1
|
Li J, Wu YJ. Tri-ortho-cresyl phosphate induces hepatic steatosis by mTOR activation and ER stress induction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:116010. [PMID: 38280340 DOI: 10.1016/j.ecoenv.2024.116010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/17/2023] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Tri-ortho-cresyl phosphate (TOCP), an organophosphorus compound (OP), which is widely used as plasticizer, flame retardant and other industrial products, has been reported to cause multiple toxicities including neurotoxicity and reproductive toxicity. However, it remains to be elusive whether TOCP induces hepatotoxicity. The purpose of this study was to investigate the effect of TOCP on hepatocytes and the lipid metabolism in particular. The adult mice were given a single dose of TOCP (800 mg/kg, p.o.) and the histological changes in liver tissue and lipid content in serum were determined. The results showed that more vacuoles and lipid droplets were observed in the liver of the mice exposed to TOCP. And triglyceride concentrations in serum and liver tissue significantly increased. However, the histopathological changes of the liver and the elevated triglyceride levels in the exposed mice can be reversed by endoplasmic reticulum (ER) stress inhibitor 4-phenylbutyric acid and mTOR signal inhibitor rapamycin. It was also found that the changes of expression levels of the biomarkers of ER stress and mTOR signaling pathway, such as GRP78, CHOP, and p-mTOR, in the exposed mice were consistent with those observed in the cultured primary hepatocytes treated with the same chemicals. These results showed that TOCP activated mTOR signal and ER stress to induce de novo lipid synthesis, which led to the hepatic steatosis in mouse.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Duman B, Erkmen C, Zahirul Kabir M, Ching Yi L, Mohamad SB, Uslu B. In vitro interactions of two pesticides, propazine and quinoxyfen with bovine serum albumin: Spectrofluorometric and molecular docking investigations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122907. [PMID: 37257323 DOI: 10.1016/j.saa.2023.122907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Binding mechanisms of two selected pesticides, propazine (PRO) and quinoxyfen (QUI) with bovine serum albumin (BSA) was examined using fluorescence, absorption and molecular docking methods. Intrinsic fluorescence of BSA was quenched in the presence of both PRO and QUI. The quenching was ascertained to be conversely linked to temperature, which suggested the contribution of static quenching process in the PRO-BSA and QUI-BSA complex formations. This results were validated by the enhancement in absorption spectrum of BSA upon binding with PRO and QUI. Binding constant values (Kf = 9.55-0.60 × 10-3 M-1 for PRO-BSA system; Kf = 7.08-5.01 × 102 M-1 for QUI-BSA system) and number of binding site (n) values for the PRO-BSA and QUI-BSA systems at different temperatures affirmed a weak binding strength with a set of equivalent binding sites on BSA. Thermodynamic data obtained for both the PRO-BSA and QUI-BSA interactions predicted that the association process was spontaneous and non-covalent contacts such as hydrophobic interactions, van der Waals forces and hydrogen bonds participated in the binding reactions. This result was further supported by the molecular docking assessments. Three-dimensional spectral results revealed the microenvironmental alterations near tryptophan (Trp) and tyrosine (Tyr) residues in BSA by the addition of PRO and QUI. The docking analysis demonstrated the binding pattern for the PRO-BSA and QUI-BSA systems and disclosed the preferred binding site of both PRO and QUI as site I (subdomain IIA) of BSA.
