1
|
Sendra E, Fernández-Muñoz A, Zamorano L, Oliver A, Horcajada JP, Juan C, Gómez-Zorrilla S. Impact of multidrug resistance on the virulence and fitness of Pseudomonas aeruginosa: a microbiological and clinical perspective. Infection 2024; 52:1235-1268. [PMID: 38954392 PMCID: PMC11289218 DOI: 10.1007/s15010-024-02313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Pseudomonas aeruginosa is one of the most common nosocomial pathogens and part of the top emergent species associated with antimicrobial resistance that has become one of the greatest threat to public health in the twenty-first century. This bacterium is provided with a wide set of virulence factors that contribute to pathogenesis in acute and chronic infections. This review aims to summarize the impact of multidrug resistance on the virulence and fitness of P. aeruginosa. Although it is generally assumed that acquisition of resistant determinants is associated with a fitness cost, several studies support that resistance mutations may not be associated with a decrease in virulence and/or that certain compensatory mutations may allow multidrug resistance strains to recover their initial fitness. We discuss the interplay between resistance profiles and virulence from a microbiological perspective but also the clinical consequences in outcomes and the economic impact.
Collapse
Affiliation(s)
- Elena Sendra
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
| | - Almudena Fernández-Muñoz
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Horcajada
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Silvia Gómez-Zorrilla
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Thomsen J, Menezes GA, Abdulrazzaq NM, Moubareck CA, Senok A, Everett DB. Evolving trends among Pseudomonas aeruginosa: a 12-year retrospective study from the United Arab Emirates. Front Public Health 2023; 11:1243973. [PMID: 38106909 PMCID: PMC10721971 DOI: 10.3389/fpubh.2023.1243973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Pseudomonas is a group of ubiquitous non-fermenting Gram-negative bacteria (NFGNB). Of the several species associated with humans, Pseudomonas aeruginosa (PA) can acclimate to diverse environments. The global frequency of PA infections is rising and is complicated by this organism's high intrinsic and acquired resistance to several clinically relevant antibiotics. Data on the epidemiology, levels, and trends of antimicrobial resistance of PA in clinical settings in the MENA/GCC region is scarce. Methods A retrospective 12-year analysis of 56,618 non-duplicate diagnostic Pseudomonas spp. from the United Arab Emirates (UAE) was conducted. Data was generated at 317 surveillance sites by routine patient care during 2010-2021, collected by trained personnel and reported by participating surveillance sites to the UAE National antimicrobial resistance (AMR) Surveillance program. Data analysis was conducted with WHONET (https://whonet.org/). Results Among the total isolates (N = 56,618), the majority were PA (95.6%). Data on nationality revealed 44.1% were UAE nationals. Most isolates were from soft tissue (55.7%), followed by respiratory tract (26.7%). PA was more commonly found among inpatients than among outpatients, followed by ICUs. PA showed a horizontal trend for resistance to fluoroquinolones, 3rd- and 4th-generation cephalosporins, and decreasing trends of resistance for aminoglycosides and meropenem. The highest percentage of multidrug resistant (MDR) isolates was reported in 2011 at 35.6%. As an overall trend, the percentage of MDR, extensively drug-resistant (XDR), and possible pandrug-resistant (PDR) isolates generally declined over the study period. Carbapenem-resistant PA (CRPA) were associated with a higher mortality (RR: 2.7), increased admission to ICU (RR: 2.3), and increased length of stay (LOS) (12 excess inpatient days per case), as compared to carbapenem-susceptible PA (CSPA). Conclusion The resistance trends in Pseudomonas species in the UAE indicated a decline in AMR and in percentages of Pseudomonas isolates with MDR and XDR profiles. The sustained Pseudomonas spp. circulation particularly in the hospital settings highlights the importance of surveillance techniques, infection control strategies, and stewardship to limit the continued dissemination. This data also shows that CRPA are associated with higher mortality, increased ICU admission rates, and a longer hospitalization, thus higher costs due to increased number of in-hospital and ICU days.
