes. In normoxia, triploid transgenics displayed the highest mass-specific metabolic rates in comparison to diploid transgenics and non-transgenic triploids, which, in contrast, had higher rates than diploid non-transgenics. In hypoxia, we observed a lower mass-specific metabolic rate in diploid non-transgenics compared with all other genotypes. However, no evidence for improved O2 uptake through heart or ventilation rate was found. Heart rate decreased in diploid non-transgenics while ventilation rate decreased in both diploid non-transgenics and triploid transgenics in severe hypoxia. Regardless of genotype or treatment, inducible HSP70 was not expressed in alevins. Following hypoxia, the constitutive isoform of HSP70, HSC70, decreased in transgenics and HSP90 expression decreased in all genotypes. These data suggest that physiological changes through GH transgenesis and polyploidy are manifested during early ontogeny in Atlantic salmon.
Collapse
Affiliation(s)
- Elias T Polymeropoulos
- CSIRO National Food Futures Flagship, CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, TAS 7001, Australia
| | | | - Sacha LeBlanc
- Department of Biology, Mount Allison University, Sackville, NB, Canada E4L 1G7
| | - Nick G Elliott
- CSIRO National Food Futures Flagship, CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, TAS 7001, Australia
| | - Suzie Currie
- Department of Biology, Mount Allison University, Sackville, NB, Canada E4L 1G7
| | | |
Collapse
|
10
|
Bogart JP, Bi K. Genetic and genomic interactions of animals with different ploidy levels. Cytogenet Genome Res 2013; 140:117-36. [PMID: 23751376 DOI: 10.1159/000351593] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Polyploid animals have independently evolved from diploids in diverse taxa across the tree of life. We review a few polyploid animal species or biotypes where recently developed molecular and cytogenetic methods have significantly improved our understanding of their genetics, reproduction and evolution. Mitochondrial sequences that target the maternal ancestor of a polyploid show that polyploids may have single (e.g. unisexual salamanders in the genus Ambystoma) or multiple (e.g. parthenogenetic polyploid lizards in the genus Aspidoscelis) origins. Microsatellites are nuclear markers that can be used to analyze genetic recombinations, reproductive modes (e.g. Ambystoma) and recombination events (e.g. polyploid frogs such as Pelophylax esculentus). Hom(e)ologous chromosomes and rare intergenomic exchanges in allopolyploids have been distinguished by applying genome-specific fluorescent probes to chromosome spreads. Polyploids arise, and are maintained, through perturbations of the 'normal' meiotic program that would include pre-meiotic chromosome replication and genomic integrity of homologs. When possible, asexual, unisexual and bisexual polyploid species or biotypes interact with diploid relatives, and genes are passed from diploid to polyploid gene pools, which increase genetic diversity and ultimately evolutionary flexibility in the polyploid. When diploid relatives do not exist, polyploids can interact with another polyploid (e.g. species of African Clawed Frogs in the genus Xenopus). Some polyploid fish (e.g. salmonids) and frogs (Xenopus) represent independent lineages whose ancestors experienced whole genome duplication events. Some tetraploid frogs (P. esculentus) and fish (Squaliusalburnoides) may be in the process of becoming independent species, but diploid and triploid forms of these 'species' continue to genetically interact with the comparatively few tetraploid populations. Genetic and genomic interaction between polyploids and diploids is a complex and dynamic process that likely plays a crucial role for the evolution and persistence of polyploid animals. See also other articles in this themed issue.