Collapse
Affiliation(s)
- Bahadir Duman
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye; Ankara University, The Graduate School of Health Sciences, 06110 Ankara, Türkiye
| | - Cem Erkmen
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye
| | - Md Zahirul Kabir
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye
| | - Lim Ching Yi
- Faculty of Science, Bioinformatics Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Saharuddin B Mohamad
- Faculty of Science, Bioinformatics Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia; Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, University of Malaya, Kuala Lumpur, Malaysia
| | - Bengi Uslu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye.
| |
Collapse
|
3
|
Saadh MJ. Potential protective effects of red grape seed extract in a rat model of malathion-induced neurotoxicity. Vet World 2023; 16:380-385. [PMID: 37042003 PMCID: PMC10082724 DOI: 10.14202/vetworld.2023.380-385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/18/2023] [Indexed: 02/27/2023] Open
Abstract
Background and Aim: Exposure to pesticide mixtures used in agricultural practice poses a grave risk to non-target animals. This study aimed to determine whether red grape seed extract (RGSE, which is 95% bioflavonoids and equal to 12,000 mg of fresh red grape seed, and 150 mg of vitamin C) alleviated the changes in brain-derived neurotrophic factor (BDNF) level, acetylcholinesterase activity, oxidative stress, and apoptosis induced by orally administered malathion in a rat model of malathion-induced neurotoxicity.
Materials and Methods: Thirty-two adult male Wistar albino rats were divided into four groups and exposed to malathion with or without 4 weeks of RGSE treatment, treated with RGSE alone, or left untreated as controls. The animals were euthanized 24 h after last treatment. Brain samples were collected to measure acetylcholinesterase, superoxide dismutase (SOD), and caspase 3 activity, total antioxidant capacity (TAC), and BDNF levels.
Results: Malathion significantly reduced acetylcholinesterase and SOD activity and TAC and significantly increased caspase 3 activity. In comparison, acetylcholinesterase and SOC activity, BDNF level, and TAC were improved and caspase 3 activity was decreased in the malathion-RGSE group, indicating that RGSE corrected the alterations detected in these biochemical parameters.
Conclusion: Oxidative stress and apoptosis in the brains of rats exposed to oral malathion were substantially controlled by RGSE treatment.
Collapse
Affiliation(s)
- Mohamed Jamal Saadh
- Department of Basic Science, Faculty of Pharmacy, Middle East University, Amman, Jordan; Applied Science Research Center, Applied Science Private University, Amman, Jordan
| |
Collapse
|
4
|
Pan X, Liu A, Zheng M, Liu J, Du M, Wang L. Determination and environmental risk assessment of organophosphorus flame retardants in sediments of the South China Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70542-70551. [PMID: 35588034 DOI: 10.1007/s11356-022-20752-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
As ubiquitous contaminants in the environment, organophosphorus flame retardants (OPFRs) would eventually settle in marine sediment. In this study, concentrations, spatial distributions, and ecological risks of seven OPFRs in sediment samples of the South China Sea (SCS) were investigated for the first time. Total concentration of all OPFRs ranged from 2.5 to 32.3 ng/g dry weight (dw), in which the abundance of tri-cresyl phosphates (TCPs) was the highest. OPFRs in the SCS were at a medium level compared with those from other parts of the world. The nearshore ocean current, ship transportation, and riverine inputs might influence the spatial distributions of OPFRs. The total inventory of six OPFRs in sediment was estimated to be 202.8 tons (16.7×104 km2). The hazard quotient (HQ) of OPFRs ranged from 0 to 3.2E-02, indicating the ignorable ecological risk of OPFRs in sediments of the SCS. This study provides insight into the occurrence of current-use OPFRs in the SCS which deserved long-term concern in the future due to their continuous terrigenous inputs.
