1
|
Nisa A, Kipper FC, Panigrahy D, Tiwari S, Kupz A, Subbian S. Different modalities of host cell death and their impact on Mycobacterium tuberculosis infection. Am J Physiol Cell Physiol 2022; 323:C1444-C1474. [PMID: 36189975 PMCID: PMC9662802 DOI: 10.1152/ajpcell.00246.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 11/22/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is the pathogen that causes tuberculosis (TB), a leading infectious disease of humans worldwide. One of the main histopathological hallmarks of TB is the formation of granulomas comprised of elaborately organized aggregates of immune cells containing the pathogen. Dissemination of Mtb from infected cells in the granulomas due to host and mycobacterial factors induces multiple cell death modalities in infected cells. Based on molecular mechanism, morphological characteristics, and signal dependency, there are two main categories of cell death: programmed and nonprogrammed. Programmed cell death (PCD), such as apoptosis and autophagy, is associated with a protective response to Mtb by keeping the bacteria encased within dead macrophages that can be readily phagocytosed by arriving in uninfected or neighboring cells. In contrast, non-PCD necrotic cell death favors the pathogen, resulting in bacterial release into the extracellular environment. Multiple types of cell death in the PCD category, including pyroptosis, necroptosis, ferroptosis, ETosis, parthanatos, and PANoptosis, may be involved in Mtb infection. Since PCD pathways are essential for host immunity to Mtb, therapeutic compounds targeting cell death signaling pathways have been experimentally tested for TB treatment. This review summarizes different modalities of Mtb-mediated host cell deaths, the molecular mechanisms underpinning host cell death during Mtb infection, and its potential implications for host immunity. In addition, targeting host cell death pathways as potential therapeutic and preventive approaches against Mtb infection is also discussed.
Collapse
Affiliation(s)
- Annuurun Nisa
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Franciele C Kipper
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Sangeeta Tiwari
- Department of Biological Sciences, Border Biomedical Research Center (BBRC), University of Texas, El Paso, Texas
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Townsville, Queensland, Australia
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| |
Collapse
|
2
|
Mohareer K, Asalla S, Banerjee S. Cell death at the cross roads of host-pathogen interaction in Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2018; 113:99-121. [PMID: 30514519 DOI: 10.1016/j.tube.2018.09.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/13/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) continues to be the leading cause of death by any single infectious agent, accounting for around 1.7 million annual deaths globally, despite several interventions and support programs by national and international agencies. With the development of drug resistance in Mycobacterium tuberculosis (M. tb), there has been a paradigm shift in TB research towards host-directed therapy. The potential targets include the interactions between host and bacterial proteins that are crucial for pathogenesis. Hence, collective efforts are being made to understand the molecular details of host-pathogen interaction for possible translation into host-directed therapy. The present review focuses on 'host cell death modalities' of host-pathogen interaction, which play a crucial role in determining the outcome of TB disease progression. Several cell death modalities that occur in response to mycobacterial infection have been identified in human macrophages either as host defences for bacterial clearance or as pathogen strategies for multiplication and dissemination. These cell death modalities include apoptosis, necrosis, pyroptosis, necroptosis, pyronecrosis, NETosis, and autophagy. These processes are highly overlapping with several mycobacterial proteins participating in more than one cell death pathway. Until now, reviews in M. tb and host cell death have discussed either focusing on host evasion strategies, apoptosis, autophagy, and necrosis or describing all these forms with limited discussions of their role in host-pathogen interactions. Here, we present a comprehensive review of various mycobacterial factors modulating host cell death pathways and the cross-talk between them. Besides this, we have discussed the networking of host cell death pathways including the interference of host miRNA during M. tb infection with their respective targets. Through this review, we present the host targets that overlap across several cell death modalities and the technical limitations of methodology in cell death research. Given the compelling need to discover alternative drug target(s), this review identifies these overlapping cell death factors as potential targets for host-directed therapy.