Collapse
Affiliation(s)
- J P Bogart
- Department of Integrative Biology, University of Guelph, Guelph, Ont., Canada. jbogart @ uoguelph.ca
| | | |
Collapse
|
11
|
Collares-Pereira M, Matos I, Morgado-Santos M, Coelho M. Natural Pathways towards Polyploidy in Animals: TheSqualius alburnoidesFish Complex as a Model System to Study Genome Size and Genome Reorganization in Polyploids. Cytogenet Genome Res 2013; 140:97-116. [DOI: 10.1159/000351729] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Stenberg P, Saura A. Meiosis and Its Deviations in Polyploid Animals. Cytogenet Genome Res 2013; 140:185-203. [DOI: 10.1159/000351731] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Apalikova OV, Podlesnykh AV, Kukhlevsky AD, Guohua S, Brykov VA. Phylogenetic relationships of silver crusian carp Carassius auratus gibelio, C. auratus cuvieri, crucian carp Carassius carassius, and common carp Cyprinus carpio as inferred from mitochondrial DNA variation. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411020025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
|
15
|
Alves MJ, Coelho MM, Collares-Pereira MJ. The Rutilus alburnoides complex (Cyprinidae): evidence for a hybrid origin. J ZOOL SYST EVOL RES 2009. [DOI: 10.1111/j.1439-0469.1997.tb00398.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Cunha C, Bastir M, Coelho MM, Doadrio I. Body shape evolution among ploidy levels of the Squalius alburnoides hybrid complex (Teleostei, Cyprinidae). J Evol Biol 2009; 22:718-28. [PMID: 19320794 DOI: 10.1111/j.1420-9101.2009.01695.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hybridization, ploidy level and genomic constitution may be important to respond to different environments, by producing different phenotypes and thus reducing competitive interaction. Through geometric morphometrics, we examined variation in body size and shape among biotypes of the Squalius alburnoides hybrid complex and their sperm donor (Squalius carolitertii). Results showed that S. carolitertii is significantly larger in size than the biotypes of the complex. No significant relationship was observed between ploidy and body size among S. alburnoides biotypes. Significant variation in body shape was found between S. carolitertii and S. alburnoides, and between tetraploids and the other biotypes. These differences in biotypes may reduce resource competition, highlighting the potential importance of resource availability favouring one biotype over another. In S. alburnoides, the adaptation to different trophic niches through modification of trophic morphology, body shapes, and feeding behaviour, may result from an increase in ploidy and genomic constitution. This adaptation may account also for the formation and maintenance of this nonsexual complex.
Collapse
Affiliation(s)
- C Cunha
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain.
| | | | | | | |
Collapse
|
17
|
|
18
|
Lampert KP, Schartl M. The origin and evolution of a unisexual hybrid: Poecilia formosa. Philos Trans R Soc Lond B Biol Sci 2008; 363:2901-9. [PMID: 18508756 PMCID: PMC2606734 DOI: 10.1098/rstb.2008.0040] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clonal reproduction in vertebrates can always be traced back to hybridization events as all known unisexual vertebrates are hybrids between recognized species or genetically defined races. Interestingly, clonal vertebrates often also rely on interspecific matings for their reproduction because gynogenesis (sperm-dependent parthenogenesis) and hybridogenesis are common modes of propagation. While in most cases these hybridization events leave no hereditary traces in the offspring, occasionally the genome exclusion mechanism fails and either small parts of male genetic material remain inside the oocyte in the form of microchromosomes, or fusion of the sperm nucleus with the oocyte nucleus leads to polyploid individuals. In this review, we highlight the important role of hybridization for the origin and evolution of a unisexual hybrid: the Amazon molly, Poecilia formosa.
Collapse
Affiliation(s)
- K P Lampert
- Department of Physiological Chemistry I, Biocenter, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany.
