1
|
Primavilla S, Farneti S, Roila R, Branciari R, Altissimi C, Valiani A, Ranucci D. Retrospective study on the prevalence of Yersinia enterocolitica in food collected in Umbria region (central Italy). Ital J Food Saf 2023; 12:10996. [PMID: 37064514 PMCID: PMC10102966 DOI: 10.4081/ijfs.2023.10996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/14/2022] [Indexed: 04/18/2023] Open
Abstract
Yersinia enterocolitica represents one of the main foodborne pathogens in Europe and the evaluation of possible sources of contamination and its prevalence in food is of considerable interest for risk analysis approach. The results of the search for Yersinia enterocolitica in food samples taken in Umbria region (central Italy) were evaluated during the years 2015-2018. Different types of foods were considered, both ready-to-eat (meat products, dairy products, and raw vegetables) and meat preparations to be eaten after cooking. Samples were assayed by molecular screening for the species indicator gene ompF. Screening positives were subjected to isolation and characterization by searching for specific virulence marker genes, including the ail gene responsible for invasiveness and the ystB gene for the production of enterotoxin. The total prevalence of positive samples for Yersinia enterocolitica was 16.86% with a higher percentage of positive samples in meat preparations (19.35%), followed by ready-to-eat vegetables (11.76%). Poultry meat samples had a higher prevalence than pork and beef samples. Neither positive samples were found in meat products and dairy, nor seasonality in positivity was observed. All isolated strains of Yersinia enterocolitica were biotype 1A, with absence of the ail virulence gene but presence of ystB gene. Since the strains isolated from human patients appear to be primarily biotypes that possess the ail marker, future investigations would be needed regarding the real role of biotype 1A in human disease. In this context, attention should certainly be paid to ready-to-eat vegetables and to careful cooking of meat preparations.
Collapse
Affiliation(s)
- Sara Primavilla
- Experimental Zooprophylactic Institute Togo Rosati of Umbria and Marche, Perugia, Italy
| | - Silvana Farneti
- Experimental Zooprophylactic Institute Togo Rosati of Umbria and Marche, Perugia, Italy
| | - Rossana Roila
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Department of Veterinary Medicine, University of Perugia, via San Costanzo 4, 06126 Perugia, Italy.
| | | | - Caterina Altissimi
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Andrea Valiani
- Experimental Zooprophylactic Institute Togo Rosati of Umbria and Marche, Perugia, Italy
| | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Mancini ME, Beverelli M, Donatiello A, Didonna A, Dattoli L, Faleo S, Occhiochiuso G, Galante D, Rondinone V, Del Sambro L, Bianco A, Miccolupo A, Goffredo E. Isolation and characterization of Yersinia enterocolitica from foods in Apulia and Basilicata regions (Italy) by conventional and modern methods. PLoS One 2022; 17:e0268706. [PMID: 35830422 PMCID: PMC9278756 DOI: 10.1371/journal.pone.0268706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/05/2022] [Indexed: 12/03/2022] Open
Abstract
Yersiniosis is the third most reported food-borne zoonosis in Europe. The aim of the present study was to perform the search for Yersinia enterocolitica in food samples collected from Apulia and Basilicata regions (Southern Italy) and to characterize any isolates by classical and modern analytical methods. A total of 130 samples were analyzed between July 2018 and July 2019: most of them were raw milk and dairy products made from it. Furthermore, 8 out of 130 samples were individual milk samples collected from bovines reared in a Brucella-free farm which showed false positive serological reaction for brucellosis due to the presence of pathogenic Y. enterocolitica O:9 biotype 2 in faeces. The Real Time PCR targeting the ail gene and the culture method were performed to detect pathogenic Y. enterocolitica. Isolates were subjected to API 20E (Biomerieux) and MALDI-TOF MS (Matrix Assisted Laser Desorption Ionization Time-of-Flight) for species identification. All samples were negative for the ail gene. The culture method allowed to isolate suspicious colonies from 28 samples. The API 20E system and the MALDI-TOF MS technique identified 20 Y. enterocolitica and 1 Y. intermedia in a concordant way. The remaining 7 strains were all identified as Y. enterocolitica by the API 20E system, while the MALDI-TOF MS recognized 4 Y. intermedia, 1 Y. bercovieri and 2 Y. massiliensis. Genotypic characterization of the discordant strains was performed by rMLST and it confirmed the MALDI-TOF MS' results. Only non-pathogenic Y. enterocolitica biotype 1A strains were found, although with a non-negligible prevalence (P = 0.15 with CI 95% = ± 0.06). This study indicates a poor circulation of pathogenic Y. enterocolitica in food products made and marketed in the investigated areas. However, the small number of samples, insufficient for some food categories such as meat and vegetable, does not allow to exclude the presence of pathogenic strains at all.