Collapse
Affiliation(s)
- Jens Thomsen
- Department of Occupational and Environmental Health and Safety, Abu Dhabi Public Health Center, Abu Dhabi, United Arab Emirates
- Department of Pathology and Infectious Diseases, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Godfred A. Menezes
- Department of Medical Microbiology and Immunology, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Najiba M. Abdulrazzaq
- Al Kuwait Hospital Dubai, Emirates Health Services Establishment, Dubai, United Arab Emirates
| | | | | | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Dean B. Everett
- Department of Pathology and Infectious Diseases, Khalifa University, Abu Dhabi, United Arab Emirates
- Biotechnology Research Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Infection Research Unit, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Compendium-Wide Analysis of Pseudomonas aeruginosa Core and Accessory Genes Reveals Transcriptional Patterns across Strains PAO1 and PA14. mSystems 2023; 8:e0034222. [PMID: 36541762 PMCID: PMC9948736 DOI: 10.1128/msystems.00342-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes difficult-to-treat infections. Two well-studied divergent P. aeruginosa strain types, PAO1 and PA14, have significant genomic heterogeneity, including diverse accessory genes present in only some strains. Genome content comparisons find core genes that are conserved across both PAO1 and PA14 strains and accessory genes that are present in only a subset of PAO1 and PA14 strains. Here, we use recently assembled transcriptome compendia of publicly available P. aeruginosa RNA sequencing (RNA-seq) samples to create two smaller compendia consisting of only strain PAO1 or strain PA14 samples with each aligned to their cognate reference genome. We confirmed strain annotations and identified other samples for inclusion by assessing each sample's median expression of PAO1-only or PA14-only accessory genes. We then compared the patterns of core gene expression in each strain. To do so, we developed a method by which we analyzed genes in terms of which genes showed similar expression patterns across strain types. We found that some core genes had consistent correlated expression patterns across both compendia, while others were less stable in an interstrain comparison. For each accessory gene, we also determined core genes with correlated expression patterns. We found that stable core genes had fewer coexpressed neighbors that were accessory genes. Overall, this approach for analyzing expression patterns across strain types can be extended to other groups of genes, like phage genes, or applied for analyzing patterns beyond groups of strains, such as samples with different traits, to reveal a deeper understanding of regulation. IMPORTANCE Pseudomonas aeruginosa is a ubiquitous pathogen. There is much diversity among P. aeruginosa strains, including two divergent but well-studied strains, PAO1 and PA14. Understanding how these different strain-level traits manifest is important for identifying targets that regulate different traits of interest. With the availability of thousands of PAO1 and PA14 samples, we created two strain-specific RNA-seq compendia where each one contains hundreds of samples from PAO1 or PA14 strains and used them to compare the expression patterns of core genes that are conserved in both strain types and to determine which core genes have expression patterns that are similar to those of accessory genes that are unique to one strain or the other using an approach that we developed. We found a subset of core genes with different transcriptional patterns across PAO1 and PA14 strains and identified those core genes with expression patterns similar to those of strain-specific accessory genes.
Collapse
|
4
|
CrkII/Abl phosphorylation cascade is critical for NLRC4 inflammasome activity and is blocked by Pseudomonas aeruginosa ExoT. Nat Commun 2022; 13:1295. [PMID: 35277504 PMCID: PMC8917168 DOI: 10.1038/s41467-022-28967-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
Type 3 Secretion System (T3SS) is a highly conserved virulence structure that plays an essential role in the pathogenesis of many Gram-negative pathogenic bacteria, including Pseudomonas aeruginosa. Exotoxin T (ExoT) is the only T3SS effector protein that is expressed in all T3SS-expressing P. aeruginosa strains. Here we show that T3SS recognition leads to a rapid phosphorylation cascade involving Abl / PKCδ / NLRC4, which results in NLRC4 inflammasome activation, culminating in inflammatory responses that limit P. aeruginosa infection in wounds. We further show that ExoT functions as the main anti-inflammatory agent for P. aeruginosa in that it blocks the phosphorylation cascade through Abl / PKCδ / NLRC4 by targeting CrkII, which we further demonstrate to be important for Abl transactivation and NLRC4 inflammasome activation in response to T3SS and P. aeruginosa infection. Pseudomonas aeruginosa secretes the toxin ExoT, which is important for pathogenesis. Here, the authors show that ExoT inhibits NLRC4-dependent inflammatory responses during wound infection.
Collapse
|
5
|
Redero M, López-Causapé C, Aznar J, Oliver A, Blázquez J, Prieto AI. Susceptibility to R-pyocins of Pseudomonas aeruginosa clinical isolates from cystic fibrosis patients. J Antimicrob Chemother 2019; 73:2770-2776. [PMID: 30052973 DOI: 10.1093/jac/dky261] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022] Open
Abstract
Background The appearance and dissemination of MDR among pathogenic bacteria has forced the search for new antimicrobials. Bacteriocins have been proposed as potential alternatives for the treatment of infections due to multiresistant strains. Objectives To analyse the activity of R-pyocins against clinical isolates of Pseudomonas aeruginosa from patients with cystic fibrosis and other sources and evaluate them as a potential adjuvant or alternative to the current antibiotic treatment. Methods The activity of R-pyocins against 150 strains of P. aeruginosa isolated from patients with cystic fibrosis or bacteraemia was studied through spot assay. Interactions between R-pyocins and antipseudomonal agents were quantitatively studied by the chequerboard method. Results The proportion of P. aeruginosa isolates susceptible to R-pyocins was found to be higher in cystic fibrosis isolates compared with bacteraemia isolates (79.41% versus 50%). Moreover, no interactions were found between common antipseudomonal agents and R-pyocin susceptibility, except for the ST175 high-risk clone. Conclusions Our results highlight the possibility of using R-pyocins as therapeutic agents, alone or as adjuvants, against P. aeruginosa in cystic fibrosis.