Collapse
Affiliation(s)
- Xin Pan
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Aifeng Liu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Minggang Zheng
- Marine Ecology Research Center, Ministry of Natural Resources, First Institute of Oceanography, Qingdao, 266061, China
| | - Jianxin Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing at Karamay, Karamay, 834000, China
| | - Ming Du
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Ling Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
5
|
Felemban SG, Vyas FS, Durose L, Hargreaves AJ, Dickenson JM. Phenyl Saligenin Phosphate Disrupts Cell Morphology and the Actin Cytoskeleton in Differentiating H9c2 Cardiomyoblasts and Human-Induced Pluripotent Stem-Cell-Derived Cardiomyocyte Progenitor Cells. Chem Res Toxicol 2020; 33:2310-2323. [PMID: 32786544 DOI: 10.1021/acs.chemrestox.0c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously shown that phenyl saligenin phosphate (PSP), an organophosphorus compound which is classed as a weak inhibitor of acetylcholinesterase, triggered cytotoxicity in mitotic and differentiated H9c2 cardiomyoblasts. The aim of this study was to assess whether sublethal concentrations of PSP could disrupt the morphology of differentiating rat H9c2 cardiomyoblasts and human-induced pluripotent stem-cell-derived cardiomyocyte progenitor cells (hiPSC-CMs) and to assess the underlying cytoskeletal changes. PSP-induced changes in protein expression were monitored via Western blotting, immunocytochemistry, and proteomic analysis. PSP-mediated cytotoxicity was determined by measuring MTT reduction, LDH release, and caspase-3 activity. Sublethal exposure to PSP (3 μM) induced morphological changes in differentiating H9c2 cells (7, 9, and 13 days), reflected by reduced numbers of spindle-shaped cells. Moreover, this treatment (7 days) attenuated the expression of the cytoskeletal proteins cardiac troponin I, tropomyosin-1, and α-actin. Further proteomic analysis identified nine proteins (e.g., heat shock protein 90-β and calumenin) which were down-regulated by PSP exposure in H9c2 cells. To assess the cytotoxic effects of organophosphorus compounds in a human cell model, we determined their effects on human-induced pluripotent stem-cell-derived cardiomyocyte progenitor cells. Chlorpyrifos and diazinon-induced cytotoxicity (48 h) was evident only at concentrations >100 μM. By contrast, PSP exhibited cytotoxicity in hiPSC-CMs at a concentration of 25 μM following 48 h exposure. Finally, sublethal exposure to PSP (3 μM; 7 days) induced morphological changes and decreased the expression of cardiac troponin I, tropomyosin-1, and α-actin in hiPSC-CMs. In summary, our data suggest cardiomyocyte morphology is disrupted in both cell models by sublethal concentrations of PSP via modulation of cytoskeletal protein expression.
Collapse
Affiliation(s)
- Shatha G Felemban
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Falguni S Vyas
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Lyndsey Durose
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Alan J Hargreaves
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - John M Dickenson
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
6
|
Almami IS, Aldubayan MA, Felemban SG, Alyamani N, Howden R, Robinson AJ, Pearson TDZ, Boocock D, Algarni AS, Garner AC, Griffin M, Bonner PLR, Hargreaves AJ. Neurite outgrowth inhibitory levels of organophosphates induce tissue transglutaminase activity in differentiating N2a cells: evidence for covalent adduct formation. Arch Toxicol 2020; 94:3861-3875. [PMID: 32749514 PMCID: PMC7603472 DOI: 10.1007/s00204-020-02852-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Organophosphate compounds (OPs) induce both acute and delayed neurotoxic effects, the latter of which is believed to involve their interaction with proteins other than acetylcholinesterase. However, few OP-binding proteins have been identified that may have a direct role in OP-induced delayed neurotoxicity. Given their ability to disrupt Ca2+ homeostasis, a key aim of the current work was to investigate the effects of sub-lethal neurite outgrowth inhibitory levels of OPs on the Ca2+-dependent enzyme tissue transglutaminase (TG2). At 1-10 µM, the OPs phenyl saligenin phosphate (PSP) and chlorpyrifos oxon (CPO) had no effect cell viability but induced concentration-dependent decreases in neurite outgrowth in differentiating N2a neuroblastoma cells. The activity of TG2 increased in cell lysates of differentiating cells exposed for 24 h to PSP and chlorpyrifos oxon CPO (10 µM), as determined by biotin-cadaverine incorporation assays. Exposure to both OPs (3 and/or 10 µM) also enhanced in situ incorporation of the membrane permeable substrate biotin-X-cadaverine, as indicated by Western blot analysis of treated cell lysates probed with ExtrAvidin peroxidase and fluorescence microscopy of cell monolayers incubated with FITC-streptavidin. Both OPs (10 µM) stimulated the activity of human and mouse recombinant TG2 and covalent labelling of TG2 with dansylamine-labelled PSP was demonstrated by fluorescence imaging following SDS-PAGE. A number of TG2 substrates were tentatively identified by mass spectrometry, including cytoskeletal proteins, chaperones and proteins involved protein synthesis and gene regulation. We propose that the elevated TG2 activity observed is due to the formation of a novel covalent adduct between TG2 and OPs.