Collapse
Affiliation(s)
| | - Matteo Beverelli
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Adelia Donatiello
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Antonella Didonna
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Luigi Dattoli
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Simona Faleo
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Gilda Occhiochiuso
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Domenico Galante
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Valeria Rondinone
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Laura Del Sambro
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Angelica Bianco
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Angela Miccolupo
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Elisa Goffredo
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| |
Collapse
|
3
|
Jaballah S, Fhoula I, Boumaiza M, Najjari A, Mhajbi N, Boudabous A, Klibi N, Ouzari H. Prevalence and risk factors of potential pathogenic
Yersinia enterocolitica
in Tunisian frozen ground beef through a shelf‐life monitoring protocol validation. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Sana Jaballah
- LR03ES03: Laboratoire Microorganismes et Biomolécules Actives, Faculté des Science de Tunis Université de Tunis El Manar Tunis Tunisie
- Département analyses et essais Centre Technique de l’agroalimentaire Tunis Tunisie
| | - Imene Fhoula
- LR03ES03: Laboratoire Microorganismes et Biomolécules Actives, Faculté des Science de Tunis Université de Tunis El Manar Tunis Tunisie
| | - Mohamed Boumaiza
- LR03ES03: Laboratoire Microorganismes et Biomolécules Actives, Faculté des Science de Tunis Université de Tunis El Manar Tunis Tunisie
| | - Afef Najjari
- LR03ES03: Laboratoire Microorganismes et Biomolécules Actives, Faculté des Science de Tunis Université de Tunis El Manar Tunis Tunisie
| | - Narjes Mhajbi
- Département analyses et essais Centre Technique de l’agroalimentaire Tunis Tunisie
| | - Abdellatif Boudabous
- LR03ES03: Laboratoire Microorganismes et Biomolécules Actives, Faculté des Science de Tunis Université de Tunis El Manar Tunis Tunisie
| | - Naouel Klibi
- LR03ES03: Laboratoire Microorganismes et Biomolécules Actives, Faculté des Science de Tunis Université de Tunis El Manar Tunis Tunisie
| | - Hadda‐Imene Ouzari
- LR03ES03: Laboratoire Microorganismes et Biomolécules Actives, Faculté des Science de Tunis Université de Tunis El Manar Tunis Tunisie
| |
Collapse
|
4
|
Detection, virulence and antimicrobial resistance of Yersinia enterocolitica in bulk tank milk in Italy. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
The Biochemistry of Sensing: Enteric Pathogens Regulate Type III Secretion in Response to Environmental and Host Cues. mBio 2018; 9:mBio.02122-17. [PMID: 29339429 PMCID: PMC5770552 DOI: 10.1128/mbio.02122-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enteric pathogens employ sophisticated strategies to colonize and infect mammalian hosts. Gram-negative bacteria, such as Escherichia coli, Salmonella, and Campylobacter jejuni, are among the leading causes of gastrointestinal tract infections worldwide. The virulence strategies of many of these Gram-negative pathogens rely on type III secretion systems (T3SSs), which are macromolecular syringes that translocate bacterial effector proteins directly into the host cytosol. However, synthesis of T3SS proteins comes at a cost to the bacterium in terms of growth rate and fitness, both in the environment and within the host. Therefore, expression of the T3SS must be tightly regulated to occur at the appropriate time and place during infection. Enteric pathogens have thus evolved regulatory mechanisms to control expression of their T3SSs in response to specific environmental and host cues. These regulatory cascades integrate multiple physical and chemical signals through complex transcriptional networks. Although the power of bacterial genetics has allowed elucidation of many of these networks, the biochemical interactions between signal and sensor that initiate the signaling cascade are often poorly understood. Here, we review the physical and chemical signals that Gram-negative enteric pathogens use to regulate T3SS expression during infection. We highlight the recent structural and functional studies that have elucidated the biochemical properties governing both the interaction between sensor and signal and the mechanisms of signal transduction from sensor to downstream transcriptional networks.
