1
|
Maiti S, Singh A, Maji T, Saibo NV, De S. Experimental methods to study the structure and dynamics of intrinsically disordered regions in proteins. Curr Res Struct Biol 2024; 7:100138. [PMID: 38707546 PMCID: PMC11068507 DOI: 10.1016/j.crstbi.2024.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/07/2024] Open
Abstract
Eukaryotic proteins often feature long stretches of amino acids that lack a well-defined three-dimensional structure and are referred to as intrinsically disordered proteins (IDPs) or regions (IDRs). Although these proteins challenge conventional structure-function paradigms, they play vital roles in cellular processes. Recent progress in experimental techniques, such as NMR spectroscopy, single molecule FRET, high speed AFM and SAXS, have provided valuable insights into the biophysical basis of IDP function. This review discusses the advancements made in these techniques particularly for the study of disordered regions in proteins. In NMR spectroscopy new strategies such as 13C detection, non-uniform sampling, segmental isotope labeling, and rapid data acquisition methods address the challenges posed by spectral overcrowding and low stability of IDPs. The importance of various NMR parameters, including chemical shifts, hydrogen exchange rates, and relaxation measurements, to reveal transient secondary structures within IDRs and IDPs are presented. Given the high flexibility of IDPs, the review outlines NMR methods for assessing their dynamics at both fast (ps-ns) and slow (μs-ms) timescales. IDPs exert their functions through interactions with other molecules such as proteins, DNA, or RNA. NMR-based titration experiments yield insights into the thermodynamics and kinetics of these interactions. Detailed study of IDPs requires multiple experimental techniques, and thus, several methods are described for studying disordered proteins, highlighting their respective advantages and limitations. The potential for integrating these complementary techniques, each offering unique perspectives, is explored to achieve a comprehensive understanding of IDPs.
Collapse
Affiliation(s)
| | - Aakanksha Singh
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Tanisha Maji
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Nikita V. Saibo
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| |
Collapse
|
2
|
Heravi S, Power JVD, Yethiraj A, Booth V. The effects of biological crowders on fibrillization, structure, diffusion, and conformational dynamics of α-synuclein. Protein Sci 2024; 33:e4894. [PMID: 38358134 PMCID: PMC10868423 DOI: 10.1002/pro.4894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
α-synuclein is an intrinsically disordered protein (IDP) whose aggregation in presynaptic neuronal cells is a pathological hallmark of Lewy body formation and Parkinson's disease. This aggregation process is likely affected by the crowded macromolecular cellular environment. In this study, α-synuclein was studied in the presence of both a synthetic crowder, Ficoll70, and a biological crowder composed of lysed cells that better mimics the biocomplexity of the cellular environment. 15 N-1 H HSQC NMR results show similar α-synuclein chemical shifts in non-crowded and all crowded conditions implying that it remains similarly unstructured in all conditions. Nevertheless, both HSQC NMR and fluorescence measurements indicate that, only in the cell lysate, α-synuclein forms aggregates over a timescale of 48 h. 15 N-edited diffusion measurements indicate that all crowders slow down the α-synuclein's diffusivity. Interestingly, at high concentrations, α-synuclein diffuses faster in cell lysate than in Ficoll70, possibly due to additional soft (e.g., electrostatic or hydrophobic) interactions. 15 N-edited relaxation measurements show that some residues are more mobile in cell lysate than in Ficoll70; the rates that are most different are predominantly in hydrophobic residues. We thus examined cell lysates with reduced hydrophobicity and found slower dynamics (higher relaxation rates) in several α-synuclein residues. Taken together, these experiments suggest that while cell lysate does not substantially affect α-synuclein structure (HSQC spectra), it does affect chain dynamics and translational diffusion, and strongly affects aggregation over a timescale of days, in a manner that is different from either no crowder or an artificial crowder: soft hydrophobic interactions are implicated.
Collapse
Affiliation(s)
- Sina Heravi
- Department of BiochemistryMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| | - Jude Vincent Dobbin Power
- Department of BiochemistryMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| | - Anand Yethiraj
- Department of Physics and Physical OceanographyMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| | - Valerie Booth
- Department of BiochemistryMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
- Department of Physics and Physical OceanographyMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| |
Collapse
|
3
|
Moses D, Guadalupe K, Yu F, Flores E, Perez AR, McAnelly R, Shamoon NM, Kaur G, Cuevas-Zepeda E, Merg AD, Martin EW, Holehouse AS, Sukenik S. Structural biases in disordered proteins are prevalent in the cell. Nat Struct Mol Biol 2024; 31:283-292. [PMID: 38177684 PMCID: PMC10873198 DOI: 10.1038/s41594-023-01148-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/04/2023] [Indexed: 01/06/2024]
Abstract
Intrinsically disordered proteins and protein regions (IDPs) are prevalent in all proteomes and are essential to cellular function. Unlike folded proteins, IDPs exist in an ensemble of dissimilar conformations. Despite this structural plasticity, intramolecular interactions create sequence-specific structural biases that determine an IDP ensemble's three-dimensional shape. Such structural biases can be key to IDP function and are often measured in vitro, but whether those biases are preserved inside the cell is unclear. Here we show that structural biases in IDP ensembles found in vitro are recapitulated inside human-derived cells. We further reveal that structural biases can change in a sequence-dependent manner due to changes in the intracellular milieu, subcellular localization, and intramolecular interactions with tethered well-folded domains. We propose that the structural sensitivity of IDP ensembles can be leveraged for biological function, can be the underlying cause of IDP-driven pathology or can be used to design disorder-based biosensors and actuators.
Collapse
Affiliation(s)
- David Moses
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
| | - Karina Guadalupe
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
| | - Feng Yu
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
- Quantitative and Systems Biology Program, University of California, Merced, Merced, CA, USA
| | - Eduardo Flores
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
| | - Anthony R Perez
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
| | - Ralph McAnelly
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
| | - Nora M Shamoon
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
- California State University, Stanislaus, Turlock, CA, USA
| | - Gagandeep Kaur
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
| | | | - Andrea D Merg
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA
| | - Erik W Martin
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
- Dewpoint Therapeutics, Boston, MA, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO, USA
| | - Shahar Sukenik
- Department of Chemistry and Biochemistry, University of California, Merced, Merced, CA, USA.
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, USA.
- Quantitative and Systems Biology Program, University of California, Merced, Merced, CA, USA.
- Health Sciences Research Institute, University of California, Merced, Merced, CA, USA.
| |
Collapse
|
4
|
Ferreras-Gutiérrez M, Chaves-Arquero B, González-Magaña A, Merino N, Amusategui-Mateu I, Huecas S, Medrano FJ, Blanco FJ. Structural analysis of ING3 protein and histone H3 binding. Int J Biol Macromol 2023; 242:124724. [PMID: 37148949 DOI: 10.1016/j.ijbiomac.2023.124724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Proteins belonging to the ING family regulate the transcriptional state of chromatin by recruiting remodeling complexes to sites with histone H3 trimethylated at Lysine 4 (H3K4me3). This modification is recognized by the Plant HomeoDomain (PHD) present at the C-terminal region of the five ING proteins. ING3 facilitates acetylation of histones H2A and H4 by the NuA4-Tip60 MYST histone acetyl transferase complex, and it has been proposed to be an oncoprotein. The crystal structure of the N-terminal domain of ING3 shows that it forms homodimers with an antiparallel coiled-coil fold. The crystal structure of the PHD is similar to those of its four homologs. These structures explain the possible deleterious effects of ING3 mutations detected in tumors. The PHD binds histone H3K4me3 with low-micromolar, and binds the non-methylated histone with a 54-fold reduced affinity. Our structure explains the impact of site directed mutagenesis experiments on histone recognition. These structural features could not be confirmed for the full-length protein as solubility was insufficient for structural studies, but the structure of its folded domains suggest a conserved structural organization for the ING proteins as homodimers and bivalent readers of the histone H3K4me3 mark.
