1
|
Boussaty EC, Friedman RA, Clifford RE. Hearing loss and tinnitus: association studies for complex-hearing disorders in mouse and man. Hum Genet 2022; 141:981-990. [PMID: 34318347 PMCID: PMC8792513 DOI: 10.1007/s00439-021-02317-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022]
Abstract
Genome-wide association studies (GWAS) provide an unbiased first look at genetic loci involved in aging and noise-induced sensorineural hearing loss and tinnitus. The hearing phenotype, whether audiogram-based or self-report, is regressed against genotyped information at representative single nucleotide polymorphisms (SNPs) across the genome. Findings include the fact that both hearing loss and tinnitus are polygenic disorders, with up to thousands of genes, each of effect size of < 0.02. Smaller human GWAS' were able to use objective measures and identified a few loci; however, hundreds of thousands of participants have been required for the statistical power to identify significant variants, and GWAS is unable to assess rare variants with mean allele frequency < 1%. Animal studies are required as well because of inability to access the human cochlea. Mouse GWAS builds on linkage techniques and the known phenotypic differences in auditory function between inbred strains. With the advantage that the laboratory environment can be controlled for noise and aging, the Hybrid Mouse Diversity Panel (HDMP) combines 100 strains sequenced at high resolution. Lift-over regions between mice and humans have identified over 17,000 homologous genes. Since most significant SNPs are either intergenic or in introns, and binding sites between species are poorly preserved between species, expression quantitative trait locus information is required to bring humans and mice into agreement. Transcriptome-wide analysis studies (TWAS) can prioritize putative causal genes and tissues. Diverse species, each making a distinct contribution, carry a synergistic advantage in the quest for treatment and ultimate cure of sensorineural hearing difficulties.
Collapse
Affiliation(s)
- Ely Cheikh Boussaty
- School of Health Sciences, Division of Otolaryngology, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Rick Adam Friedman
- School of Health Sciences, Division of Otolaryngology, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Royce E Clifford
- School of Health Sciences, Division of Otolaryngology, University of California San Diego, La Jolla, San Diego, CA, USA.
- Research Department, VA Hospitals San Diego, San Diego, CA, USA.
- Visiting Scientist, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA.
| |
Collapse
|
2
|
Lu J, West MB, Du X, Cai Q, Ewert DL, Cheng W, Nakmali D, Li W, Huang X, Kopke RD. Electrophysiological assessment and pharmacological treatment of blast-induced tinnitus. PLoS One 2021; 16:e0243903. [PMID: 33411811 PMCID: PMC7790300 DOI: 10.1371/journal.pone.0243903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/01/2020] [Indexed: 11/19/2022] Open
Abstract
Tinnitus, the phantom perception of sound, often occurs as a clinical sequela of auditory traumas. In an effort to develop an objective test and therapeutic approach for tinnitus, the present study was performed in blast-exposed rats and focused on measurements of auditory brainstem responses (ABRs), prepulse inhibition of the acoustic startle response, and presynaptic ribbon densities on cochlear inner hair cells (IHCs). Although the exact mechanism is unknown, the “central gain theory” posits that tinnitus is a perceptual indicator of abnormal increases in the gain (or neural amplification) of the central auditory system to compensate for peripheral loss of sensory input from the cochlea. Our data from vehicle-treated rats supports this rationale; namely, blast-induced cochlear synaptopathy correlated with imbalanced elevations in the ratio of centrally-derived ABR wave V amplitudes to peripherally-derived wave I amplitudes, resulting in behavioral evidence of tinnitus. Logistic regression modeling demonstrated that the ABR wave V/I amplitude ratio served as a reliable metric for objectively identifying tinnitus. Furthermore, histopathological examinations in blast-exposed rats revealed tinnitus-related changes in the expression patterns of key plasticity factors in the central auditory pathway, including chronic loss of Arc/Arg3.1 mobilization. Using a formulation of N-acetylcysteine (NAC) and disodium 2,4-disulfophenyl-N-tert-butylnitrone (HPN-07) as a therapeutic for addressing blast-induced neurodegeneration, we measured a significant treatment effect on preservation or restoration of IHC ribbon synapses, normalization of ABR wave V/I amplitude ratios, and reduced behavioral evidence of tinnitus in blast-exposed rats, all of which accorded with mitigated histopathological evidence of tinnitus-related neuropathy and maladaptive neuroplasticity.
