1
|
Guo J, Zhong Y, Wang Y, Liu P, Jin H, Wang Y, Shi L, Wang P, Li W. Phylogenetic Relationships and Evolution of the Genus Eganvirus (186-Type) Yersinia pestis Bacteriophages. Viruses 2024; 16:748. [PMID: 38793629 PMCID: PMC11126057 DOI: 10.3390/v16050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Plague is an endemic infectious disease caused by Yersinia pestis. In this study, we isolated fourteen phages with similar sequence arrangements to phage 186; these phages exhibited different lytic abilities in Enterobacteriaceae strains. To illustrate the phylogenetic relationships and evolutionary relationships between previously designated 186-type phages, we analysed the complete sequences and important genes of the phages, including whole-genome average nucleotide identity (ANI) and collinearity comparison, evolutionary analysis of four conserved structural genes (V, T, R, and Q genes), and analysis of the regulatory genes (cI, apl, and cII) and integrase gene (int). Phylogenetic analysis revealed that thirteen of the newly isolated phages belong to the genus Eganvirus and one belongs to the genus Felsduovirus in the family Peduoviridae, and these Eganvirus phages can be roughly clustered into three subgroups. The topological relationships exhibited by the whole-genome and structural genes seemed similar and stable, while the regulatory genes presented different topological relationships with the structural genes, and these results indicated that there was some homologous recombination in the regulatory genes. These newly isolated 186-type phages were mostly isolated from dogs, suggesting that the resistance of Canidae to Y. pestis infection may be related to the wide distribution of phages with lytic capability.
Collapse
Affiliation(s)
- Jin Guo
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing 102206, China; (J.G.); (Y.W.); (H.J.); (Y.W.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing 102206, China
| | - Youhong Zhong
- Yunnan Institute for Endemic Disease Control and Prevention, Dali 671000, China; (Y.Z.); (P.L.); (L.S.)
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali 671000, China
| | - Yiting Wang
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing 102206, China; (J.G.); (Y.W.); (H.J.); (Y.W.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing 102206, China
| | - Pan Liu
- Yunnan Institute for Endemic Disease Control and Prevention, Dali 671000, China; (Y.Z.); (P.L.); (L.S.)
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali 671000, China
| | - Haixiao Jin
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing 102206, China; (J.G.); (Y.W.); (H.J.); (Y.W.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing 102206, China
| | - Yumeng Wang
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing 102206, China; (J.G.); (Y.W.); (H.J.); (Y.W.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing 102206, China
| | - Liyuan Shi
- Yunnan Institute for Endemic Disease Control and Prevention, Dali 671000, China; (Y.Z.); (P.L.); (L.S.)
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali 671000, China
| | - Peng Wang
- Yunnan Institute for Endemic Disease Control and Prevention, Dali 671000, China; (Y.Z.); (P.L.); (L.S.)
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali 671000, China
| | - Wei Li
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing 102206, China; (J.G.); (Y.W.); (H.J.); (Y.W.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing 102206, China
| |
Collapse
|
2
|
Two Novel Yersinia pestis Bacteriophages with a Broad Host Range: Potential as Biocontrol Agents in Plague Natural Foci. Viruses 2022; 14:v14122740. [PMID: 36560744 PMCID: PMC9785759 DOI: 10.3390/v14122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Bacteriophages (phages) have been successfully used as disinfectors to kill bacteria in food and the environment and have been used medically for curing human diseases. The objective of this research was to elucidate the morphological and genomic characteristics of two novel Yersinia pestis phages, vB_YpeM_ MHS112 (MHS112) and vB_YpeM_GMS130 (GMS130), belonging to the genus Gaprivervirus, subfamily Tevenvirinae, family Myoviridae. Genome sequencing showed that the sizes of MHS112 and GMS130 were 170507 and 168552 bp, respectively. A total of 303 and 292 open reading frames with 2 tRNA and 3 tRNA were predicted in MHS112 and GMS130, respectively. The phylogenetic relationships were analysed among the two novel Y. pestis phages, phages in the genus Gaprivervirus, and several T4-like phages infecting the Yersinia genus. The bacteriophage MHS112 and GMS130 exhibited a wider lytic host spectrum and exhibited comparative temperature and pH stability. Such features signify that these phages do not need to rely on Y. pestis as their host bacteria in the ecological environment, while they could be based on more massive Enterobacteriales species to propagate and form ecological barriers against Y. pestis pathogens colonised in plague foci. Such characteristics indicated that the two phages have potential as biocontrol agents for eliminating the endemics of animal plague in natural plague foci.