Collapse
Affiliation(s)
| | - Belén Chaves-Arquero
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | - Amaia González-Magaña
- Instituto Biofisika and Departamento de Bioquímica y Biología Molecular (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain
| | - Nekane Merino
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain
| | | | - Sonia Huecas
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | - Francisco J Medrano
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | - Francisco J Blanco
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain.
| |
Collapse
|
5
|
Saurabh S, Nadendla K, Purohit SS, Sivakumar PM, Cetinel S. Fuzzy Drug Targets: Disordered Proteins in the Drug-Discovery Realm. ACS OMEGA 2023; 8:9729-9747. [PMID: 36969402 PMCID: PMC10034788 DOI: 10.1021/acsomega.2c07708] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Intrinsically disordered proteins (IDPs) and regions (IDRs) form a large part of the eukaryotic proteome. Contrary to the structure-function paradigm, the disordered proteins perform a myriad of functions in vivo. Consequently, they are involved in various disease pathways and are plausible drug targets. Unlike folded proteins, that have a defined structure and well carved out drug-binding pockets that can guide lead molecule selection, the disordered proteins require alternative drug-development methodologies that are based on an acceptable picture of their conformational ensemble. In this review, we discuss various experimental and computational techniques that contribute toward understanding IDP "structure" and describe representative pursuances toward IDP-targeting drug development. We also discuss ideas on developing rational drug design protocols targeting IDPs.
Collapse
Affiliation(s)
- Suman Saurabh
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Karthik Nadendla
- Center
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Lensfield
Road, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Shubh Sanket Purohit
- Department
of Clinical Haematology, Sahyadri Superspeciality
Hospital, Pune, Maharashtra 411038, India
| | - Ponnurengam Malliappan Sivakumar
- Institute
of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- School
of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Vietnam
- Nanotechnology
Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology
Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
- Faculty of
Engineering and Natural Sciences, Molecular Biology, Genetics and
Bioengineering Program, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
6
|
Parray ZA, Shahid M, Islam A. Insights into Fluctuations of Structure of Proteins: Significance of Intermediary States in Regulating Biological Functions. Polymers (Basel) 2022; 14:polym14081539. [PMID: 35458289 PMCID: PMC9025146 DOI: 10.3390/polym14081539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023] Open
Abstract
Proteins are indispensable to cellular communication and metabolism. The structure on which cells and tissues are developed is deciphered from proteins. To perform functions, proteins fold into a three-dimensional structural design, which is specific and fundamentally determined by their characteristic sequence of amino acids. Few of them have structural versatility, allowing them to adapt their shape to the task at hand. The intermediate states appear momentarily, while protein folds from denatured (D) ⇔ native (N), which plays significant roles in cellular functions. Prolific effort needs to be taken in characterizing these intermediate species if detected during the folding process. Protein folds into its native structure through definite pathways, which involve a limited number of transitory intermediates. Intermediates may be essential in protein folding pathways and assembly in some cases, as well as misfolding and aggregation folding pathways. These intermediate states help to understand the machinery of proper folding in proteins. In this review article, we highlight the various intermediate states observed and characterized so far under in vitro conditions. Moreover, the role and significance of intermediates in regulating the biological function of cells are discussed clearly.
Collapse
Affiliation(s)
- Zahoor Ahmad Parray
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
- Department of Chemistry, Indian Institute of Technology Delhi, IIT Campus, Hauz Khas, New Delhi 110016, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia;
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
- Correspondence: ; Tel.: +91-93-1281-2007
| |
Collapse
|
7
|
Baudin A, Moreno-Romero AK, Xu X, Selig EE, Penalva LOF, Libich DS. Structural Characterization of the RNA-Binding Protein SERBP1 Reveals Intrinsic Disorder and Atypical RNA Binding Modes. Front Mol Biosci 2021; 8:744707. [PMID: 34631798 PMCID: PMC8497785 DOI: 10.3389/fmolb.2021.744707] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
RNA binding proteins (RBPs) are essential for critical biological processes such as translation regulation and mRNA processing, and misfunctions of these proteins are associated with diseases such as cancer and neurodegeneration. SERBP1 (SERPINE1 mRNA Binding Protein 1) is an RBP that comprises two RG/RGG repeat regions yet lacks other recognizable RNA-binding motifs. It is involved in mRNA maturation, and translational regulation. It was initially identified as a hyaluronic acid binding protein, but recent studies have identified central roles for SERBP1 in brain function and development, especially neurogenesis and synaptogenesis. SERBP1 regulates One-carbon metabolism and epigenetic modification of histones, and increased SERBP1 expression in cancers such as leukemia, ovarian, prostate, liver and glioblastoma is correlated with poor patient outcomes. Despite these important regulatory roles for SERBP1, little is known about its structural and dynamic properties, nor about the molecular mechanisms governing its interaction with mRNA. Here, we define SERBP1 as an intrinsically disordered protein, containing highly conserved elements that were shown to be functionally important. The RNA binding activity of SERBP1 was explored using solution NMR and other biophysical techniques. The outcome of these experiments revealed that SERBP1 preferentially samples compact conformations including a central, stable α-helix and show that SERBP1 recognizes G-rich RNA sequences at the C-terminus involving the RGG box and neighboring residues. Despite the role in RNA recognition, the RGG boxes do not seem to stabilize the central helix and the central helix does not participate in RNA binding. Further, SERBP1 undergoes liquid-liquid phase separation, mediated by salt and RNA, and both RGG boxes are necessary for the efficient formation of condensed phases. Together, these results provide a foundation for understanding the molecular mechanisms of SERBP1 functions in physiological and pathological processes.
Collapse
Affiliation(s)
- Antoine Baudin
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Alma K Moreno-Romero
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Xiaoping Xu
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Emily E Selig
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Luiz O F Penalva
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - David S Libich
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
8
|
Tadi S, Misra SK, Sharp JS. Inline Liquid Chromatography-Fast Photochemical Oxidation of Proteins for Targeted Structural Analysis of Conformationally Heterogeneous Mixtures. Anal Chem 2021; 93:3510-3516. [PMID: 33560821 DOI: 10.1021/acs.analchem.0c04872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Structural analysis of proteins in a conformationally heterogeneous mixture has long been a difficult problem in structural biology. In structural analysis by covalent labeling mass spectrometry, conformational heterogeneity results in data reflecting a weighted average of all conformers, complicating data analysis and potentially causing misinterpretation of results. Here, we describe a method coupling size-exclusion chromatography (SEC) with hydroxyl radical protein footprinting using inline fast photochemical oxidation of proteins (FPOP). Using a controlled synthetic mixture of holomyoglobin and apomyoglobin, we validate that we can achieve accurate footprints of each conformer using LC-FPOP when compared to offline FPOP of each pure conformer. We then applied LC-FPOP to analyze the adalimumab heat-shock aggregation process. We found that the LC-FPOP footprint of unaggregated adalimumab was consistent with a previously published footprint of the native IgG. The LC-FPOP footprint of the aggregation product indicated that heat-shock aggregation primarily protected the hinge region, suggesting that this region is involved with the heat-shock aggregation process of this molecule. LC-FPOP offers a new method to probe dynamic conformationally heterogeneous mixtures that can be separated by SEC such as biopharmaceutical aggregates and to obtain accurate information on the topography of each conformer.