| | | |
Collapse
|
19
|
Li XC, Barringer BC, Barbash DA. The pachytene checkpoint and its relationship to evolutionary patterns of polyploidization and hybrid sterility. Heredity (Edinb) 2008; 102:24-30. [PMID: 18766201 DOI: 10.1038/hdy.2008.84] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sterility is a commonly observed phenotype in interspecific hybrids. Sterility may result from chromosomal or genic incompatibilities, and much progress has been made toward understanding the genetic basis of hybrid sterility in various taxa. The underlying mechanisms causing hybrid sterility, however, are less well known. The pachytene checkpoint is a meiotic surveillance system that many organisms use to detect aberrant meiotic products, in order to prevent the production of defective gametes. We suggest that activation of the pachytene checkpoint may be an important mechanism contributing to two types of hybrid sterility. First, the pachytene checkpoint may form the mechanistic basis of some gene-based hybrid sterility phenotypes. Second, the pachytene checkpoint may be an important mechanism that mediates chromosomal-based hybrid sterility phenotypes involving gametes with non-haploid (either non-reduced or aneuploid) chromosome sets. Studies in several species suggest that the strength of the pachytene checkpoint is sexually dimorphic, observations that warrant future investigation into whether such variation may contribute to differences in patterns of sterility between male and female interspecific hybrids. In addition, plants seem to lack the pachytene checkpoint, which correlates with increased production of unreduced gametes and a higher incidence of polyploid species in plants versus animals. Although the pachytene checkpoint occurs in many animals and in fungi, at least some of the genes that execute the pachytene checkpoint are different among organisms. This finding suggests that the penetrance of the pachytene checkpoint, and even its presence or absence can evolve rapidly. The surprising degree of evolutionary flexibility in this meiotic surveillance system may contribute to the observed variation in patterns of hybrid sterility and in rates of polyploidization.
Collapse
Affiliation(s)
- X C Li
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
20
|
|
21
|
SALEMAA H. Polyploidy in the evolution of the glacial relict Pontoporeia spp. (Amphipoda, Crustacea). Hereditas 2008. [DOI: 10.1111/j.1601-5223.1984.tb00104.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
22
|
Gong N, Yang H, Zhang G, Landau BJ, Guo X. Chromosome inheritance in triploid Pacific oyster Crassostrea gigas Thunberg. Heredity (Edinb) 2005; 93:408-15. [PMID: 15254489 DOI: 10.1038/sj.hdy.6800517] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Reproduction and chromosome inheritance in triploid Pacific oyster (Crassostrea gigas Thunberg) were studied in diploid female x triploid male (DT) and reciprocal (TD) crosses. Relative fecundity of triploid females was 13.4% of normal diploids. Cumulative survival from fertilized eggs to spat stage was 0.007% for DT crosses and 0.314% for TD crosses. Chromosome number analysis was conducted on surviving progeny from DT and TD crosses at 1 and 4 years of age. At Year 1, oysters from DT crosses consisted of 15% diploids (2n=20) and 85% aneuploids. In contrast, oysters from TD crosses consisted of 57.2% diploids, 30.9% triploids (3n=30) and only 11.9% aneuploids, suggesting that triploid females produced more euploid gametes and viable progeny than triploid males. Viable aneuploid chromosome numbers included 2n+1, 2n+2, 2n+3, 3n-2 and 3n-1. There was little change over time in the overall frequency of diploids, triploids and aneuploids. Among aneuploids, oysters with 2n+3 and 3n-2 chromosomes were observed at Year 1, but absent at Year 4. Triploid progeny were significantly larger than diploids by 79% in whole body weight and 98% in meat weight at 4 years of age. Aneuploids were significantly smaller than normal diploids. This study suggests that triploid Pacific oyster is not completely sterile and cannot offer complete containment of cultured populations.
Collapse
Affiliation(s)
- N Gong
- Experimental Marine Biology Laboratory, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, PRC
| | | | | | | | | |
Collapse
|
23
|
Cunha C, Coelho MM, Carmona JA, Doadrio I. Phylogeographical insights into the origins of the Squalius alburnoides complex via multiple hybridization events. Mol Ecol 2004; 13:2807-17. [PMID: 15315691 DOI: 10.1111/j.1365-294x.2004.02283.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The origin, the phylogeographical structure and divergence times of hybridrogenetic Squalius alburnoides complex were analysed based on the complete mitochondrial cytochrome b gene (1140 pb). The molecular phylogenetic analyses suggest that the S. alburnoides complex has at least five asexual lineages of independent origin. The events that produced this ancestral hybridization took place over a long period of time. There have been multiple hybridization events throughout time, beginning in the upper Pliocene and probably continuing into the present. Increased humidity caused by climate changes in the Pliocene, along with tectonic lifting and vasculation of the Iberian Peninsula, led to the formation of current river drainages which, in turn, contributed to these hybridization events. We postulate that the Northwestern (Mondego and Douro) and the Southwest (Quarteira) drainages of the Iberian Peninsula delimited the border of the maternal ancestral distribution and that vicariant events led to the disappearance of the maternal ancestor in these regions, leaving today only the hybrid species. Two hypotheses have been suggested to explain the similarities between the mtDNA diversity observed in S. alburnoides and its maternal ancestor (S. pyrenaicus). The first hypothesizes that mtDNA similarity results from the recent extinction of the paternal ancestor, while the other postulates that: 'reconstituted non hybrid males' assumed the place of the extinct bisexual paternal ancestor and produced new hybridizations with S. pyrenaicus females.