Collapse
Affiliation(s)
- Ibtesam S Almami
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Biology, College of Science, Qassim University, Al-Qassim, Saudi Arabia
| | - Maha A Aldubayan
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al-Qassim, Saudi Arabia
| | - Shatha G Felemban
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Medical Laboratory Science, Fakeeh College for Medical Science, Jeddah, Saudi Arabia
| | - Najiah Alyamani
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Biology, Faculty of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Richard Howden
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Alexander J Robinson
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Life Sciences, School of Health Sciences, Birmingham City University, City South Campus, Edgbaston, B15 3TN, UK
| | - Tom D Z Pearson
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - David Boocock
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Alanood S Algarni
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Mekkah, Saudi Arabia
| | - A Christopher Garner
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Martin Griffin
- Department of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Philip L R Bonner
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Alan J Hargreaves
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
7
|
Chung CY, Wang Q, Yang S, Chough S, Seo Y, Cipollo JF, Balthasar JP, Betenbaugh MJ. The impact of sialylation linkage-type on the pharmacokinetics of recombinant butyrylcholinesterases. Biotechnol Bioeng 2019; 117:157-166. [PMID: 31544955 DOI: 10.1002/bit.27174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/07/2019] [Accepted: 09/13/2019] [Indexed: 11/10/2022]
Abstract
Chinese hamster ovary (CHO) cells typically produce glycoproteins with N-glycans terminating in α-2,3 sialylation. Human cells produce glycoproteins that include α-2,3 and α-2,6 sialic acids. To examine the impact of altering protein sialylation on pharmacokinetic properties, recombinant human butyrylcholinesterase (BChE) was produced in CHO cells by knocking out the α-2,3 sialyltransferase genes followed by overexpression of the α-2,6 sialyltransferase (26BChE) enzyme. The N-glycan composition of 26BChE was compared to BChE with α-2,3 sialylation (23BChE) derived from wild-type CHO cells. Both 23BChE and 26BChE exhibited comparable antennarity distributions with bi-antennary di-sialylated glycans representing the most abundant glycoform. CD-1 mice were intravenously injected with the 23BChE or 26BChE, and residual BChE activities from blood collected at various time points for pharmacokinetic analyses. Although 23BChE contained a slightly lower initial sialylation level compared to 26BChE, the molecule exhibited higher residual activity between 5 and 24 hr postinjection. Pharmacokinetic analyses indicated that 23BChE exhibited an increase in area under the curve and a lower volume of distribution at steady state than that of 26BChE. These findings suggest that the type of sialylation linkage may play a significant role in the pharmacokinetic behavior of a biotherapeutic when tested in in vivo animal models.