Collapse
Affiliation(s)
| | | | - Joshua S Sharp
- GenNext Technologies, Inc., Half Moon Bay, California 94037, United States
| |
Collapse
|
9
|
Kolonko M, Bystranowska D, Taube M, Kozak M, Bostock M, Popowicz G, Ożyhar A, Greb-Markiewicz B. The intrinsically disordered region of GCE protein adopts a more fixed structure by interacting with the LBD of the nuclear receptor FTZ-F1. Cell Commun Signal 2020; 18:180. [PMID: 33153474 PMCID: PMC7643343 DOI: 10.1186/s12964-020-00662-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
The Drosophila melanogaster Germ cell-expressed protein (GCE) is a paralog of the juvenile hormone (JH) receptor - Methoprene tolerant protein (MET). Both proteins mediate JH function, preventing precocious differentiation during D. melanogaster development. Despite that GCE and MET are often referred to as equivalent JH receptors, their functions are not fully redundant and show tissue specificity. Both proteins belong to the family of bHLH-PAS transcription factors. The similarity of their primary structure is limited to defined bHLH and PAS domains, while their long C-terminal fragments (GCEC, METC) show significant differences and are expected to determine differences in GCE and MET protein activities. In this paper we present the structural characterization of GCEC as a coil-like intrinsically disordered protein (IDP) with highly elongated and asymmetric conformation. In comparison to previously characterized METC, GCEC is less compacted, contains more molecular recognition elements (MoREs) and exhibits a higher propensity for induced folding. The NMR shifts perturbation experiment and pull-down assay clearly demonstrated that the GCEC fragment is sufficient to form an interaction interface with the ligand binding domain (LBD) of the nuclear receptor Fushi Tarazu factor-1 (FTZ-F1). Significantly, these interactions can force GCEC to adopt more fixed structure that can modulate the activity, structure and functions of the full-length receptor. The discussed relation of protein functionality with the structural data of inherently disordered GCEC fragment is a novel look at this protein and contributes to a better understanding of the molecular basis of the functions of the C-terminal fragments of the bHLH-PAS family. Video abstract.
Collapse
Affiliation(s)
- Marta Kolonko
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry,
- Wroclaw University of Science and Technology
- , Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry,
- Wroclaw University of Science and Technology
- , Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Michał Taube
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614, Poznan, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614, Poznan, Poland.,National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Czerwone Maki 98, 30-392, Krakow, Poland
| | - Mark Bostock
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Grzegorz Popowicz
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Germany
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry,
- Wroclaw University of Science and Technology
- , Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry,
- Wroclaw University of Science and Technology
- , Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland.
| |
Collapse
|
10
|
Siemer AB. Advances in studying protein disorder with solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 106:101643. [PMID: 31972419 PMCID: PMC7202078 DOI: 10.1016/j.ssnmr.2020.101643] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 05/26/2023]
Abstract
Solution NMR is a key tool to study intrinsically disordered proteins (IDPs), whose importance for biological function is widely accepted. However, disordered proteins are not limited to solution and are also found in non-soluble systems such as fibrils and membrane proteins. In this Trends article, I will discuss how solid-state NMR can be used to study disorder in non-soluble proteins. Techniques based on dipolar couplings can study static protein disorder which either occurs naturally as e.g. in spider silk or can be induced by freeze trapping IDPs or unfolded proteins. In this case, structural ensembles are directly reflected by a static distribution of dihedral angels that can be determined by the distribution of chemical shifts or other methods. Techniques based on J-couplings can detect dynamic protein disorder under MAS. In this case, only average chemical shifts are measured but disorder can be characterized with a variety of data including secondary chemical shifts, relaxation rates, paramagnetic relaxation enhancements, or residual dipolar couplings. I describe both technical aspects and examples of solid-state NMR on protein disorder and end the article with a discussion of challenges and opportunities of this emerging field.
Collapse
Affiliation(s)
- Ansgar B Siemer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Univeristy of Southern California, 1501 San Pablo Street, Los Angeles, CA, 90033, USA.
| |
Collapse
|
11
|
Munshi S, Gopi S, Subramanian S, Campos LA, Naganathan AN. Protein plasticity driven by disorder and collapse governs the heterogeneous binding of CytR to DNA. Nucleic Acids Res 2019. [PMID: 29538715 PMCID: PMC5934615 DOI: 10.1093/nar/gky176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The amplitude of thermodynamic fluctuations in biological macromolecules determines their conformational behavior, dimensions, nature of phase transitions and effectively their specificity and affinity, thus contributing to fine-tuned molecular recognition. Unique among large-scale conformational changes in proteins are temperature-induced collapse transitions in intrinsically disordered proteins (IDPs). Here, we show that CytR DNA-binding domain, an IDP that folds on binding DNA, undergoes a coil-to-globule transition with temperature in the absence of DNA while exhibiting energetically decoupled local and global structural rearrangements, and maximal thermodynamic fluctuations at the optimal bacterial growth temperature. The collapse is shown to be a continuous transition through a combination of statistical-mechanical modeling and all-atom implicit solvent simulations. Surprisingly, CytR binds single-site cognate DNA with negative cooperativity, described by Hill coefficients less than one, resulting in a graded binding response. We show that heterogeneity arising from varying binding-competent CytR conformations or orientations at the single-molecular level contributes to negative binding cooperativity at the level of bulk measurements due to the conflicting requirements of collapse transition, large fluctuations and folding-upon-binding. Our work reports strong evidence for functionally driven thermodynamic fluctuations in determining the extent of collapse and disorder with implications in protein search efficiency of target DNA sites and regulation.
Collapse
Affiliation(s)
- Sneha Munshi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soundhararajan Gopi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sandhyaa Subramanian
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Luis A Campos
- National Biotechnology Center, Consejo Superior de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
12
|
Kolonko M, Greb-Markiewicz B. bHLH-PAS Proteins: Their Structure and Intrinsic Disorder. Int J Mol Sci 2019; 20:ijms20153653. [PMID: 31357385 PMCID: PMC6695611 DOI: 10.3390/ijms20153653] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022] Open
Abstract
The basic helix–loop–helix/Per-ARNT-SIM (bHLH–PAS) proteins are a class of transcriptional regulators, commonly occurring in living organisms and highly conserved among vertebrates and invertebrates. These proteins exhibit a relatively well-conserved domain structure: the bHLH domain located at the N-terminus, followed by PAS-A and PAS-B domains. In contrast, their C-terminal fragments present significant variability in their primary structure and are unique for individual proteins. C-termini were shown to be responsible for the specific modulation of protein action. In this review, we present the current state of knowledge, based on NMR and X-ray analysis, concerning the structural properties of bHLH–PAS proteins. It is worth noting that all determined structures comprise only selected domains (bHLH and/or PAS). At the same time, substantial parts of proteins, comprising their long C-termini, have not been structurally characterized to date. Interestingly, these regions appear to be intrinsically disordered (IDRs) and are still a challenge to research. We aim to emphasize the significance of IDRs for the flexibility and function of bHLH–PAS proteins. Finally, we propose modern NMR methods for the structural characterization of the IDRs of bHLH–PAS proteins.