Collapse
Affiliation(s)
- Jianzhong Lu
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Matthew B. West
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Xiaoping Du
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Qunfeng Cai
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Donald L. Ewert
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Weihua Cheng
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Don Nakmali
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Wei Li
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Xiangping Huang
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
| | - Richard D. Kopke
- Hough Ear Institute, Oklahoma City, Oklahoma, United States of America
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Departments of Physiology and Otolaryngology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
3
|
van Zwieten G, Janssen MLF, Smit JV, Janssen AML, Roet M, Jahanshahi A, Stokroos RJ, Temel Y. Inhibition of Experimental Tinnitus With High Frequency Stimulation of the Rat Medial Geniculate Body. Neuromodulation 2018; 22:416-424. [PMID: 30102446 PMCID: PMC6618158 DOI: 10.1111/ner.12795] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/28/2018] [Accepted: 05/02/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Neuromodulation is a promising treatment modality for tinnitus, especially in chronic and severe cases. The auditory thalamus plays a key role in the pathophysiology of tinnitus, as it integrates and processes auditory and limbic information. OBJECTIVE The effect of high frequency stimulation and low frequency stimulation of the medial geniculate bodies on tinnitus in a noise-induced tinnitus rat model is assessed. MATERIALS AND METHODS Presence of tinnitus was verified using the gap-induced prepulse inhibition of the acoustic startle response paradigm. Hearing thresholds were determined before and after noise trauma with auditory brainstem responses. Anxiety-related side-effects were evaluated in the elevated zero maze and open field. RESULTS Results show tinnitus development after noise exposure and preserved hearing thresholds of the ear that was protected from noise trauma. We found that high frequency stimulation of the medial geniculate bodies suppressed tinnitus. This effect maintained directly after stimulation when the stimulator was turned off. Low frequency stimulation did not have any effects on the gap:no-gap ratio of the acoustic startle response. CONCLUSION High frequency stimulation of the MGB has a direct and residual suppressing effect on tinnitus in this animal model. Low frequency stimulation of the MGB did not inhibit tinnitus.
Collapse
Affiliation(s)
- Gusta van Zwieten
- Department of Ear Nose and Throat/Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Marcus L F Janssen
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurology and Neurophysiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jasper V Smit
- Department of Ear Nose and Throat/Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - A Miranda L Janssen
- Department of Ear Nose and Throat/Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Methodology and Statistics, School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands
| | - Milaine Roet
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ali Jahanshahi
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Robert J Stokroos
- Department of Ear Nose and Throat/Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yasin Temel
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
4
|
Pace E, Luo H, Bobian M, Panekkad A, Zhang X, Zhang H, Zhang J. A Conditioned Behavioral Paradigm for Assessing Onset and Lasting Tinnitus in Rats. PLoS One 2016; 11:e0166346. [PMID: 27835697 PMCID: PMC5105995 DOI: 10.1371/journal.pone.0166346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/27/2016] [Indexed: 01/19/2023] Open
Abstract
Numerous behavioral paradigms have been developed to assess tinnitus-like behavior in animals. Nevertheless, they are often limited by prolonged training requirements, as well as an inability to simultaneously assess onset and lasting tinnitus behavior, tinnitus pitch or duration, or tinnitus presence without grouping data from multiple animals or testing sessions. To enhance behavioral testing of tinnitus, we developed a conditioned licking suppression paradigm to determine the pitch(s) of both onset and lasting tinnitus-like behavior within individual animals. Rats learned to lick water during broadband or narrowband noises, and to suppress licking to avoid footshocks during silence. After noise exposure, rats significantly increased licking during silent trials, suggesting onset tinnitus-like behavior. Lasting tinnitus-behavior, however, was exhibited in about half of noise-exposed rats through 7 weeks post-exposure tested. Licking activity during narrowband sound trials remained unchanged following noise exposure, while ABR hearing thresholds fully recovered and were comparable between tinnitus(+) and tinnitus(-) rats. To assess another tinnitus inducer, rats were injected with sodium salicylate. They demonstrated high pitch tinnitus-like behavior, but later recovered by 5 days post-injection. Further control studies showed that 1): sham noise-exposed rats tested with footshock did not exhibit tinnitus-like behavior, and 2): noise-exposed or sham rats tested without footshocks showed no fundamental changes in behavior compared to those tested with shocks. Together, these results demonstrate that this paradigm can efficiently test the development of noise- and salicylate-induced tinnitus behavior. The ability to assess tinnitus individually, over time, and without averaging data enables us to realistically address tinnitus in a clinically relevant way. Thus, we believe that this optimized behavioral paradigm will facilitate investigations into the mechanisms of tinnitus and development of effective treatments.