Collapse
|
3
|
Byvalov AA, Dudina LG, Ivanov SA, Kopylov PK, Svetoch TE, Konyshev IV, Morozova NA, Anisimov AP, Dentovskaya SV. Yersinia pestis Surface Antigens in Reception of Specific Bacteriophages. Bull Exp Biol Med 2022; 174:241-245. [PMID: 36598665 DOI: 10.1007/s10517-023-05681-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 01/05/2023]
Abstract
The significance of Yersinia pestis surface antigens in adhesiveness to specific bacteriophages has been studied with the use of two methodological approaches. It was shown that Ail protein immobilized on the surface of polystyrene microspheres (but not in the solution), can bind both the Pokrovskaya phage and pseudotuberculous diagnostic phage. YapF autotransporter interacted with both phages in a water-soluble form, but YapF bound to polystyrene microspheres interacted only with the Pokrovskaya phage. An assumption was made that Ail and YapF proteins can be the primary receptors providing non-specific reversible binding to the phages used in this work.
Collapse
Affiliation(s)
- A A Byvalov
- Vyatka State University, Kirov, Russia. .,Komi Institute of Physiology, Komi Research Center, Ural Division of the Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia.
| | - L G Dudina
- Vyatka State University, Kirov, Russia.,Komi Institute of Physiology, Komi Research Center, Ural Division of the Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia
| | - S A Ivanov
- State Research Center for Applied Microbiology and Biotechnology, Federal Service for the Oversight of Consumer Protection and Welfare, Obolensk, Moscow Region, Russia
| | - P Kh Kopylov
- State Research Center for Applied Microbiology and Biotechnology, Federal Service for the Oversight of Consumer Protection and Welfare, Obolensk, Moscow Region, Russia
| | - T E Svetoch
- State Research Center for Applied Microbiology and Biotechnology, Federal Service for the Oversight of Consumer Protection and Welfare, Obolensk, Moscow Region, Russia
| | - I V Konyshev
- Vyatka State University, Kirov, Russia.,Komi Institute of Physiology, Komi Research Center, Ural Division of the Russian Academy of Sciences, Syktyvkar, Komi Republic, Russia
| | | | - A P Anisimov
- State Research Center for Applied Microbiology and Biotechnology, Federal Service for the Oversight of Consumer Protection and Welfare, Obolensk, Moscow Region, Russia
| | - S V Dentovskaya
- State Research Center for Applied Microbiology and Biotechnology, Federal Service for the Oversight of Consumer Protection and Welfare, Obolensk, Moscow Region, Russia
| |
Collapse
|
4
|
Hammerl JA, Barac A, Bienert A, Demir A, Drüke N, Jäckel C, Matthies N, Jun JW, Skurnik M, Ulrich J, Hertwig S. Birds Kept in the German Zoo "Tierpark Berlin" Are a Common Source for Polyvalent Yersinia pseudotuberculosis Phages. Front Microbiol 2022; 12:634289. [PMID: 35046908 PMCID: PMC8762354 DOI: 10.3389/fmicb.2021.634289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 11/30/2021] [Indexed: 11/15/2022] Open
Abstract
Yersinia pseudotuberculosis is an important animal pathogen, particularly for birds, rodents, and monkeys, which is also able to infect humans. Indeed, an increasing number of reports have been published on zoo animals that were killed by this species. One option to treat diseased animals is the application of strictly lytic (virulent) phages. However, thus far relatively few phages infecting Y. pseudotuberculosis have been isolated and characterized. To determine the prevalence of Y. pseudotuberculosis phages in zoo animals, fecal samples of birds and some primates, maras, and peccaries kept in the Tierpark Berlin were analyzed. Seventeen out of 74 samples taken in 2013 and 2017 contained virulent phages. The isolated phages were analyzed in detail and could be allocated to three groups. The first group is composed of 10 T4-like phages (PYps2T taxon group: Myoviridae; Tevenvirinae; Tequatrovirus), the second group (PYps23T taxon group: Chaseviridae; Carltongylesvirus; Escherichia virus ST32) consists of five phages encoding a podovirus-like RNA polymerase that is related to an uncommon genus of myoviruses (e.g., Escherichia coli phage phiEcoM-GJ1), while the third group is comprised of two podoviruses (PYps50T taxon group: Autographiviridae; Studiervirinae; Berlinvirus) which are closely related to T7. The host range of the isolated phages differed significantly. Between 5.5 and 86.7% of 128 Y. pseudotuberculosis strains belonging to 20 serotypes were lysed by each phage. All phages were additionally able to lyse Y. enterocolitica B4/O:3 strains, when incubated at 37°C. Some phages also infected Y. pestis strains and even strains belonging to other genera of Enterobacteriaceae. A cocktail containing two of these phages would be able to lyse almost 93% of the tested Y. pseudotuberculosis strains. The study indicates that Y. pseudotuberculosis phages exhibiting a broad-host range can be isolated quite easily from zoo animals, particularly birds.