Collapse
Affiliation(s)
- Krishnaveni Mohareer
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India-500046
| | - Suman Asalla
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India-500046
| | - Sharmistha Banerjee
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India-500046.
| |
Collapse
|
3
|
Averbakh MM, Ergeshow A. Interaction between Mycobacterium tuberculosis and Human Host: Role of Cytokines in Pathogenesis and Treatment Monitoring. Tuberculosis (Edinb) 2018. [DOI: 10.5772/intechopen.76543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Zhang W, Lu Q, Dong Y, Yue Y, Xiong S. Rv3033, as an Emerging Anti-apoptosis Factor, Facilitates Mycobacteria Survival via Inhibiting Macrophage Intrinsic Apoptosis. Front Immunol 2018; 9:2136. [PMID: 30319611 PMCID: PMC6168788 DOI: 10.3389/fimmu.2018.02136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
Apoptosis inhibition is a critical strategy of mycobacteria facilitating its survival in macrophages, but the underlying mechanism is not completely understood. In this study, we found that Rv3033, a secreted virulence factor of mycobacteria, played an important role in bacillary survival within macrophages. Forced over-expressed of Rv3033 in macrophages could efficiently resist mycobacteria-induced early and late apoptosis, accompanied with the obvious increased cellular bacterial burden. By exploring the underlying mechanism, we found that Rv3033 efficiently repressed the intrinsic (caspase-9 meditated), but not the extrinsic (caspase-8 mediated) apoptotic pathway in mycobacteria-infected macrophages. And this repression relied on the orchestrating blockade of both mitochondrial cytochrome c release and endoplasmic reticulum (ER) stress PERK branch activation. Our study uncovered a novel function of mycobacterial virulence factor Rv3033 as an anti-apoptotic protein, which may provide a new target for tuberculosis (TB) treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Qian Lu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yuanshu Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yan Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Abstract
Tuberculosis remains one of the greatest threats to human health. The causative bacterium, Mycobacterium tuberculosis, is acquired by the respiratory route. It is exquisitely adapted to humans and is a prototypic intracellular pathogen of macrophages, with alveolar macrophages being the primary conduit of infection and disease. However, M. tuberculosis bacilli interact with and are affected by several soluble and cellular components of the innate immune system which dictate the outcome of primary infection, most commonly a latently infected healthy human host, in whom the bacteria are held in check by the host immune response within the confines of tissue granuloma, the host histopathologic hallmark. Such individuals can develop active TB later in life with impairment in the immune system. In contrast, in a minority of infected individuals, the early host immune response fails to control bacterial growth, and progressive granulomatous disease develops, facilitating spread of the bacilli via infectious aerosols. The molecular details of the M. tuberculosis-host innate immune system interaction continue to be elucidated, particularly those occurring within the lung. However, it is clear that a number of complex processes are involved at the different stages of infection that may benefit either the bacterium or the host. In this article, we describe a contemporary view of the molecular events underlying the interaction between M. tuberculosis and a variety of cellular and soluble components and processes of the innate immune system.
Collapse
|
6
|
Perkowski EF, Miller BK, McCann JR, Sullivan JT, Malik S, Allen IC, Godfrey V, Hayden JD, Braunstein M. An orphaned Mce-associated membrane protein of Mycobacterium tuberculosis is a virulence factor that stabilizes Mce transporters. Mol Microbiol 2016; 100:90-107. [PMID: 26712165 DOI: 10.1111/mmi.13303] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2015] [Indexed: 12/17/2022]
Abstract
Mycobacterium tuberculosis proteins that are exported out of the bacterial cytoplasm are ideally positioned to be virulence factors; however, the functions of individual exported proteins remain largely unknown. Previous studies identified Rv0199 as an exported membrane protein of unknown function. Here, we characterized the role of Rv0199 in M. tuberculosis virulence using an aerosol model of murine infection. Rv0199 appears to be a member of a Mce-associated membrane (Mam) protein family leading us to rename it OmamA, for orphaned Mam protein A. Consistent with a role in Mce transport, we showed OmamA is required for cholesterol import, which is a Mce4-dependent process. We further demonstrated a function for OmamA in stabilizing protein components of the Mce1 transporter complex. These results indicate a function of OmamA in multiple Mce transporters and one that may be analogous to the role of VirB8 in stabilizing Type IV secretion systems, as structural similarities between Mam proteins and VirB8 proteins are predicted by the Phyre 2 program. In this study, we provide functional information about OmamA and shed light on the function of Mam family proteins in Mce transporters.