Collapse
|
6
|
Keto-Timonen R, Pöntinen A, Aalto-Araneda M, Korkeala H. Growth of Yersinia pseudotuberculosis Strains at Different Temperatures, pH Values, and NaCl and Ethanol Concentrations. J Food Prot 2018; 81:142-149. [PMID: 29283703 DOI: 10.4315/0362-028x.jfp-17-223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Maximum growth temperature and growth limits in Luria-Bertani broth at different pH values and NaCl and ethanol concentrations were determined for 49 Yersinia pseudotuberculosis strains representing serotypes O:1, O:2, O:3, O:4, and O:5. In addition, the ability of the strains to grow at 0°C and the growth parameters at 1°C were determined. The maximum growth temperatures measured by Gradiplate temperature incubator varied between 42.2 and 43.7°C. All strains were able to grow at 0°C in Luria-Bertani broth within 17 days of incubation. At 1°C, differences were observed among strains in the maximum growth rates and area under the curve values based on optical density data, which suggests that some Y. pseudotuberculosis strains adapt faster to colder conditions. The mean maximum growth rates and area under the curve values at 1°C, as well as the mean maximum growth temperatures, were statistically significantly higher among serotype O:1 strains compared with O:3 strains and among biotype 1 compared with biotype 2 strains. All strains grew at pH 4.5, whereas none of the strains were able to grow at pH 4.2. The highest pH at which growth was observed varied between 9.0 and 9.3. For 14 strains the maximum NaCl concentration at which growth was observed was 4.8%, whereas 35 of the strains were able to grow at 5.0% NaCl. None of the strains showed growth at 5.2% NaCl. All strains were able to grow at 4.5% ethanol concentration (v/v), whereas 5.0% ethanol concentration was completely inhibitory to all strains. The observed limited physiological diversity among various Y. pseudotuberculosis strains may stem from the genetic homogeneity of the species.
Collapse
Affiliation(s)
- Riikka Keto-Timonen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, P.O. Box 66, FI-00014 University of Helsinki, Helsinki, Finland (ORCID: http://orcid.org/0000-0002-4823-9139 [R.K.-T.])
| | - Anna Pöntinen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, P.O. Box 66, FI-00014 University of Helsinki, Helsinki, Finland (ORCID: http://orcid.org/0000-0002-4823-9139 [R.K.-T.])
| | - Mariella Aalto-Araneda
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, P.O. Box 66, FI-00014 University of Helsinki, Helsinki, Finland (ORCID: http://orcid.org/0000-0002-4823-9139 [R.K.-T.])
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, P.O. Box 66, FI-00014 University of Helsinki, Helsinki, Finland (ORCID: http://orcid.org/0000-0002-4823-9139 [R.K.-T.])
| |
Collapse
|
7
|
Petsios S, Fredriksson-Ahomaa M, Sakkas H, Papadopoulou C. Conventional and molecular methods used in the detection and subtyping of Yersinia enterocolitica in food. Int J Food Microbiol 2016; 237:55-72. [DOI: 10.1016/j.ijfoodmicro.2016.08.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 07/28/2016] [Accepted: 08/11/2016] [Indexed: 01/08/2023]
|
8
|
Thuan NK, Naher K, Kubo R, Taniguchi T, Hayashidani H. Evaluation of Chromogenic Medium for Selective Isolation of Yersinia. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2016; 57:166-168. [PMID: 27784868 DOI: 10.3358/shokueishi.57.166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cefsulodin-irgasan-novobiocin agar (CIN) has been used as a selective agar to detect Yersinia in food or human patients; however, its components can inhibit the growth of some strains of Yersinia enterocolitica serovar O3 and Y. pseudotuberculosis. Recently, a new Yersinia selective agar, CHROMagar Yersinia enterocolitica (CAYe), was developed and evaluated as a novel selective agar for pathogenic Y. enterocolitica. In this research, a total of 251Yersinia strains (176 pathogenic Y. enterocolitica, 59 Y. pseudotuberculosis, and 16 non-pathogenic Yersinia) were cultured on both CIN and CAYe for comparison. Except for 10 of 104 pathogenic Y. enterocolitica O3 strains and 59 Y. pseudotuberculosis strains, 198 Yersinia isolates grew on both media after 48 hr of incubation at 32℃. Of the 10 pathogenic Y. enterocolitica O3 which could not grow on CIN or CAYe, 9 strains could not grow on CIN with supplements and 1 strain could not grow CAYe with supplements. Of 9 strains which did not grow on CIN with supplements, 3 strains could not grow on CIN without supplements. However, 1 strain which did not grow on CAYe with supplements could grow on CAYe without supplements. All of the Y. pseudotuberculosis strains could grow on CIN with/without supplements and on CAYe without supplements. The results indicate that the inhibition of the growth of Y. enterocolitica O3 on CIN is related to the components of CIN; however, the inhibition on CAYe appears to be related to the supplements in CAYe. Therefore, CAYe may be a more useful selective medium than CIN for pathogenic Y. enterocolitica .