Collapse
Affiliation(s)
- Cheng-Yu Chung
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Shuang Yang
- Laboratory for Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products (DBPAP), Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Sandra Chough
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Younji Seo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - John F Cipollo
- Laboratory for Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products (DBPAP), Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Joseph P Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
8
|
Dahiya V, Chaubey B, Dhaharwal AK, Pal S. Solvent-dependent binding interactions of the organophosphate pesticide, chlorpyrifos (CPF), and its metabolite, 3,5,6-trichloro-2-pyridinol (TCPy), with Bovine Serum Albumin (BSA): A comparative fluorescence quenching analysis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 139:92-100. [PMID: 28595929 DOI: 10.1016/j.pestbp.2017.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/17/2017] [Accepted: 04/22/2017] [Indexed: 05/19/2023]
Abstract
Analysis of the interaction of pesticides and their metabolites with the cellular proteins has drawn considerable attention in past several years to understand the effect of pesticides on environment and mankind. In this study, we have investigated the binding interaction of Bovine Serum Albumin (BSA) with a widely used organophosphorous insecticide chlorpyrifos (CPF), and its stable metabolite, 3,5,6-trichloro-2-pyridinol (TCPy) to provide a comparative analysis of the two molecules by employing various spectroscopic techniques viz., UV-vis absorption, Circular Dichroism (CD), and Fluorescence spectroscopy. The fluorescence quenching studies of BSA emission in two different solvents viz., water and methanol in presence of CPF and TCPy have led to the revelation of several interesting facts about the pesticide-protein interaction. It has been found that both the molecules cause static quenching of BSA emission as seen from the Stern-Volmer constant (Ksv) irrespective of the solvent used for the analysis. While TCPy is a stronger quencher in water, it exhibits comparable quenching capacity with CPF in methanol. The solvent dependent differential binding interaction of the two molecules finally indicates possibility of diverse bio-distribution of the pesticides within human body. The UV-vis and CD spectra of BSA in presence of the test molecules have unravelled that the molecules formed ground state complex that are highly reversible in nature and have minimal effect on the protein secondary structure. Furthermore it is also understood that structural changes of BSA in presence of CPF is significantly higher compared to that in presence of TCPY.
Collapse
Affiliation(s)
- Vandana Dahiya
- Department of Chemistry, Indian Institute of Technology Jodhpur, 342011, India
| | - Bhawna Chaubey
- Department of Chemistry, Indian Institute of Technology Jodhpur, 342011, India
| | - Ashok K Dhaharwal
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Samanwita Pal
- Department of Chemistry, Indian Institute of Technology Jodhpur, 342011, India.
| |
Collapse
|
9
|
Zhu L, Wang P, Sun YJ, Xu MY, Wu YJ. Disturbed phospholipid homeostasis in endoplasmic reticulum initiates tri-o-cresyl phosphate-induced delayed neurotoxicity. Sci Rep 2016; 6:37574. [PMID: 27883027 PMCID: PMC5121615 DOI: 10.1038/srep37574] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/01/2016] [Indexed: 11/30/2022] Open
Abstract
Tri-o-cresyl phosphate (TOCP) is a widely used organophosphorus compound, which can cause a neurodegenerative disorder, i.e., organophosphate-induced delayed neurotoxicity (OPIDN). The biochemical events in the initiation of OPIDN were not fully understood except for the essential inhibition of neuropathy target esterase (NTE). NTE, located in endoplasmic reticulum (ER), catalyzes the deacylation of phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) to glycerophosphocholine (GPC). The present study aims to study the changes of ER phospholipids profile as well as levels of important intermediates of phospholipid synthesis such as diacylglycerol (DAG) and phosphatidic acid (PA) at the initiation stage of OPIDN. Hens are the most commonly used animal models of OPIDN. The spinal cord phospholipidomic profiles of hens treated by TOCP were studied by using HPLC-MS-MS. The results revealed that TOCP induced an increase of PC, LPC, and sphingomyelin (SM) levels and a decrease of GPC, phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), lysophosphatidylserine (LPS), phosphatidylglycerol (PG), and phosphatidylinositol (PI) levels., Levels of DAG and PA were also decreased. Pretreatment with phenylmethylsulfonyl fluoride (PMSF) 24 h before TOCP administration prevented OPIDN and restored the TOCP-induced changes of phospholipids except GPC. Thus, the disruption of ER phospholipid homeostasis may contribute to the initiation of organophosphate-induced delayed neurotoxicity.