Collapse
Affiliation(s)
- Edward Pace
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, United States of America
| | - Hao Luo
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, United States of America
| | - Michael Bobian
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, United States of America
| | - Ajay Panekkad
- Department of Electrical Engineering, Wayne State College of Engineering, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States of America
| | - Xueguo Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, United States of America
| | - Huiming Zhang
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, Canada
| | - Jinsheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, United States of America
- Department of Communication Sciences & Disorders, Wayne State University College of Liberal Arts & Sciences, 60 Farnsworth St., Detroit, Michigan 48202, United States of America
- * E-mail:
| |
Collapse
|
5
|
Eggermont JJ, Roberts LE. Tinnitus: animal models and findings in humans. Cell Tissue Res 2015; 361:311-36. [PMID: 25266340 PMCID: PMC4487353 DOI: 10.1007/s00441-014-1992-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/14/2014] [Indexed: 12/19/2022]
Abstract
Chronic tinnitus (ringing of the ears) is a medically untreatable condition that reduces quality of life for millions of individuals worldwide. Most cases are associated with hearing loss that may be detected by the audiogram or by more sensitive measures. Converging evidence from animal models and studies of human tinnitus sufferers indicates that, while cochlear damage is a trigger, most cases of tinnitus are not generated by irritative processes persisting in the cochlea but by changes that take place in central auditory pathways when auditory neurons lose their input from the ear. Forms of neural plasticity underlie these neural changes, which include increased spontaneous activity and neural gain in deafferented central auditory structures, increased synchronous activity in these structures, alterations in the tonotopic organization of auditory cortex, and changes in network behavior in nonauditory brain regions detected by functional imaging of individuals with tinnitus and corroborated by animal investigations. Research on the molecular mechanisms that underlie neural changes in tinnitus is in its infancy and represents a frontier for investigation.
Collapse
Affiliation(s)
- Jos J Eggermont
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, and Department of Psychology, University of Calgary, 2500 University Drive N.W, Calgary, AB, Canada,
| | | |
Collapse
|
6
|
Radziwon KE, Stolzberg DJ, Urban ME, Bowler RA, Salvi RJ. Salicylate-induced hearing loss and gap detection deficits in rats. Front Neurol 2015; 6:31. [PMID: 25750635 PMCID: PMC4335184 DOI: 10.3389/fneur.2015.00031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/07/2015] [Indexed: 12/31/2022] Open
Abstract
To test the "tinnitus gap-filling" hypothesis in an animal psychoacoustic paradigm, rats were tested using a go/no-go operant gap detection task in which silent intervals of various durations were embedded within a continuous noise. Gap detection thresholds were measured before and after treatment with a dose of sodium salicylate (200 mg/kg) that reliably induces tinnitus in rats. Noise-burst detection thresholds were also measured to document the amount of hearing loss and aid in interpreting the gap detection results. As in the previous human psychophysical experiments, salicylate had little or no effect on gap thresholds measured in broadband noise presented at high-stimulus levels (30-60 dB SPL); gap detection thresholds were always 10 ms or less. Salicylate also did not affect gap thresholds presented in narrowband noise at 60 dB SPL. Therefore, rats treated with a dose of salicylate that reliably induces tinnitus have no difficulty detecting silent gaps as long as the noise in which they are embedded is clearly audible.