Collapse
Affiliation(s)
- Jens Andre Hammerl
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Andrea Barac
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Anja Bienert
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Aslihan Demir
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Niklas Drüke
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Claudia Jäckel
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Nina Matthies
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jin Woo Jun
- Department of Aquaculture, Korea National College of Agriculture and Fisheries, Jeonju, South Korea
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Division of Clinical Microbiology, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Juliane Ulrich
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Stefan Hertwig
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
5
|
Lipopolysaccharide of the Yersinia pseudotuberculosis Complex. Biomolecules 2021; 11:biom11101410. [PMID: 34680043 PMCID: PMC8533242 DOI: 10.3390/biom11101410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/27/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Lipopolysaccharide (LPS), localized in the outer leaflet of the outer membrane, serves as the major surface component of the Gram-negative bacterial cell envelope responsible for the activation of the host's innate immune system. Variations of the LPS structure utilized by Gram-negative bacteria promote survival by providing resistance to components of the innate immune system and preventing recognition by TLR4. This review summarizes studies of the biosynthesis of Yersinia pseudotuberculosis complex LPSs, and the roles of their structural components in molecular mechanisms of yersiniae pathogenesis and immunogenesis.
Collapse
|
6
|
Skurnik M, Jaakkola S, Mattinen L, von Ossowski L, Nawaz A, Pajunen MI, Happonen LJ. Bacteriophages fEV-1 and fD1 Infect Yersinia pestis. Viruses 2021; 13:1384. [PMID: 34372590 PMCID: PMC8309999 DOI: 10.3390/v13071384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
Bacteriophages vB_YpeM_fEV-1 (fEV-1) and vB_YpeM_fD1 (fD1) were isolated from incoming sewage water samples in Turku, Finland, using Yersinia pestis strains EV76 and KIM D27 as enrichment hosts, respectively. Genomic analysis and transmission electron microscopy established that fEV-1 is a novel type of dwarf myovirus, while fD1 is a T4-like myovirus. The genome sizes are 38 and 167 kb, respectively. To date, the morphology and genome sequences of some dwarf myoviruses have been described; however, a proteome characterization such as the one presented here, has currently been lacking for this group of viruses. Notably, fEV-1 is the first dwarf myovirus described for Y. pestis. The host range of fEV-1 was restricted strictly to Y. pestis strains, while that of fD1 also included other members of Enterobacterales such as Escherichia coli and Yersinia pseudotuberculosis. In this study, we present the life cycles, genomes, and proteomes of two Yersinia myoviruses, fEV-1 and fD1.
Collapse
Affiliation(s)
- Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (S.J.); (L.M.); (A.N.); (M.I.P.)
- Division of Clinical Microbiology, HUSLAB, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Salla Jaakkola
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (S.J.); (L.M.); (A.N.); (M.I.P.)
| | - Laura Mattinen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (S.J.); (L.M.); (A.N.); (M.I.P.)
| | - Lotta von Ossowski
- Department of Medical Biochemistry, University of Turku, 20520 Turku, Finland;
| | - Ayesha Nawaz
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (S.J.); (L.M.); (A.N.); (M.I.P.)
| | - Maria I. Pajunen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (S.J.); (L.M.); (A.N.); (M.I.P.)