Collapse
Affiliation(s)
- Li Zhu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pan Wang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying-Jian Sun
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Department of Veterinary Medicine and Animal Science, Beijing Agriculture College, Beijing 102206, China.,Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming-Yuan Xu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
10
|
Lahouel A, Kebieche M, Lakroun Z, Rouabhi R, Fetoui H, Chtourou Y, Djamila Z, Soulimani R. Neurobehavioral deficits and brain oxidative stress induced by chronic low dose exposure of persistent organic pollutants mixture in adult female rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19030-19040. [PMID: 27240828 DOI: 10.1007/s11356-016-6913-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
Persistent organic pollutants (POPs) are long-lived organic compounds that are considered one of the major risks to ecosystem and human health. Recently, great concerns are raised about POPs mixtures and its potential toxicity even in low doses of daily human exposure. The brain is mostly targeted by these lipophilic compounds because of its important contain in lipids. So, it would be quite interesting to study the effects of exposure to these mixtures and evaluate their combined toxicity on brain cells. The present study was designed to characterize the cognitive and locomotors deficits and brain areas redox status in rat model. An orally chronic exposure to a representative mixture of POPs composed of endosulfan (2.6 μg/kg), chlorpyrifos (5.2 μg/kg), naphthalene (0.023 μg/kg) and benzopyrane (0.002 μg/kg); the same mixture with concentration multiplied by 10 and 100 was also tested. Exposed rats have shown a disturbance of memory and a decrease in learning ability concluded by Morris water maze and the open field tests results and anxiolytic behaviour in the test of light/dark box compared to control. Concerning brain redox homeostasis, exposed rats have shown an increased malondialdehyde (MDA) amount and an alteration in glutathione (GSH) levels in both the brain mitochondria and cytosolic fractions of the cerebellum, striatum and hippocampus. These effects were accompanied by a decrease in levels of cytosolic glutathione S-transferase (GST) and a highly significant increase in superoxide dismutase (SOD) and catalase (CAT) activities in both cytosolic and mitochondrial fractions. The current study suggests that environmental exposure to daily even low doses of POPs mixtures through diet induces oxidative stress status in the brain and especially in the mitochondria with important cognitive and locomotor behaviour variations in the rats.
Collapse
Affiliation(s)
- Asma Lahouel
- Laboratory of Cellular and Molecular Biology, University of Jijel, Jijel, Algeria
| | - Mohamed Kebieche
- Laboratory of Cellular and Molecular Biology, University of Jijel, Jijel, Algeria.
- Laboratory of Food Neurotoxicology and Bioactivity, University of Metz, Metz, France.
| | - Zohra Lakroun
- Laboratory of Cellular and Molecular Biology, University of Jijel, Jijel, Algeria
| | - Rachid Rouabhi
- Faculty of SESNV, Applied Biology Department, University of Tebessa, Tebessa, Algeria
| | - Hamadi Fetoui
- Toxicology-Microbiology and Environmental Health Unit (UR11ES70), University of Sfax, Sfax, Tunisia
| | - Yassine Chtourou
- Toxicology-Microbiology and Environmental Health Unit (UR11ES70), University of Sfax, Sfax, Tunisia
| | - Zama Djamila
- Department of Animal Biology, University of Mentouri 1, Constantine, Algeria
| | - Rachid Soulimani
- Laboratory of Food Neurotoxicology and Bioactivity, University of Metz, Metz, France
| |
Collapse
|
11
|
Felemban SG, Garner AC, Smida FA, Boocock DJ, Hargreaves AJ, Dickenson JM. Phenyl Saligenin Phosphate Induced Caspase-3 and c-Jun N-Terminal Kinase Activation in Cardiomyocyte-Like Cells. Chem Res Toxicol 2015; 28:2179-91. [PMID: 26465378 DOI: 10.1021/acs.chemrestox.5b00338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