Collapse
Affiliation(s)
- Marta Kolonko
- Department of Biochemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
13
|
Munshi S, Subramanian S, Ramesh S, Golla H, Kalivarathan D, Kulkarni M, Campos LA, Sekhar A, Naganathan AN. Engineering Order and Cooperativity in a Disordered Protein. Biochemistry 2019; 58:2389-2397. [PMID: 31002232 DOI: 10.1021/acs.biochem.9b00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Structural disorder in proteins arises from a complex interplay between weak hydrophobicity and unfavorable electrostatic interactions. The extent to which the hydrophobic effect contributes to the unique and compact native state of proteins is, however, confounded by large compensation between multiple entropic and energetic terms. Here we show that protein structural order and cooperativity arise as emergent properties upon hydrophobic substitutions in a disordered system with non-intuitive effects on folding and function. Aided by sequence-structure analysis, equilibrium, and kinetic spectroscopic studies, we engineer two hydrophobic mutations in the disordered DNA-binding domain of CytR that act synergistically, but not in isolation, to promote structure, compactness, and stability. The double mutant, with properties of a fully ordered domain, exhibits weak cooperativity with a complex and rugged conformational landscape. The mutant, however, binds cognate DNA with an affinity only marginally higher than that of the wild type, though nontrivial differences are observed in the binding to noncognate DNA. Our work provides direct experimental evidence of the dominant role of non-additive hydrophobic effects in shaping the molecular evolution of order in disordered proteins and vice versa, which could be generalized to even folded proteins with implications for protein design and functional manipulation.
Collapse
Affiliation(s)
- Sneha Munshi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Sandhyaa Subramanian
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Samyuktha Ramesh
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Hemashree Golla
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Divakar Kalivarathan
- Department of Biotechnology , National Institute of Technology Warangal , Warangal 506004 , India
| | - Madhurima Kulkarni
- Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560012 , India
| | - Luis A Campos
- National Biotechnology Center , Consejo Superior de Investigaciones Científicas , Darwin 3, Campus de Cantoblanco , 28049 Madrid , Spain
| | - Ashok Sekhar
- Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560012 , India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|
14
|
Li X, Dong C, Hoffmann M, Garen CR, Cortez LM, Petersen NO, Woodside MT. Early stages of aggregation of engineered α-synuclein monomers and oligomers in solution. Sci Rep 2019; 9:1734. [PMID: 30741954 PMCID: PMC6370846 DOI: 10.1038/s41598-018-37584-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/10/2018] [Indexed: 12/15/2022] Open
Abstract
α-Synuclein is a protein that aggregates as amyloid fibrils in the brains of patients with Parkinson's disease and dementia with Lewy bodies. Small oligomers of α-synuclein are neurotoxic and are thought to be closely associated with disease. Whereas α-synuclein fibrillization and fibril morphologies have been studied extensively with various methods, the earliest stages of aggregation and the properties of oligomeric intermediates are less well understood because few methods are able to detect and characterize early-stage aggregates. We used fluorescence spectroscopy to investigate the early stages of aggregation by studying pairwise interactions between α-synuclein monomers, as well as between engineered tandem oligomers of various sizes (dimers, tetramers, and octamers). The hydrodynamic radii of these engineered α-synuclein species were first determined by fluorescence correlation spectroscopy and dynamic light scattering. The rate of pairwise aggregation between different species was then monitored using dual-color fluorescence cross-correlation spectroscopy, measuring the extent of association between species labelled with different dyes at various time points during the early aggregation process. The aggregation rate and extent increased with tandem oligomer size. Self-association of the tandem oligomers was found to be the preferred pathway to form larger aggregates: interactions between oligomers occurred faster and to a greater extent than interactions between oligomers and monomers, indicating that the oligomers were not as efficient in seeding further aggregation by addition of monomers. These results suggest that oligomer-oligomer interactions may play an important role in driving aggregation during its early stages.
Collapse
Affiliation(s)
- Xi Li
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.,Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Chunhua Dong
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.,Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Marion Hoffmann
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Craig R Garen
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Leonardo M Cortez
- Division of Neurology, Department of Medicine, Centre for Prions and Protein Folding Diseases, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
15
|
The structure of the nucleoprotein of Influenza D shows that all Orthomyxoviridae nucleoproteins have a similar NP CORE, with or without a NP TAIL for nuclear transport. Sci Rep 2019; 9:600. [PMID: 30679709 PMCID: PMC6346101 DOI: 10.1038/s41598-018-37306-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
This paper focuses on the nucleoprotein (NP) of the newly identified member of the Orthomyxoviridae family, Influenza D virus. To date several X-ray structures of NP of Influenza A (A/NP) and B (B/NP) viruses and of infectious salmon anemia (ISA/NP) virus have been solved. Here we purified, characterized and solved the X-ray structure of the tetrameric D/NP at 2.4 Å resolution. The crystal structure of its core is similar to NP of other Influenza viruses. However, unlike A/NP and B/NP which possess a flexible amino-terminal tail containing nuclear localization signals (NLS) for their nuclear import, D/NP possesses a carboxy-terminal tail (D/NPTAIL). We show that D/NPTAIL harbors a bipartite NLS and designed C-terminal truncated mutants to demonstrate the role of D/NPTAIL for nuclear transport.
Collapse
|
16
|
Takashima N, Ishino S, Oki K, Takafuji M, Yamagami T, Matsuo R, Mayanagi K, Ishino Y. Elucidating functions of DP1 and DP2 subunits from the Thermococcus kodakarensis family D DNA polymerase. Extremophiles 2018; 23:161-172. [PMID: 30506100 DOI: 10.1007/s00792-018-1070-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/20/2018] [Indexed: 11/29/2022]
Abstract
DNA polymerase D (PolD), originally discovered in Pyrococcus furiosus, has no sequence homology with any other DNA polymerase family. Genes encoding PolD are found in most of archaea, except for those archaea in the Crenarchaeota phylum. PolD is composed of two proteins: DP1 and DP2. To date, the 3D structure of the PolD heteromeric complex is yet to be determined. In this study, we established a method that prepared highly purified PolD from Thermococcus kodakarensis, and purified DP1 and DP2 proteins formed a stable complex in solution. An intrinsically disordered region was identified in the N-terminal region of DP1, but the static light scattering analysis provided a reasonable molecular weight of DP1. In addition, PolD forms as a complex of DP1 and DP2 in a 1:1 ratio. Electron microscope single particle analysis supported this composition of PolD. Both proteins play an important role in DNA synthesis activity and in 3'-5' degradation activity. DP1 has extremely low affinity for DNA, while DP2 is mainly responsible for DNA binding. Our work will provide insight and the means to further understand PolD structure and the molecular mechanism of this archaea-specific DNA polymerase.