Collapse
|
9
|
Pohjola L, Nykäsenoja S, Kivistö R, Soveri T, Huovilainen A, Hänninen ML, Fredriksson-Ahomaa M. Zoonotic Public Health Hazards in Backyard Chickens. Zoonoses Public Health 2016; 63:420-30. [PMID: 26752227 DOI: 10.1111/zph.12247] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 01/31/2023]
Abstract
Backyard poultry has become increasingly popular in industrialized countries. In addition to keeping chickens for eggs and meat, owners often treat the birds as pets. However, several pathogenic enteric bacteria have the potential for zoonotic transmission from poultry to humans but very little is known about the occurrence of zoonotic pathogens in backyard flocks. The occurrence and the antimicrobial resistance of Salmonella enterica, Campylobacter spp., Listeria monocytogenes and enteropathogenic Yersinia spp. was studied in 51 voluntary backyard chicken farms in Finland during October 2012 and January 2013. Campylobacter isolates were further characterized by pulsed-field gel electrophoresis (PFGE), and the occurrence of ESBL/AmpC-producing E. coli was investigated. The findings from this study indicate that backyard chickens are a reservoir of Campylobacter jejuni strains and a potential source of C. jejuni infection for humans. Backyard chickens can also carry L. monocytogenes, although their role as a primary reservoir is questionable. Campylobacter coli, Yersinia pseudotuberculosis and Salmonella enterica were only found sporadically in the faecal and environmental samples of backyard poultry in Finland. No Yersinia enterocolitica carrying the virulence plasmid was isolated. All pathogens were highly susceptible to most of the antimicrobials studied. Only a few AmpC- and no ESBL-producing E. coli were found.
Collapse
Affiliation(s)
- L Pohjola
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Saarentaus, Finland
| | - S Nykäsenoja
- Research and Laboratory Department, Food and Feed Microbiology Research Unit, Finnish Food Safety Authority Evira, Helsinki, Finland
| | - R Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - T Soveri
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Saarentaus, Finland
| | - A Huovilainen
- Veterinary Virology, Finnish Food Safety Authority Evira, Helsinki, Finland
| | - M L Hänninen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - M Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Möllerherm H, Neumann A, Schilcher K, Blodkamp S, Zeitouni NE, Dersch P, Lüthje P, Naim HY, Zinkernagel AS, von Köckritz-Blickwede M. Yersinia enterocolitica-mediated degradation of neutrophil extracellular traps (NETs). FEMS Microbiol Lett 2015; 362:fnv192. [PMID: 26459885 DOI: 10.1093/femsle/fnv192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2015] [Indexed: 01/09/2023] Open
Abstract
Neutrophil extracellular trap (NET) formation is described as a tool of the innate host defence to fight against invading pathogens. Fibre-like DNA structures associated with proteins such as histones, cell-specific enzymes and antimicrobial peptides are released, thereby entrapping invading pathogens. It has been reported that several bacteria are able to degrade NETs by nucleases and thus evade the NET-mediated entrapment. Here we studied the ability of three different Yersinia serotypes to induce and degrade NETs. We found that the common Yersinia enterocolitica serotypes O:3, O:8 and O:9 were able to induce NETs in human blood-derived neutrophils during the first hour of co-incubation. At later time points, the NET amount was reduced, suggesting that degradation of NETs has occurred. This was confirmed by NET degradation assays with phorbol-myristate-acetate-pre-stimulated neutrophils. In addition, we found that the Yersinia supernatants were able to degrade purified plasmid DNA. The absence of Ca(2+) and Mg(2+) ions, but not that of a protease inhibitor cocktail, completely abolished NET degradation. We therefore postulate that Y. enterocolitica produces Ca(2+)/Mg(2+)-dependent NET-degrading nucleases as shown for some Gram-positive pathogens.