At present, little is known about the effect(s) of organophosphorous compounds (OPs) on cardiomyocytes. In this study, we have investigated the effects of phenyl saligenin phosphate (PSP), two organophosphorothioate insecticides (diazinon and chlorpyrifos), and their acutely toxic metabolites (diazoxon and chlorpyrifos oxon) on mitotic and differentiated H9c2 cardiomyoblasts. OP-induced cytotoxicity was assessed by monitoring MTT reduction, LDH release, and caspase-3 activity. Cytotoxicity was not observed with diazinon, diazoxon, or chlorpyrifos oxon (48 h exposure; 200 μM). Chlorpyrifos-induced cytotoxicity was only evident at concentrations >100 μM. In marked contrast, PSP displayed pronounced cytotoxicity toward mitotic and differentiated H9c2 cells. PSP triggered the activation of JNK1/2 but not ERK1/2, p38 MAPK, or PKB, suggesting a role for this pro-apoptotic protein kinase in PSP-induced cell death. The JNK1/2 inhibitor SP 600125 attenuated PSP-induced caspase-3 and JNK1/2 activation, confirming the role of JNK1/2 in PSP-induced cytotoxicity. Fluorescently labeled PSP (dansylated PSP) was used to identify novel PSP binding proteins. Dansylated PSP displayed cytotoxicity toward differentiated H9c2 cells. 2D-gel electrophoresis profiles of cells treated with dansylated PSP (25 μM) were used to identify proteins fluorescently labeled with dansylated PSP. Proteomic analysis identified tropomyosin, heat shock protein β-1, and nucleolar protein 58 as novel protein targets for PSP. In summary, PSP triggers cytotoxicity in differentiated H9c2 cardiomyoblasts via JNK1/2-mediated activation of caspase-3. Further studies are required to investigate whether the identified novel protein targets of PSP play a role in the cytotoxicity of this OP, which is usually associated with the development of OP-induced delayed neuropathy.
Collapse
Affiliation(s)
- Shatha G Felemban
- School of Science and Technology, Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - A Christopher Garner
- School of Science and Technology, Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Fathi A Smida
- School of Science and Technology, Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - David J Boocock
- John van Geest Cancer Research Centre, Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Alan J Hargreaves
- School of Science and Technology, Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - John M Dickenson
- School of Science and Technology, Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
12
|
Boostani R, Mellat A, Afshari R, Derakhshan S, Saeedi M, Rafeemanesh E, Mellat M. Delayed polyneuropathy in farm sprayers due to chronic low dose pesticide exposure. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 16:e5072. [PMID: 25031861 PMCID: PMC4082521 DOI: 10.5812/ircmj.5072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 02/09/2013] [Accepted: 01/28/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND The use of organophosphates (OPs) in developing countries is rising in large quantities and non-secure methods. This problem not only causes acute poisoning but also may lead to chronic diseases such as polyneuropathy. In Iran, 60% of pesticides are organophosphate compounds that may lead to delayed polyneuropathy. OBJECTIVES The purpose of the current study was to evaluate delayed polyneuropathy in farm sprayers due to chronic low dose pesticide exposure. PATIENTS AND METHODS In our cross-sectional study, non-randomized sampling method was performed and 100 farm sprayers (cases) and 100 hospital personnel (controls) after precise systemic and neurological examination were recruited to this study from June 2011 to august 2011. The nerve conduction studies were performed and these indices were recorded: Compound Muscle Action Potential (CMAP), amplitude and Distal Latency (DL) and Nerve Conduction Velocity (NCV) of common peroneal nerve, Peak Latency (PL) and amplitude of Sensory Nerve Action Potential (SNAP) and Nerve Conduction Velocity (NCV) of sural and radial sensory nerves. RESULTS Among 100 cases, 55 farm sprayers complained of non-neurological problems including: ophthalmologic, dermatologic and pulmonary complications. The ophthalmologic complaints (44%) were the most. The mean peroneal CMAP amplitude and NCV, sural PL, radial SNAP amplitude, PL and NCV in the case group were significantly different compared to control group. Mean exposure time to OPs in farm sprayers without neurological problem (40%) was 11.81 ± 5.84 years but in farm sprayers with neurological problems (60%) was 15.70 ± 9.08 years, which represents the effect of OPs exposure duration on neurologic problems. CONCLUSIONS Chronic low dose pesticide exposure could lead to delayed peripheral neuropathy as well as systemic (skin, eyes and lungs) complications. In farm sprayers electrodiagnostic indices were significantly abnormal as compared to control group. The normal indices did not rule out neurologic involvement and it seems that measurement of these indices at the beginning of the farm sprayers employment and intermittently during their work is helpful for detecting delayed polyneuropathy.