Collapse
Affiliation(s)
- Kelly E. Radziwon
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Daniel J. Stolzberg
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Maxwell E. Urban
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rachael A. Bowler
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Richard J. Salvi
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
7
|
Eggermont JJ. Tinnitus and neural plasticity (Tonndorf lecture at XIth International Tinnitus Seminar, Berlin, 2014). Hear Res 2015; 319:1-11. [DOI: 10.1016/j.heares.2014.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/23/2014] [Accepted: 10/02/2014] [Indexed: 11/13/2022]
|
8
|
Heeringa AN, Agterberg MJH, van Dijk P. Spontaneous behavior in noise and silence: a possible new measure to assess tinnitus in Guinea pigs. Front Neurol 2014; 5:207. [PMID: 25360130 PMCID: PMC4197645 DOI: 10.3389/fneur.2014.00207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/30/2014] [Indexed: 12/20/2022] Open
Abstract
This study describes two experiments that were conducted in search for a behavioral paradigm to test for tinnitus in guinea pigs. Conditioning paradigms are available to determine the presence of tinnitus in animals and are based on the assumption that tinnitus impairs their ability to detect silent intervals in continuous noise. Guinea pigs have not been subjected to these paradigms yet; therefore, we investigated whether guinea pigs could be conditioned in the two-way shuttle-box paradigm to respond to silent intervals in noise. Even though guinea pigs could be trained relatively easy to respond to the presence of a noise interval, training guinea pigs to silent intervals in noise was unsuccessful. Instead, it appeared that they became immobile when the continuous stimulus was suddenly stopped. This was confirmed by the next experiment, in which we subjected guinea pigs to alternating intervals of noise and silence with a random duration between 30 and 120 s. Indeed, guinea pigs were significantly longer immobile during silence compared to during noise. By interpreting immobility as a signature of perceiving silence, we hypothesized that the presence of tinnitus would reduce immobility in silence. Therefore, we unilaterally exposed one group of guinea pigs to an 11-kHz tone of 124 dB sound pressure level for 1 h. A subset of the exposed animals was significantly more active in silence, but also more active in noise, as compared to the control group. The increased mobility during silent intervals might represent tinnitus. However, the increased mobility in noise of this group implies that the observed behavior could have derived from, e.g., an overall increase in activity. Therefore, conducting validation experiments is very important before implementing this method as a new screening tool for tinnitus. Follow-up experiments are discussed to further elucidate the origin of the increased mobility in both silence and noise.
Collapse
Affiliation(s)
- Amarins N Heeringa
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen , Groningen , Netherlands ; Graduate School of Medical Sciences (Research School of Behavioural and Cognitive Neurosciences), University of Groningen , Groningen , Netherlands
| | - Martijn J H Agterberg
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands ; Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen , Nijmegen , Netherlands
| | - Pim van Dijk
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen , Groningen , Netherlands ; Graduate School of Medical Sciences (Research School of Behavioural and Cognitive Neurosciences), University of Groningen , Groningen , Netherlands
| |
Collapse
|
9
|
Hayes SH, Radziwon KE, Stolzberg DJ, Salvi RJ. Behavioral models of tinnitus and hyperacusis in animals. Front Neurol 2014; 5:179. [PMID: 25278931 PMCID: PMC4166233 DOI: 10.3389/fneur.2014.00179] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/02/2014] [Indexed: 12/31/2022] Open
Abstract
The phantom perception of tinnitus and reduced sound-level tolerance associated with hyperacusis have a high comorbidity and can be debilitating conditions for which there are no widely accepted treatments. One factor limiting the development of treatments for tinnitus and hyperacusis is the lack of reliable animal behavioral models of these disorders. Therefore, the purpose of this review is to highlight the current animal models of tinnitus and hyperacusis, and to detail the advantages and disadvantages of each paradigm. To date, this is the first review to include models of both tinnitus and hyperacusis.
Collapse
Affiliation(s)
- Sarah H Hayes
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, University at Buffalo, The State University of New York , Buffalo, NY , USA
| | - Kelly E Radziwon
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, University at Buffalo, The State University of New York , Buffalo, NY , USA
| | - Daniel J Stolzberg
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario , London, ON , Canada
| | - Richard J Salvi
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, University at Buffalo, The State University of New York , Buffalo, NY , USA
| |
Collapse
|
10
|
Heffner HE, Heffner RS. The Behavioral Study of Mammalian Hearing. PERSPECTIVES ON AUDITORY RESEARCH 2014. [DOI: 10.1007/978-1-4614-9102-6_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Knipper M, Van Dijk P, Nunes I, Rüttiger L, Zimmermann U. Advances in the neurobiology of hearing disorders: Recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol 2013; 111:17-33. [DOI: 10.1016/j.pneurobio.2013.08.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/20/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
|