Collapse
Affiliation(s)
- Natsuki Takashima
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Sonoko Ishino
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Keisuke Oki
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Mika Takafuji
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Takeshi Yamagami
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Ryotaro Matsuo
- Division of Malvern Panalytical, Spectris Co., Ltd, Tokyo, 105-0013, Japan
| | - Kouta Mayanagi
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshizumi Ishino
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
17
|
Dong C, Hoffmann M, Li X, Wang M, Garen CR, Petersen NO, Woodside MT. Structural characteristics and membrane interactions of tandem α-synuclein oligomers. Sci Rep 2018; 8:6755. [PMID: 29712958 PMCID: PMC5928076 DOI: 10.1038/s41598-018-25133-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/16/2018] [Indexed: 01/04/2023] Open
Abstract
Pre-fibrillar oligomers of α-synuclein are thought to be pathogenic molecules leading to neurotoxicity associated with Parkinson’s disease and other neurodegenerative disorders. However, small oligomers are difficult to isolate for study. To gain better insight into the properties of small α-synuclein oligomers, we investigated engineered oligomers of specific size (dimers, tetramers, and octamers) linked head-to-tail in tandem, comparing the behavior of the oligomers to monomeric α-synuclein. All oligomeric constructs remained largely disordered in solution, as determined from dynamic light scattering and size-exclusion chromatography. Electron microscopy revealed that each construct could aggregate to form fibrils similar to those formed by monomeric α-synuclein. The interactions with large unilamellar vesicles (LUVs) composed of negatively-charged lipids differed depending on size, with smaller oligomers forming more extensive helical structure as determined by CD spectroscopy. Monitoring the influx of a fluorescence bleaching agent into vesicles showed that larger oligomers were somewhat more effective at degrading vesicular integrity and inducing membrane permeabilization.
Collapse
Affiliation(s)
- Chunhua Dong
- Department of Physics, University of Alberta, Edmonton, AB, Canada.,Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Marion Hoffmann
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | - Xi Li
- Department of Physics, University of Alberta, Edmonton, AB, Canada.,Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Meijing Wang
- Department of Physics, University of Alberta, Edmonton, AB, Canada.,National Research Council, National Institute of Nanotechnology, University of Alberta, Edmonton, AB, Canada
| | - Craig R Garen
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB, Canada. .,National Research Council, National Institute of Nanotechnology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
18
|
Portz B, Lu F, Gibbs EB, Mayfield JE, Rachel Mehaffey M, Zhang YJ, Brodbelt JS, Showalter SA, Gilmour DS. Structural heterogeneity in the intrinsically disordered RNA polymerase II C-terminal domain. Nat Commun 2017; 8:15231. [PMID: 28497792 PMCID: PMC5437306 DOI: 10.1038/ncomms15231] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 03/09/2017] [Indexed: 11/09/2022] Open
Abstract
RNA polymerase II contains a repetitive, intrinsically disordered, C-terminal domain (CTD) composed of heptads of the consensus sequence YSPTSPS. The CTD is heavily phosphorylated and serves as a scaffold, interacting with factors involved in transcription initiation, elongation and termination, RNA processing and chromatin modification. Despite being a nexus of eukaryotic gene regulation, the structure of the CTD and the structural implications of phosphorylation are poorly understood. Here we present a biophysical and biochemical interrogation of the structure of the full length CTD of Drosophila melanogaster, which we conclude is a compact random coil. Surprisingly, we find that the repetitive CTD is structurally heterogeneous. Phosphorylation causes increases in radius, protein accessibility and stiffness, without disrupting local structural heterogeneity. Additionally, we show the human CTD is also structurally heterogeneous and able to substitute for the D. melanogaster CTD in supporting fly development to adulthood. This finding implicates conserved structural organization, not a precise array of heptad motifs, as important to CTD function.
Collapse
Affiliation(s)
- Bede Portz
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Feiyue Lu
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.,The Huck Institutes of Life Sciences. The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Eric B Gibbs
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Joshua E Mayfield
- Department of Molecular Biosciences, University of Texas, Austin, Texas 78712, USA
| | - M Rachel Mehaffey
- Department of Chemistry, University of Texas, Austin, Texas 78712, USA
| | - Yan Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin, Texas 78712, USA.,Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | | | - Scott A Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.,Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David S Gilmour
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
19
|
Narayan A, Naganathan AN. Tuning the Continuum of Structural States in the Native Ensemble of a Regulatory Protein. J Phys Chem Lett 2017; 8:1683-1687. [PMID: 28345920 PMCID: PMC5464678 DOI: 10.1021/acs.jpclett.7b00475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The mesoscale nature of proteins allows for an efficient coupling between environmental cues and conformational changes, enabling their function as molecular transducers. Delineating the precise structural origins of such a connection and the expected spectroscopic response has, however, been challenging. In this work, we perform a combination of urea-temperature double perturbation experiments and theoretical modeling to probe the conformational landscape of Cnu, a natural thermosensor protein. We observe unique ensemble signatures that point to a continuum of conformational substates in the native ensemble and that respond intricately to perturbations upon monitoring secondary and tertiary structures, distances between an intrinsic FRET pair, and hydrodynamic volumes. Binding assays further reveal a weakening of the Cnu functional complex with temperature, highlighting the molecular origins of signal transduction critical for pathogenic response in enterobacteriaceae.
Collapse
|
20
|
Ibáñez de Opakua A, Merino N, Villate M, Cordeiro TN, Ormaza G, Sánchez-Carbayo M, Diercks T, Bernadó P, Blanco FJ. The metastasis suppressor KISS1 is an intrinsically disordered protein slightly more extended than a random coil. PLoS One 2017; 12:e0172507. [PMID: 28207895 PMCID: PMC5313212 DOI: 10.1371/journal.pone.0172507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/05/2017] [Indexed: 12/18/2022] Open
Abstract
The metastasis suppressor KISS1 is reported to be involved in the progression of several solid neoplasias, making it a promising molecular target for controlling their metastasis. The KISS1 sequence contains an N-terminal secretion signal and several dibasic sequences that are proposed to be the proteolytic cleavage sites. We present the first structural characterization of KISS1 by circular dichroism, multi-angle light scattering, small angle X-Ray scattering and NMR spectroscopy. An analysis of the KISS1 backbone NMR chemical shifts does not reveal any preferential conformation and deviation from a random coil ensemble. The backbone 15N transverse relaxation times indicate a mildly reduced mobility for two regions that are rich in bulky residues. The small angle X-ray scattering curve of KISS1 is likewise consistent with a predominantly random coil ensemble, although an ensemble optimization analysis indicates some preference for more extended conformations possibly due to positive charge repulsion between the abundant basic residues. Our results support the hypothesis that KISS1 mostly samples a random coil conformational space, which is consistent with its high susceptibility to proteolysis and the generation of Kisspeptin fragments.