Collapse
Affiliation(s)
- Helene Möllerherm
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Ariane Neumann
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Katrin Schilcher
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
| | - Stefanie Blodkamp
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Nathalie E Zeitouni
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Petra Dersch
- Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Petra Lüthje
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet Stockholm, SE-171-76, Sweden
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Annelies S Zinkernagel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
11
|
Erhardt M, Dersch P. Regulatory principles governing Salmonella and Yersinia virulence. Front Microbiol 2015; 6:949. [PMID: 26441883 PMCID: PMC4563271 DOI: 10.3389/fmicb.2015.00949] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/27/2015] [Indexed: 11/13/2022] Open
Abstract
Enteric pathogens such as Salmonella and Yersinia evolved numerous strategies to survive and proliferate in different environmental reservoirs and mammalian hosts. Deciphering common and pathogen-specific principles for how these bacteria adjust and coordinate spatiotemporal expression of virulence determinants, stress adaptation, and metabolic functions is fundamental to understand microbial pathogenesis. In order to manage sudden environmental changes, attacks by the host immune systems and microbial competition, the pathogens employ a plethora of transcriptional and post-transcriptional control elements, including transcription factors, sensory and regulatory RNAs, RNAses, and proteases, to fine-tune and control complex gene regulatory networks. Many of the contributing global regulators and the molecular mechanisms of regulation are frequently conserved between Yersinia and Salmonella. However, the interplay, arrangement, and composition of the control elements vary between these closely related enteric pathogens, which generate phenotypic differences leading to distinct pathogenic properties. In this overview we present common and different regulatory networks used by Salmonella and Yersinia to coordinate the expression of crucial motility, cell adhesion and invasion determinants, immune defense strategies, and metabolic adaptation processes. We highlight evolutionary changes of the gene regulatory circuits that result in different properties of the regulatory elements and how this influences the overall outcome of the infection process.
Collapse
Affiliation(s)
- Marc Erhardt
- Young Investigator Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research Braunschweig, Germany
| |
Collapse
|
12
|
Meat Processing Plant Microbiome and Contamination Patterns of Cold-Tolerant Bacteria Causing Food Safety and Spoilage Risks in the Manufacture of Vacuum-Packaged Cooked Sausages. Appl Environ Microbiol 2015; 81:7088-97. [PMID: 26231646 DOI: 10.1128/aem.02228-15] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/27/2015] [Indexed: 02/07/2023] Open
Abstract
Refrigerated food processing facilities are specific man-made niches likely to harbor cold-tolerant bacteria. To characterize this type of microbiota and study the link between processing plant and product microbiomes, we followed and compared microbiota associated with the raw materials and processing stages of a vacuum-packaged, cooked sausage product affected by a prolonged quality fluctuation with occasional spoilage manifestations during shelf life. A total of 195 samples were subjected to culturing and amplicon sequence analyses. Abundant mesophilic psychrotrophs were detected within the microbiomes throughout the different compartments of the production plant environment. However, each of the main genera of food safety and quality interest, e.g., Leuconostoc, Brochothrix, and Yersinia, had their own characteristic patterns of contamination. Bacteria from the genus Leuconostoc, commonly causing spoilage of cold-stored, modified-atmosphere-packaged foods, were detected in high abundance (up to >98%) in the sausages studied. The same operational taxonomic units (OTUs) were, however, detected in lower abundances in raw meat and emulsion (average relative abundance of 2%±5%), as well as on the processing plant surfaces (<4%). A completely different abundance profile was found for OTUs phylogenetically close to the species Yersinia pseudotuberculosis. These OTUs were detected in high abundance (up to 28%) on the processing plant surfaces but to a lesser extent (<1%) in raw meat, sausage emulsion, and sausages. The fact that Yersinia-like OTUs were found on the surfaces of a high-hygiene packaging compartment raises food safety concerns related to their resilient existence on surfaces.