Collapse
Affiliation(s)
- C Cunha
- Museo Nacional de Ciencias Naturales, CSIC, Departamento de Biodiversidad y Biología Evolutiva, C/José Gutiérrez Abascal, 2, 28006 Madrid, Spain.
| | | | | | | |
Collapse
|
24
|
|
25
|
Abstract
Changes in ploidy occurred early in the diversification of some animal and plant lineages and represent an ongoing phenomenon in others. While the prevalence of polyploid lineages indicates that this phenomenon is a common and successful evolutionary transition, whether polyploidization itself has a significant effect on patterns and rates of diversification remains an open question. Here we review evidence for the creative role of polyploidy in evolution. We present new estimates for the incidence of polyploidy in ferns and flowering plants based on a simple model describing transitions between odd and even base chromosome numbers. These new estimates indicate that ploidy changes may represent from 2 to 4% of speciation events in flowering plants and 7% in ferns. Speciation via polyploidy is likely to be one of the more predominant modes of sympatric speciation in plants, owing to its potentially broad-scale effects on gene regulation and developmental processes, effects that can produce immediate shifts in morphology, breeding system, and ecological tolerances. Theoretical models support the potential for increased adaptability in polyploid lineages. The evidence suggests that polyploidization can produce shifts in genetic systems and phenotypes that have the potential to result in increased evolutionary diversification, yet conclusive evidence that polyploidy has changed rates and patterns of diversification remains elusive.
Collapse
Affiliation(s)
- S P Otto
- Department of Zoology and Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4 Canada.
| | | |
Collapse
|
26
|
Abstract
Whole-genome duplication is believed to have played a significant role in the early evolution and diversification of vertebrate animals. The establishment of newly arisen polyploid lineages of sexually reproducing animals requires assortative mating between polyploids. Here, we show that genome duplication can directly alter a phenotypic trait mediating mate choice in the absence of genotypic change. Our results suggest that the direct effect of polyploidy on behaviour is a consequence of increased cell size.
Collapse
Affiliation(s)
- M J Keller
- Division of Biological Sciences, University of Missouri-Columbia, 65211, USA.
| | | |
Collapse
|
27
|
A test of the hypothesis of an autopolyploid vs. allopolyploid origin for a tetraploid lineage: application to the genus barbus (Cyprinidae). Heredity (Edinb) 1999; 82 Pt 4:373-80. [PMID: 10383655 DOI: 10.1038/sj.hdy.6884890] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A new method is described for determination of the origin of polyploid lineages. It tests the hypothesis that a tetraploid lineage originated via autopolyploidization vs. allopolyploidization. The method is based on the hypothesis that, in the case of autopolyploidy, any genetic marker in the first tetraploid ancestor is represented by two copies (one for each homoeologous chromosome of the haploid complement), whereas in allopolyploidy some markers absent from one of the hybridizing species will display one copy at most. The model requires knowledge of the phylogeny (topology and branch lengths) of a sample of species descending from the same tetraploidization event, together with the number of homoeologous copies present in each species for a set of neutral markers. The likelihood of a given proportion of the markers being present in both homoeologous chromosome pairs of the ancestral tetraploid is expressed as a function of the deletion rate of a marker. In the case of an autopolyploid origin, this proportion equals one. A likelihood-ratio test was carried out to test this hypothesis. The method was used to examine five microsatellite loci in eight species of Barbus (sensu lato). Assuming the validity of the hypotheses on phylogenetic relationships and evolutionary rates, the test rejects the possibility that European tetraploid barbs originated through autopolyploidy. This is the first test that can reject autopolyploidy, and it would appear particularly useful for phylogenetic studies in taxa where hybridization is known and where, consequently, undetected reticulate evolution may impair phylogenetic reconstruction.