Collapse
Affiliation(s)
| | | | | | - Tiago N. Cordeiro
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université Montpellier 1 and 2, Montpellier, France
| | | | - Marta Sánchez-Carbayo
- Lucio Lascaray Research Center, Universidad del País Vasco, Vitoria, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université Montpellier 1 and 2, Montpellier, France
| | - Francisco J. Blanco
- CIC bioGUNE, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- * E-mail:
| |
Collapse
|
21
|
Kolonko M, Ożga K, Hołubowicz R, Taube M, Kozak M, Ożyhar A, Greb-Markiewicz B. Intrinsic Disorder of the C-Terminal Domain of Drosophila Methoprene-Tolerant Protein. PLoS One 2016; 11:e0162950. [PMID: 27657508 PMCID: PMC5033490 DOI: 10.1371/journal.pone.0162950] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022] Open
Abstract
Methoprene tolerant protein (Met) has recently been confirmed as the long-sought juvenile hormone (JH) receptor. This protein plays a significant role in the cross-talk of the 20-hydroxyecdysone (20E) and JH signalling pathways, which are important for control of insect development and maturation. Met belongs to the basic helix-loop-helix/Per-Arnt-Sim (bHLH-PAS) family of transcription factors. In these proteins, bHLH domains are typically responsible for DNA binding and dimerization, whereas the PAS domains are crucial for the choice of dimerization partner and the specificity of target gene activation. The C-terminal region is usually responsible for the regulation of protein complex activity. The sequence of the Met C-terminal region (MetC) is not homologous to any sequence deposited in the Protein Data Bank (PDB) and has not been structurally characterized to date. In this study, we show that the MetC exhibits properties typical for an intrinsically disordered protein (IDP). The final averaged structure obtained with small angle X-ray scattering (SAXS) experiments indicates that intrinsically disordered MetC exists in an extended conformation. This extended shape and the long unfolded regions characterise proteins with high flexibility and dynamics. Therefore, we suggest that the multiplicity of conformations adopted by the disordered MetC is crucial for its activity as a biological switch modulating the cross-talk of different signalling pathways in insects.
Collapse
Affiliation(s)
- Marta Kolonko
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50–370, Wrocław, Poland
| | - Katarzyna Ożga
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50–370, Wrocław, Poland
| | - Rafał Hołubowicz
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50–370, Wrocław, Poland
| | - Michał Taube
- Joint Laboratory for SAXS studies, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61–614, Poznań, Poland
| | - Maciej Kozak
- Joint Laboratory for SAXS studies, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61–614, Poznań, Poland
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61–614, Poznań, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50–370, Wrocław, Poland
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50–370, Wrocław, Poland
- * E-mail:
| |
Collapse
|
22
|
Sapienza PJ, Li L, Williams T, Lee AL, Carter CW. An Ancestral Tryptophanyl-tRNA Synthetase Precursor Achieves High Catalytic Rate Enhancement without Ordered Ground-State Tertiary Structures. ACS Chem Biol 2016; 11:1661-8. [PMID: 27008438 PMCID: PMC5461432 DOI: 10.1021/acschembio.5b01011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Urzymes-short, active core modules derived from enzyme superfamilies-prepared from the two aminoacyl-tRNA synthetase (aaRS) classes contain only the modules shared by all related family members. They have been described as models for ancestral forms. Understanding them currently depends on inferences drawn from the crystal structures of the full-length enzymes. As aaRS Urzymes lack much of the mass of modern aaRS's, retaining only a small portion of the hydrophobic cores of the full-length enzymes, it is desirable to characterize their structures. We report preliminary characterization of (15)N tryptophanyl-tRNA synthetase Urzyme by heteronuclear single quantum coherence (HSQC) NMR spectroscopy supplemented by circular dichroism, thermal melting, and induced fluorescence of bound dye. The limited dispersion of (1)H chemical shifts (0.5 ppm) is inconsistent with a narrow ensemble of well-packed structures in either free or substrate-bound forms, although the number of resonances from the bound state increases, indicating a modest, ligand-dependent gain in structure. Circular dichroism spectroscopy shows the presence of helices and evidence of cold denaturation, and all ligation states induce Sypro Orange fluorescence at ambient temperatures. Although the term "molten globule" is difficult to define precisely, these characteristics are consistent with most such definitions. Active-site titration shows that a majority of molecules retain ∼60% of the transition state stabilization free energy observed in modern synthetases. In contrast to the conventional view that enzymes require stable tertiary structures, we conclude that a highly flexible ground-state ensemble can nevertheless bind tightly to the transition state for amino acid activation.
Collapse
Affiliation(s)
- Paul J. Sapienza
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy
| | - Li Li
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 25799
| | - Tishan Williams
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 25799
| | - Andrew L. Lee
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy
| | - Charles W. Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 25799
| |
Collapse
|
23
|
Noval MG, Esperante SA, Molina IG, Chemes LB, Prat-Gay GD. Intrinsic Disorder to Order Transitions in the Scaffold Phosphoprotein P from the Respiratory Syncytial Virus RNA Polymerase Complex. Biochemistry 2016; 55:1441-54. [PMID: 26901160 DOI: 10.1021/acs.biochem.5b01332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intrinsic disorder is at the center of biochemical regulation and is particularly overrepresented among the often multifunctional viral proteins. Replication and transcription of the respiratory syncytial virus (RSV) relies on a RNA polymerase complex with a phosphoprotein cofactor P as the structural scaffold, which consists of a four-helix bundle tetramerization domain flanked by two domains predicted to be intrinsically disordered. Because intrinsic disorder cannot be reduced to a defined atomic structure, we tackled the experimental dissection of the disorder-order transitions of P by a domain fragmentation approach. P remains as a tetramer above 70 °C but shows a pronounced reversible secondary structure transition between 10 and 60 °C. While the N-terminal module behaves as a random coil-like IDP in a manner independent of tetramerization, the isolated C-terminal module displays a cooperative and reversible metastable transition. When linked to the tetramerization domain, the C-terminal module becomes markedly more structured and stable, with strong ANS binding. Therefore, the tertiary structure in the C-terminal module is not compact, conferring "late" molten globule-like IDP properties, stabilized by interactions favored by tetramerization. The presence of a folded structure highly sensitive to temperature, reversibly and almost instantly formed and broken, suggests a temperature sensing activity. The marginal stability allows for exposure of protein binding sites, offering a thermodynamic and kinetic fine-tuning in order-disorder transitions, essential for the assembly and function of the RSV RNA polymerase complex.