Collapse
Affiliation(s)
- Reza Boostani
- Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Ali Mellat
- Neurology Department, Shahid Sadoughi Hospital, Yazd University of Medical Sciences, Yazd, IR Iran
| | - Reza Afshari
- Medical Toxicology Research Centre, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Siavash Derakhshan
- Neurology Department, North Khorasan University of Medical Sciences, Bojnourd, IR Iran
| | - Morteza Saeedi
- Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Ehsan Rafeemanesh
- Occupational and Environmental Health Department, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Maryam Mellat
- Physical Medicine and Rehabilitation Department, Isfahan University of Medical Sciences, Isfahan, IR Iran
| |
Collapse
|
13
|
Astiz M, Diz-Chaves Y, Garcia-Segura LM. Sub-chronic exposure to the insecticide dimethoate induces a proinflammatory status and enhances the neuroinflammatory response to bacterial lypopolysaccharide in the hippocampus and striatum of male mice. Toxicol Appl Pharmacol 2013; 272:263-71. [DOI: 10.1016/j.taap.2013.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/29/2013] [Accepted: 07/03/2013] [Indexed: 01/05/2023]
|
14
|
Muthaiah VPK, Venkitasamy L, Michael FM, Chandrasekar K, Venkatachalam S. Neuroprotective role of naringenin on carbaryl induced neurotoxicity in mouse neuroblastoma cells. J Pharmacol Pharmacother 2013; 4:192-7. [PMID: 23960424 PMCID: PMC3746302 DOI: 10.4103/0976-500x.114599] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Neuroprotective effect of naringenin against carbaryl toxicity was studied in mouse neuroblastoma cell line. MATERIALS AND METHODS Mouse neuroblastoma cells (Neuro 2A) obtained from National Center for Cell Sciences, Pune, India were either exposed to carbaryl or pre-treated with naringenin (a flavonoid prepared from grape fruit) before their exposure to carbaryl. Results were analyzed using MTT [3-4,5-Dimethylthiazol-2-yl)-2,5-diphenltetrazolium bromide] assay for cell viability, FACS (fluorescence assisted cell sorting) analysis for apoptotic and necrotic cell populations, DCFH-DA (2`,7`-dichlorofluorescin-diacetate) assay for Reactive Oxygen Species (ROS) visualization, JC-1 staining for determining mitochondrial membrane potential and real-time PCR for quantifying pro and anti-apoptotic gene expression. RESULTS Exposure to naringenin resulted in better survival of Neuro 2A cells which were subsequently subjected to carbaryl toxicity. Treatment with naringenin was found to reduce the oxidative stress by decreasing the ROS and was found to maintain the integrity of mitochondrial membrane potential. It was also found to downregulate pro-apoptotic genes (BAX and Caspase-3) while upregulating anti-apototic gene (Bcl2). CONCLUSION The results of this pilot study underline the potential of naringenin in treating carbaryl induced neurotoxicity and further studies are warranted to establish the effect of naringenin in vivo conditions.
Collapse
|
15
|
Astiz M, Acaz-Fonseca E, Garcia-Segura LM. Sex Differences and Effects of Estrogenic Compounds on the Expression of Inflammatory Molecules by Astrocytes Exposed to the Insecticide Dimethoate. Neurotox Res 2013; 25:271-85. [DOI: 10.1007/s12640-013-9417-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/26/2013] [Accepted: 08/03/2013] [Indexed: 12/31/2022]
|