Collapse
|
28
|
Alves MJ, Coelho MM, Próspero MI, Collares-Pereira MJ. Production of fertile unreduced sperm by hybrid males of the Rutilus alburnoides complex (Teleostei, cyprinidae). An alternative route to genome tetraploidization in unisexuals. Genetics 1999; 151:277-83. [PMID: 9872966 PMCID: PMC1460441 DOI: 10.1093/genetics/151.1.277] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The hybrid minnow Rutilus alburnoides comprises diploid and polyploid females and males. Previous studies revealed that diploid and triploid females exhibit altered oogenesis that does not involve random segregation and recombination of the genomes of the two ancestors, constituting unisexual lineages. In the present study, we investigated the reproductive mode of hybrid males from the Tejo basin, using experimental crosses and flow cytometric analysis of blood and sperm. The results suggest that diploid hybrids produced fertile unreduced sperm, transmitting their hybrid genome intact to offspring. Triploid hybrids also produced unreduced sperm, but it was not possible to obtain data concerning their fertility. Finally, tetraploid hybrids produced fertile diploid sperm, which exhibited Mendelian segregation. Tetraploid R. alburnoides may reestablish biparental reproduction, as individuals of both sexes with the appropriate constitution for normal meiosis (two haploid genomes from each parental species) are likely to occur in natural populations. Tetraploids probably have arisen from syngamy of diploid eggs and diploid sperm produced by diploid hybrid males. Diploid hybrid males may therefore play a significant role in the dynamics of the complex, starting the evolutionary process that may ultimately lead to a new sexually reproducing species.
Collapse
Affiliation(s)
- M J Alves
- Centro de Biologia Ambiental, Departamento de Zoologia e Antropologia, Faculdade de Ciências, Universidade de Lisboa, 1700 Lisboa, Portugal
| | | | | | | |
Collapse
|
29
|
Dowling TE, Secor ACL. THE ROLE OF HYBRIDIZATION AND INTROGRESSION IN THE DIVERSIFICATION OF ANIMALS. ACTA ACUST UNITED AC 1997. [DOI: 10.1146/annurev.ecolsys.28.1.593] [Citation(s) in RCA: 477] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas E. Dowling
- Department of Biology, Arizona State University, Tempe, Arizona; 85287-1501 e-mail: ,
| | - and Carol L. Secor
- Department of Biology, Arizona State University, Tempe, Arizona; 85287-1501 e-mail: ,
| |
Collapse
|
30
|
Imbert-Establet D, Xia M, Jourdane J. Parthenogenesis in the genus Schistosoma: electrophoretic evidence for this reproduction system in S. japonicum and S. mansoni. Parasitol Res 1994; 80:186-91. [PMID: 8036230 DOI: 10.1007/bf00932672] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mixed infections with Schistosoma japonicum and S. mansoni were carried out in mice. S. japonicum females paired with S. mansoni males developed normally and produced numerous viable eggs; very little sperm was found in the female genital tract. The eggs yielded many miracidia infective to Oncomelania hupensis, the host of S. japonicum. Cercariae arising from miracidia developed into male worms with an electrophoretic pattern of malate dehydrogenase (MDH) corresponding only to the maternal species S. japonicum. S. mansoni females paired with S. japonicum produced few viable eggs; sperm was found in the female genital tract. Miracidia hatched from some of these eggs were infective to Biomphalaria glabrata, the host of S. mansoni. Cercariae arising from miracidia developed into female worms with an electrophoretic pattern of MDH typical of the maternal species S. mansoni. It was concluded that S. japonicum females paired with S. japonicum males reproduce parthenogenetically. Parthenogenesis in schistosomes is discussed.