Collapse
Affiliation(s)
- María G Noval
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Sebastian A Esperante
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Ivana G Molina
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Lucía B Chemes
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Gonzalo de Prat-Gay
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina.,CNPq, Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, RJ, Brazil
| |
Collapse
|
24
|
Mysling S, Kristensen KK, Larsson M, Beigneux AP, Gårdsvoll H, Fong LG, Bensadouen A, Jørgensen TJ, Young SG, Ploug M. The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain. eLife 2016; 5:e12095. [PMID: 26725083 PMCID: PMC4755760 DOI: 10.7554/elife.12095] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/02/2016] [Indexed: 12/19/2022] Open
Abstract
GPIHBP1 is a glycolipid-anchored membrane protein of capillary endothelial cells that binds lipoprotein lipase (LPL) within the interstitial space and shuttles it to the capillary lumen. The LPL•GPIHBP1 complex is responsible for margination of triglyceride-rich lipoproteins along capillaries and their lipolytic processing. The current work conceptualizes a model for the GPIHBP1•LPL interaction based on biophysical measurements with hydrogen-deuterium exchange/mass spectrometry, surface plasmon resonance, and zero-length cross-linking. According to this model, GPIHBP1 comprises two functionally distinct domains: (1) an intrinsically disordered acidic N-terminal domain; and (2) a folded C-terminal domain that tethers GPIHBP1 to the cell membrane by glycosylphosphatidylinositol. We demonstrate that these domains serve different roles in regulating the kinetics of LPL binding. Importantly, the acidic domain stabilizes LPL catalytic activity by mitigating the global unfolding of LPL's catalytic domain. This study provides a conceptual framework for understanding intravascular lipolysis and GPIHBP1 and LPL mutations causing familial chylomicronemia. DOI:http://dx.doi.org/10.7554/eLife.12095.001 Fat is an important part of our diet. The intestines absorb fats and package them into particles called lipoproteins. After reaching the bloodstream, the fat molecules (lipids) in the lipoproteins are broken down by an enzyme called lipoprotein lipase (LPL), which is located along the surface of small blood vessels. This releases nutrients that can be used by vital tissues – mainly the heart, skeletal muscle, and adipose tissues. LPL is produced by muscle and adipose tissue, but it is quickly swept up by a protein called GPIHBP1 and shuttled to its site of action inside the blood vessels. Mutations that alter the structure of LPL or GPIHBP1 can prevent the breakdown of lipids, resulting in high levels of lipids in the blood. This can lead to inflammation in the pancreas and also increases the risk of heart attacks and strokes. Many earlier studies have examined the properties of LPL, but our understanding of GPIHBP1 has been limited, mainly because it has been difficult to purify GPIHBP1 for analysis. Using genetically altered insect cells, Mysling et al. were able to purify two different forms of GPIHBP1 – a full-length version and a shorter version that lacked a small section at the end of the molecule known as the acidic domain. This revealed that the opposite end of the molecule – called the carboxyl-terminal domain – is primarily responsible for binding LPL and anchoring it inside blood vessels. Once LPL is bound to GPIHBP1, the acidic domain of GPIHBP1 helps to stabilize LPL. If GPIHBP1’s acidic domain is missing then LPL is more susceptible to losing its structure, rendering it incapable of breaking down the lipids in the blood. Mysling et al. describe a new model for how LPL and GPIHBP1 interact that explains how specific mutations in the genes that encode these proteins interfere with the delivery of LPL to small blood vessels. In the future, this could help researchers to develop new strategies to treat people with high levels of lipids in their blood. DOI:http://dx.doi.org/10.7554/eLife.12095.002
Collapse
Affiliation(s)
- Simon Mysling
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Larsson
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Anne P Beigneux
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Henrik Gårdsvoll
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - André Bensadouen
- Division of Nutritional Science, Cornell University, Ithaca, United States
| | - Thomas Jd Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Lee EF, Perugini MA, Pettikiriarachchi A, Evangelista M, Keizer DW, Yao S, Fairlie WD. The BECN1 N-terminal domain is intrinsically disordered. Autophagy 2016; 12:460-71. [PMID: 27046249 PMCID: PMC4836020 DOI: 10.1080/15548627.2016.1140292] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 12/16/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022] Open
Abstract
BECN1/Beclin 1 has a critical role in the early stages of autophagosome formation. Recently, structures of its central and C-terminal domains were reported, however, little structural information is available on the N-terminal domain, comprising a third of the protein. This lack of structural information largely stems from the inability to produce this region in a purified form. Here, we describe the expression and purification of the N-terminal domain of BECN1 (residues 1 to 150) and detailed biophysical characterization, including NMR spectroscopy. Combined, our studies demonstrated at the atomic level that the BECN1 N-terminal domain is intrinsically disordered, and apart from the BH3 subdomain, remains disordered following interaction with a binding partner, BCL2L1/BCL-XL. In addition, the BH3 domain α-helix induced upon interaction with BCL2L1 reverts to a disordered state when the complex is dissociated by exposure to a competitive inhibitor. No significant interactions between N- and C-terminal domains were detected.
Collapse
Affiliation(s)
- Erinna F. Lee
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, Melbourne, Victoria, Australia
| | - Matthew A. Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | | | - Marco Evangelista
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - David W. Keizer
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Shenggen Yao
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - W. Douglas Fairlie
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Insight into the Unfolding Properties of Chd64, a Small, Single Domain Protein with a Globular Core and Disordered Tails. PLoS One 2015; 10:e0137074. [PMID: 26325194 PMCID: PMC4556635 DOI: 10.1371/journal.pone.0137074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/13/2015] [Indexed: 11/28/2022] Open
Abstract
Two major lipophilic hormones, 20-hydroxyecdysone (20E) and juvenile hormone (JH), govern insect development and growth. While the mode of action of 20E is well understood, some understanding of JH-dependent signalling has been attained only in the past few years, and the crosstalk of the two hormonal pathways remains unknown. Two proteins, the calponin-like Chd64 and immunophilin FKBP39 proteins, have recently been found to play pivotal roles in the formation of dynamic, multiprotein complex that cross-links these two signalling pathways. However, the molecular mechanism of the interaction remains unexplored. The aim of this work was to determine structural elements of Chd64 to provide an understanding of molecular basis of multiple interactions. We analysed Chd64 in two unrelated insect species, Drosophila melanogaster (DmChd64) and Tribolium castaneum (TcChd64). Using hydrogen-deuterium exchange mass spectrometry (HDX-MS), we showed that both Chd64 proteins have disordered tails that outflank the globular core. The folds of the globular cores of both Chd64 resemble the calponin homology (CH) domain previously resolved by crystallography. Monitoring the unfolding of DmChd64 and TcChd64 by far-ultraviolet (UV) circular dichroism (CD) spectroscopy, fluorescence spectroscopy and size-exclusion chromatography (SEC) revealed a highly complex process. Chd64 unfolds and forms of a molten globule (MG)—like intermediate state. Furthermore, our data indicate that in some conditions, Chd64 may exists in discrete structural forms, indicating that the protein is pliable and capable of easily acquiring different conformations. The plasticity of Chd64 and the existence of terminal intrinsically disordered regions (IDRs) may be crucial for multiple interactions with many partners.
Collapse
|
27
|
Różycka M, Wojtas M, Jakób M, Stigloher C, Grzeszkowiak M, Mazur M, Ożyhar A. Intrinsically disordered and pliable Starmaker-like protein from medaka (Oryzias latipes) controls the formation of calcium carbonate crystals. PLoS One 2014; 9:e114308. [PMID: 25490041 PMCID: PMC4260845 DOI: 10.1371/journal.pone.0114308] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/07/2014] [Indexed: 01/31/2023] Open
Abstract
Fish otoliths, biominerals composed of calcium carbonate with a small amount of organic matrix, are involved in the functioning of the inner ear. Starmaker (Stm) from zebrafish (Danio rerio) was the first protein found to be capable of controlling the formation of otoliths. Recently, a gene was identified encoding the Starmaker-like (Stm-l) protein from medaka (Oryzias latipes), a putative homologue of Stm and human dentine sialophosphoprotein. Although there is no sequence similarity between Stm-l and Stm, Stm-l was suggested to be involved in the biomineralization of otoliths, as had been observed for Stm even before. The molecular properties and functioning of Stm-l as a putative regulatory protein in otolith formation have not been characterized yet. A comprehensive biochemical and biophysical analysis of recombinant Stm-l, along with in silico examinations, indicated that Stm-l exhibits properties of a coil-like intrinsically disordered protein. Stm-l possesses an elongated and pliable structure that is able to adopt a more ordered and rigid conformation under the influence of different factors. An in vitro assay of the biomineralization activity of Stm-l indicated that Stm-l affected the size, shape and number of calcium carbonate crystals. The functional significance of intrinsically disordered properties of Stm-l and the possible role of this protein in controlling the formation of calcium carbonate crystals is discussed.