Collapse
|
13
|
Heroven AK, Dersch P. Coregulation of host-adapted metabolism and virulence by pathogenic yersiniae. Front Cell Infect Microbiol 2014; 4:146. [PMID: 25368845 PMCID: PMC4202721 DOI: 10.3389/fcimb.2014.00146] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/30/2014] [Indexed: 01/07/2023] Open
Abstract
Deciphering the principles how pathogenic bacteria adapt their metabolism to a specific host microenvironment is critical for understanding bacterial pathogenesis. The enteric pathogenic Yersinia species Yersinia pseudotuberculosis and Yersinia enterocolitica and the causative agent of plague, Yersinia pestis, are able to survive in a large variety of environmental reservoirs (e.g., soil, plants, insects) as well as warm-blooded animals (e.g., rodents, pigs, humans) with a particular preference for lymphatic tissues. In order to manage rapidly changing environmental conditions and interbacterial competition, Yersinia senses the nutritional composition during the course of an infection by special molecular devices, integrates this information and adapts its metabolism accordingly. In addition, nutrient availability has an impact on expression of virulence genes in response to C-sources, demonstrating a tight link between the pathogenicity of yersiniae and utilization of nutrients. Recent studies revealed that global regulatory factors such as the cAMP receptor protein (Crp) and the carbon storage regulator (Csr) system are part of a large network of transcriptional and posttranscriptional control strategies adjusting metabolic changes and virulence in response to temperature, ion and nutrient availability. Gained knowledge about the specific metabolic requirements and the correlation between metabolic and virulence gene expression that enable efficient host colonization led to the identification of new potential antimicrobial targets.
Collapse
Affiliation(s)
- Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Institut für Mikrobiology, Technische Universität Braunschweig Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Institut für Mikrobiology, Technische Universität Braunschweig Braunschweig, Germany
| |
Collapse
|
14
|
Valentin-Weigand P, Heesemann J, Dersch P. Unique virulence properties of Yersinia enterocolitica O:3 – An emerging zoonotic pathogen using pigs as preferred reservoir host. Int J Med Microbiol 2014; 304:824-34. [DOI: 10.1016/j.ijmm.2014.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
15
|
Essential role of invasin for colonization and persistence of Yersinia enterocolitica in its natural reservoir host, the pig. Infect Immun 2013; 82:960-9. [PMID: 24343656 DOI: 10.1128/iai.01001-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, an oral minipig infection model was established to investigate the pathogenicity of Yersinia enterocolitica bioserotype 4/O:3. O:3 strains are highly prevalent in pigs, which are usually symptomless carriers, and they represent the most common cause of human yersiniosis. To assess the pathogenic potential of the O:3 serotype, we compared the colonization properties of Y. enterocolitica O:3 with O:8, a highly mouse-virulent Y. enterocolitica serotype, in minipigs and mice. We found that O:3 is a significantly better colonizer of swine than is O:8. Coinfection studies with O:3 mutant strains demonstrated that small variations within the O:3 genome leading to higher amounts of the primary adhesion factor invasin (InvA) improved colonization and/or survival of this serotype in swine but had only a minor effect on the colonization of mice. We further demonstrated that a deletion of the invA gene abolished long-term colonization in the pigs. Our results indicate a primary role for invasin in naturally occurring Y. enterocolitica O:3 infections in pigs and reveal a higher adaptation of O:3 than O:8 strains to their natural pig reservoir host.
Collapse
|
16
|
Human and animal isolates of Yersinia enterocolitica show significant serotype-specific colonization and host-specific immune defense properties. Infect Immun 2013; 81:4013-25. [PMID: 23959720 DOI: 10.1128/iai.00572-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Yersinia enterocolitica is a human pathogen that is ubiquitous in livestock, especially pigs. The bacteria are able to colonize the intestinal tract of a variety of mammalian hosts, but the severity of induced gut-associated diseases (yersiniosis) differs significantly between hosts. To gain more information about the individual virulence determinants that contribute to colonization and induction of immune responses in different hosts, we analyzed and compared the interactions of different human- and animal-derived isolates of serotypes O:3, O:5,27, O:8, and O:9 with murine, porcine, and human intestinal cells and macrophages. The examined strains exhibited significant serotype-specific cell binding and entry characteristics, but adhesion and uptake into different host cells were not host specific and were independent of the source of the isolate. In contrast, survival and replication within macrophages and the induced proinflammatory response differed between murine, porcine, and human macrophages, suggesting a host-specific immune response. In fact, similar levels of the proinflammatory cytokine macrophage inflammatory protein 2 (MIP-2) were secreted by murine bone marrow-derived macrophages with all tested isolates, but the equivalent interleukin-8 (IL-8) response of porcine bone marrow-derived macrophages was strongly serotype specific and considerably lower in O:3 than in O:8 strains. In addition, all tested Y. enterocolitica strains caused a considerably higher level of secretion of the anti-inflammatory cytokine IL-10 by porcine than by murine macrophages. This could contribute to limiting the severity of the infection (in particular of serotype O:3 strains) in pigs, which are the primary reservoir of Y. enterocolitica strains pathogenic to humans.
Collapse
|