Collapse
Affiliation(s)
- D Imbert-Establet
- Institute of Parasitic Diseases, Chinese Academy of Preventive Medicine, Shanghai, People's Republic of China
| | | | | |
Collapse
|
31
|
Tinti F, Scali V. Chromosomal evidence of hemiclonal and all-paternal offspring production in Bacillus rossius-grandii benazzii (Insecta Phasmatodea). Chromosoma 1993. [DOI: 10.1007/bf00360405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
The appearance of diploid-triploid and diploid-triploid-tetraploid mosaic individuals in polyploid fish, ginbuna (Carassius auratus langsdorfii). ACTA ACUST UNITED AC 1986. [DOI: 10.1007/bf01952460] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
|
34
|
Leipoldt M. Towards an understanding of the molecular mechanisms regulating gene expression during diploidization in phylogenetically polyploid lower vertebrates. Hum Genet 1983; 65:11-8. [PMID: 6357994 DOI: 10.1007/bf00285022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polyploidization and regional gene duplication have occurred frequently during vertebrate evolution, providing the genetic material necessary for creating evolutionary novelties. Mammals, including man, can be regarded as diploid species with a polyploid history of evolution. Polyploidization steps during the phylogeny of mammals probably took place in the genomes of amphibian- or fish-like mammalian ancestors. The polyploid status has subsequently been shaped by the process of diploidization, leading to genomes that are polyploid with respect to the amount of genetic material and the number of gene copies, and diploid with respect to the level of gene expression and chromosomal characteristics. Phylogenetically tetraploid amphibian and teleost species together with their diploid close relatives can be used as a model system to study the effect of polyploidization and the mechanisms of diploidization of a parallel event during early mammalian evolution. Experimental evidence permits the assumption that the diploidization of gene expression in tetraploid cyprinid fish may be functionally correlated with structural modifications of the ribosomal components, RNA and protein. These findings are discussed in the light of reduced protein synthesis in diploidized tetraploid species and a mechanism to explain diploidization during mammalian evolution.
Collapse
|
35
|
Rasch EM, Monaco PJ, Balsano JS. Cytophotometric and autoradiographic evidence for functional apomixis in a gynogenetic fish, Poecilia formosa and its related, triploid unisexuals. HISTOCHEMISTRY 1982; 73:515-33. [PMID: 7068442 DOI: 10.1007/bf00493366] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Amounts of DNA in individual Feulgen-stained nuclei from squash preparations of ovaries and testes from wide-caught and laboratory-reared stocks of Poecilia spp. were determined with an integrating microdensitometer. The DNA content of primary spermatocytes (4C) at zygotene, pachytene, or at metaphase I (3.3-3.4 pg) was approximately twice that found in secondary spermatocytes (2C) and four times that found for young spermatids (1C). Rarely, mature sperm were found with 2C DNA amounts. Nuclei from follicular epithelium and oogonia from both bisexual and diploid unisexual fish contained about 1.6-1.7 pg DNA; whereas, the DNA content of primary oocyte nuclei was about 3.5-3.7 pg DNA, indicating that just one cycle of chromosomal replication had occurred in these cells during the period of DNA synthesis before the visible onset of meiotic prophase. Similar results were obtained for triploid unisexuals whose 6C primary oocyte nuclei contained 5.0-5.1 pg DNA, which was twice the DNA content of 3C oogonia and follicular epithelial cells (2.4-2.5 pg DNA). Autoradiographic studies, designed to monitor the incorporation of 3H-thymidine by oogonia and primary oocytes in vivo and in vitro, also showed that there is no additional synthesis of DNA during the course of meiotic prophase in these unisexual fish. Therefore, we conclude that apomixis, not endoreduplication, is the cytological basis of reproduction in Poecilia formosa and its related, triploid biotypes.
Collapse
|
36
|
|