Collapse
Affiliation(s)
| | - Brittany K Miller
- Department of Microbiology and Immunology, University of North Carolina
| | - Jessica R McCann
- Department of Microbiology and Immunology, University of North Carolina
| | | | - Seidu Malik
- Department of Microbiology and Immunology, University of North Carolina
| | - Irving Coy Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine
| | - Virginia Godfrey
- Department of Pathology and Laboratory Medicine, University of North Carolina
| | - Jennifer D Hayden
- Department of Microbiology and Immunology, University of North Carolina
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina
| |
Collapse
|
7
|
Shi J, Zhang H, Fang L, Xi Y, Zhou Y, Luo R, Wang D, Xiao S, Chen H. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis. Biochem Biophys Res Commun 2014; 452:1046-53. [DOI: 10.1016/j.bbrc.2014.09.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/11/2014] [Indexed: 12/14/2022]
|
8
|
Srinivasan L, Ahlbrand S, Briken V. Interaction of Mycobacterium tuberculosis with host cell death pathways. Cold Spring Harb Perspect Med 2014; 4:cshperspect.a022459. [PMID: 24968864 DOI: 10.1101/cshperspect.a022459] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mycobacterium tuberculosis (Mtb) has coevolved with humans for tens of thousands of years. It is thus highly adapted to its human host and has evolved multiple mechanisms to manipulate host immune responses to its advantage. One central host pathogen interaction modality is host cell death pathways. Host cell apoptosis is associated with a protective response to Mtb infection, whereas a necrotic response favors the pathogen. Consistently, Mtb inhibits host cell apoptosis signaling but promotes induction of programmed necrosis. The molecular mechanisms involved in Mtb-mediated host cell death manipulation, the consequences for host immunity, and the potential for therapeutic and preventive approaches will be discussed.
Collapse
Affiliation(s)
- Lalitha Srinivasan
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Sarah Ahlbrand
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
9
|
Vilaplana C, Prats C, Marzo E, Barril C, Vegué M, Diaz J, Valls J, López D, Cardona PJ. To achieve an earlier IFN-γ response is not sufficient to control Mycobacterium tuberculosis infection in mice. PLoS One 2014; 9:e100830. [PMID: 24959669 PMCID: PMC4069189 DOI: 10.1371/journal.pone.0100830] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/29/2014] [Indexed: 01/23/2023] Open
Abstract
The temporo-spatial relationship between the three organs (lung, spleen and lymph node) involved during the initial stages of Mycobacterium tuberculosis infection has been poorly studied. As such, we performed an experimental study to evaluate the bacillary load in each organ after aerosol or intravenous infection and developed a mathematical approach using the data obtained in order to extract conclusions. The results showed that higher bacillary doses result in an earlier IFN-γ response, that a certain bacillary load (BL) needs to be reached to trigger the IFN-γ response, and that control of the BL is not immediate after onset of the IFN-γ response, which might be a consequence of the spatial dimension. This study may have an important impact when it comes to designing new vaccine candidates as it suggests that triggering an earlier IFN-γ response might not guarantee good infection control, and therefore that additional properties should be considered for these candidates.
Collapse
Affiliation(s)
- Cristina Vilaplana
- Unitat de Tuberculosi Experimental (UTE), Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBERES, Badalona, Catalonia, Spain
| | - Clara Prats
- Escola Superior d'Agricultura de Barcelona, Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, C/Esteve Terradas, Castelldefels, Catalonia, Spain
| | - Elena Marzo
- Unitat de Tuberculosi Experimental (UTE), Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBERES, Badalona, Catalonia, Spain
| | - Carles Barril
- Escola Superior d'Agricultura de Barcelona, Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, C/Esteve Terradas, Castelldefels, Catalonia, Spain
| | - Marina Vegué
- Escola Superior d'Agricultura de Barcelona, Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, C/Esteve Terradas, Castelldefels, Catalonia, Spain
| | - Jorge Diaz
- Unitat de Tuberculosi Experimental (UTE), Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBERES, Badalona, Catalonia, Spain
| | - Joaquim Valls
- Escola Superior d'Agricultura de Barcelona, Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, C/Esteve Terradas, Castelldefels, Catalonia, Spain
| | - Daniel López
- Escola Superior d'Agricultura de Barcelona, Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, C/Esteve Terradas, Castelldefels, Catalonia, Spain
| | - Pere-Joan Cardona
- Unitat de Tuberculosi Experimental (UTE), Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBERES, Badalona, Catalonia, Spain
- * E-mail:
| |
Collapse
|