| | - Lotta J. Happonen
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, 22184 Lund, Sweden;
| |
Collapse
|
7
|
Dudina LG, Novikova OD, Portnyagina OY, Khomenko VA, Konyshev IV, Byvalov AA. Role of Lipopolysaccharide and Nonspecific Porins of Yersinia pseudotuberculosis in the Reception of Pseudotuberculous Diagnostic Bacteriophage. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Liang J, Kou Z, Qin S, Chen Y, Li Z, Li C, Duan R, Hao H, Zha T, Gu W, Huang Y, Xiao M, Jing H, Wang X. Novel Yersinia enterocolitica Prophages and a Comparative Analysis of Genomic Diversity. Front Microbiol 2019; 10:1184. [PMID: 31191498 PMCID: PMC6548840 DOI: 10.3389/fmicb.2019.01184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022] Open
Abstract
Yersinia enterocolitica is a major agent of foodborne diseases worldwide. Prophage plays an important role in the genetic evolution of the bacterial genome. Little is known about the genetic information about prophages in the genome of Y. enterocolitica, and no pathogenic Y. enterocolitica prophages have been described. In this study, we induced and described the genomes of six prophages from pathogenic Y. enterocolitica for the first time. Phylogenetic analysis based on whole genome sequencing revealed that these novel Yersinia phages are genetically distinct from the previously reported phages, showing considerable genetic diversity. Interestingly, the prophages induced from O:3 and O:9 Y. enterocolitica showed different genomic sequences and morphology but highly conserved among the same serotype strains, which classified into two diverse clusters. The three long-tailed Myoviridae prophages induced from serotype O:3 Y. enterocolitica were highly conserved, shared ≥99.99% identity and forming genotypic cluster A; the three Podoviridae prophages induced from the serotype O:9 strains formed cluster B, also shared more than 99.90% identity with one another. Cluster A was most closely related to O:5 non-pathogenic Y. enterocolitica prophage PY54 (61.72% identity). The genetic polymorphism of these two kinds of prophages and highly conserved among the same serotype strains, suggested a possible shared evolutionary past for these phages: originated from distinct ancestors, and entered pathogenic Y. enterocolitica as extrachromosomal genetic components during evolution when facing selective pressure. These results are critically important for further understanding of phage roles in host physiology and the pathology of disease.
Collapse
Affiliation(s)
- Junrong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Zengqiang Kou
- Shandong Provincial Centre for Disease Control and Prevention, Jinan, China
| | - Shuai Qin
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Yuhuang Chen
- Shenzhen Nanshan Maternity and Child Heath Care Hospital, Shenzhen, China
| | - Zhenpeng Li
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Chuchu Li
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.,Department of Pathogenic Biology, School of Medical Science, Jiangsu University, Zhenjiang, China
| | - Ran Duan
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Huijing Hao
- Chang Ping Women and Children Health Care Hospital, Beijing, China
| | - Tao Zha
- Wuhu Municipal Centre for Disease Control and Prevention, Wuhu, China
| | - Wenpeng Gu
- Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Yuanming Huang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Meng Xiao
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Huaiqi Jing
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xin Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| |
Collapse
|
9
|
Abstract
Bacteriophage play many varied roles in microbial ecology and evolution. This chapter collates a vast body of knowledge and expertise on Yersinia pestis phages, including the history of their isolation and classical methods for their isolation and identification. The genomic diversity of Y. pestis phage and bacteriophage islands in the Y. pestis genome are also discussed because all phage research represents a branch of genetics. In addition, our knowledge of the receptors that are recognized by Y. pestis phage, advances in phage therapy for Y. pestis infections, the application of phage in the detection of Y. pestis, and clustered regularly interspaced short palindromic repeats (CRISPRs) sequences of Y. pestis from prophage DNA are all reviewed here.
Collapse
|
10
|
Filippov AA, Sergueev KV, Nikolich MP. Can phage effectively treat multidrug-resistant plague? BACTERIOPHAGE 2014; 2:186-189. [PMID: 23282533 PMCID: PMC3530528 DOI: 10.4161/bact.22407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The spread of natural or weaponized drug-resistant plague among humans is a credible high consequence threat to public health that demands the prompt introduction of alternatives to antibiotics such as bacteriophage. Early attempts to treat plague with phages in the 1920s–1930s were sometimes promising but mostly failed, purportedly due to insufficient knowledge of phage biology and poor experimental design. We recently reported the striking stability of plague diagnostic bacteriophages, their safety for animal use, propagation in vivo and partial protection of mice from deadly plague after a single injection of phage. In this addendum we reflect on that article, other recent publications and our unpublished data, and discuss the prospects of phage therapy against plague.
Collapse
Affiliation(s)
- Andrey A Filippov
- Bacterial Diseases Branch; Walter Reed Army Institute of Research; Silver Spring, MD USA
| | | | | |
Collapse
|