Collapse
Affiliation(s)
- Mirosława Różycka
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Magdalena Wojtas
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Michał Jakób
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Christian Stigloher
- Division of Electron Microscopy, Biocenter, University of Würzburg, Würzburg, Germany
| | - Mikołaj Grzeszkowiak
- NanoBioMedical Centre and Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Maciej Mazur
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
- * E-mail:
| |
Collapse
|
28
|
De Biasio A, Ibáñez de Opakua A, Cordeiro TN, Villate M, Merino N, Sibille N, Lelli M, Diercks T, Bernadó P, Blanco FJ. p15PAF is an intrinsically disordered protein with nonrandom structural preferences at sites of interaction with other proteins. Biophys J 2014; 106:865-74. [PMID: 24559989 DOI: 10.1016/j.bpj.2013.12.046] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/18/2013] [Accepted: 12/27/2013] [Indexed: 11/16/2022] Open
Abstract
We present to our knowledge the first structural characterization of the proliferating-cell-nuclear-antigen-associated factor p15(PAF), showing that it is monomeric and intrinsically disordered in solution but has nonrandom conformational preferences at sites of protein-protein interactions. p15(PAF) is a 12 kDa nuclear protein that acts as a regulator of DNA repair during DNA replication. The p15(PAF) gene is overexpressed in several types of human cancer. The nearly complete NMR backbone assignment of p15(PAF) allowed us to measure 86 N-H(N) residual dipolar couplings. Our residual dipolar coupling analysis reveals nonrandom conformational preferences in distinct regions, including the proliferating-cell-nuclear-antigen-interacting protein motif (PIP-box) and the KEN-box (recognized by the ubiquitin ligase that targets p15(PAF) for degradation). In accordance with these findings, analysis of the (15)N R2 relaxation rates shows a relatively reduced mobility for the residues in these regions. The agreement between the experimental small angle x-ray scattering curve of p15(PAF) and that computed from a statistical coil ensemble corrected for the presence of local secondary structural elements further validates our structural model for p15(PAF). The coincidence of these transiently structured regions with protein-protein interaction and posttranslational modification sites suggests a possible role for these structures as molecular recognition elements for p15(PAF).
Collapse
Affiliation(s)
- Alfredo De Biasio
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain
| | - Alain Ibáñez de Opakua
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain
| | - Tiago N Cordeiro
- Centre de Biochimie Structurale, Institut National de la Santé et de la Recherche Médicale (INSERM) U1054, Centre National de la Recherche Scientifique (CNRS) UMR 5048, Université Montpellier 1 and 2, Montpellier, France
| | - Maider Villate
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain
| | - Nekane Merino
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain
| | - Nathalie Sibille
- Centre de Biochimie Structurale, Institut National de la Santé et de la Recherche Médicale (INSERM) U1054, Centre National de la Recherche Scientifique (CNRS) UMR 5048, Université Montpellier 1 and 2, Montpellier, France
| | - Moreno Lelli
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, Institut de Sciences Analytiques (CNRS/Ecole Normale Supérieure de Lyon/Université Claude Bernard Lyon 1), Villeurbanne, France
| | - Tammo Diercks
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain
| | - Pau Bernadó
- Centre de Biochimie Structurale, Institut National de la Santé et de la Recherche Médicale (INSERM) U1054, Centre National de la Recherche Scientifique (CNRS) UMR 5048, Université Montpellier 1 and 2, Montpellier, France
| | - Francisco J Blanco
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
29
|
Loerch S, Maucuer A, Manceau V, Green MR, Kielkopf CL. Cancer-relevant splicing factor CAPERα engages the essential splicing factor SF3b155 in a specific ternary complex. J Biol Chem 2014; 289:17325-37. [PMID: 24795046 DOI: 10.1074/jbc.m114.558825] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
U2AF homology motifs (UHMs) mediate protein-protein interactions with U2AF ligand motifs (ULMs) of pre-mRNA splicing factors. The UHM-containing alternative splicing factor CAPERα regulates splicing of tumor-promoting VEGF isoforms, yet the molecular target of the CAPERα UHM is unknown. Here we present structures of the CAPERα UHM bound to a representative SF3b155 ULM at 1.7 Å resolution and, for comparison, in the absence of ligand at 2.2 Å resolution. The prototypical UHM/ULM interactions authenticate CAPERα as a bona fide member of the UHM family of proteins. We identify SF3b155 as the relevant ULM-containing partner of full-length CAPERα in human cell extracts. Isothermal titration calorimetry comparisons of the purified CAPERα UHM binding known ULM-containing proteins demonstrate that high affinity interactions depend on the presence of an intact, intrinsically unstructured SF3b155 domain containing seven ULM-like motifs. The interplay among bound CAPERα molecules gives rise to the appearance of two high affinity sites in the SF3b155 ULM-containing domain. In conjunction with the previously identified, UHM/ULM-mediated complexes of U2AF(65) and SPF45 with SF3b155, this work demonstrates the capacity of SF3b155 to offer a platform for coordinated recruitment of UHM-containing splicing factors.
Collapse
Affiliation(s)
- Sarah Loerch
- From the Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642 and
| | - Alexandre Maucuer
- the Howard Hughes Medical Institute and Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Valérie Manceau
- the Howard Hughes Medical Institute and Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Michael R Green
- the Howard Hughes Medical Institute and Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Clara L Kielkopf
- From the Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642 and
| |
Collapse
|
30
|
Nourse A, Mittag T. The cytoplasmic domain of the T-cell receptor zeta subunit does not form disordered dimers. J Mol Biol 2013; 426:62-70. [PMID: 24120941 DOI: 10.1016/j.jmb.2013.09.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/11/2013] [Accepted: 09/25/2013] [Indexed: 01/14/2023]
Abstract
Intrinsically disordered regions in proteins play active roles in recognition, signaling and molecular sorting. They often undergo coupled folding and binding giving rise to largely ordered interfaces with their binding partners. The cytoplasmic region of the T-cell receptor zeta subunit (ζcyt) has been previously proposed to specifically dimerize in the absence of a disorder-to-order transition, suggesting an intriguing dimerization mechanism that may involve multiple transient interfaces. We show here using analytical ultracentrifugation, NMR, size-exclusion chromatography (SEC) and multi-angle light scattering that neither ζcyt nor the cytoplasmic region of CD3ε significantly populates a dimeric state but that they are mostly monomers in solution up to millimolar concentrations. They experience a salt- and concentration-dependent shift of their elution volume in SEC previously interpreted as dimerization. Our data show that ζcyt does not form a highly disordered protein complex and leaves open the question as to whether completely disordered dimers (or other oligomers) exist in nature.
Collapse
Affiliation(s)
- Amanda Nourse
- Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 311, Memphis, TN 38105, USA.
| | - Tanja Mittag
- Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 311, Memphis, TN 38105, USA.
| |
Collapse
|