Collapse
Affiliation(s)
- Mar Redero
- Instituto de Biomedicina de Sevilla (IBIS), Avda. Manuel Siurot s/n, Seville, Spain.,Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, Seville, Spain.,Universidad de Sevilla, Seville, Spain
| | - Carla López-Causapé
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Javier Aznar
- Instituto de Biomedicina de Sevilla (IBIS), Avda. Manuel Siurot s/n, Seville, Spain.,Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, Seville, Spain.,Universidad de Sevilla, Seville, Spain
| | - Antonio Oliver
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Jesús Blázquez
- Instituto de Biomedicina de Sevilla (IBIS), Avda. Manuel Siurot s/n, Seville, Spain.,Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, Seville, Spain.,Centro Nacional de Biotecnología (CNB), Madrid, Spain
| | - Ana I Prieto
- Instituto de Biomedicina de Sevilla (IBIS), Avda. Manuel Siurot s/n, Seville, Spain.,Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, Seville, Spain
| |
Collapse
|
6
|
IL-18 Act as a Costimulus for Production of Interferon Gamma During Stimulation by Pseudomonas aeruginosa Infection. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.2.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Kaminski A, Gupta KH, Goldufsky JW, Lee HW, Gupta V, Shafikhani SH. Pseudomonas aeruginosa ExoS Induces Intrinsic Apoptosis in Target Host Cells in a Manner That is Dependent on its GAP Domain Activity. Sci Rep 2018; 8:14047. [PMID: 30232373 PMCID: PMC6145893 DOI: 10.1038/s41598-018-32491-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/03/2018] [Indexed: 11/08/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes serious infections in immunocompromised individuals and cystic fibrosis patients. ExoS and ExoT are two homologous bifunctional Type III Secretion System (T3SS) virulence factors that induce apoptosis in target host cells. They possess a GTPase Activating Protein (GAP) domain at their N-termini, which share ~76% homology, and an ADP-ribosyltransferase (ADPRT) domain at their C-termini, which target non-overlapping substrates. Both the GAP and the ADPRT domains contribute to ExoT's cytotoxicity in target epithelial cells, whereas, ExoS-induced apoptosis is reported to be primarily due to its ADPRT domain. In this report, we demonstrate that ExoS/GAP domain is both necessary and sufficient to induce mitochondrial apoptosis. Our data demonstrate that intoxication with ExoS/GAP domain leads to enrichment of Bax and Bim into the mitochondrial outer-membrane, disruption of mitochondrial membrane and release of and cytochrome c into the cytosol, which activates initiator caspase-9 and effector caspase-3, that executes cellular death. We posit that the contribution of the GAP domain in ExoS-induced apoptosis was overlooked in prior studies due to its slower kinetics of cytotoxicity as compared to ADPRT. Our data clarify the field and reveal a novel virulence function for ExoS/GAP as an inducer of apoptosis.
Collapse
Affiliation(s)
- Amber Kaminski
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Kajal H Gupta
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Josef W Goldufsky
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Ha Won Lee
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Vineet Gupta
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Sasha H Shafikhani
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA.
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA.
- Cancer Center, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
8
|
Ruch TR, Engel JN. Targeting the Mucosal Barrier: How Pathogens Modulate the Cellular Polarity Network. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027953. [PMID: 28193722 DOI: 10.1101/cshperspect.a027953] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mucosal barrier is composed of polarized epithelial cells with distinct apical and basolateral surfaces separated by tight junctions and serves as both a physical and immunological barrier to incoming pathogens. Specialized polarity proteins are critical for establishment and maintenance of polarity. Many human pathogens have evolved virulence mechanisms that target the polarity network to enhance binding, create replication niches, move through the barrier by transcytosis, or bypass the barrier by disrupting cell-cell junctions. This review summarizes recent advances and compares and contrasts how three important human pathogens that colonize mucosal surfaces, Pseudomonas aeruginosa, Helicobacter pylori, and Neisseria meningitidis, subvert the host cell polarization machinery during infection.
Collapse
Affiliation(s)
- Travis R Ruch
- Department of Medicine, University of California, San Francisco, San Francisco, California 94143
| | - Joanne N Engel
- Department of Medicine, University of California, San Francisco, San Francisco, California 94143.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
9
|
Ali FM, Elgebaly RH, Elneklawi MS, Othman AS. Role of duty cycle on Pseudomonas aeruginosa growth inhibition mechanisms by positive electric pulses. Biomed Mater Eng 2016; 27:211-25. [PMID: 27567776 DOI: 10.3233/bme-161577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND P. aeruginosa considered as a notoriously difficult organism to be controlled by antibiotics or disinfectants. The potential use of alternative means as an aid to avoid the wide use of antibiotics against bacteria pathogen has been recently arisen remarkably. OBJECTIVE Effect of extremely low frequency positive electric pulse with different duty cycles on Pseudomonas aeruginosa (ATCC: 27853) growth by constructed and implemented exposure device was investigated in this study. METHODS The exposure device was applied to give extremely low frequency in the range of 0.1 up to 20 Hz with the capability to control the duty cycle of each pulse with variation from 10% up to 100%. Growth curves of Pseudomonas aeruginosa were investigated before and after exposure to different frequencies (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 Hz) through measuring the optical density and cell count. Exposures to selected frequencies in the whole ranges of duty cycles were done. These studies were followed by DNA fragmentation, transmission electron microscope (TEM), antibiotic susceptibility tests, and dielectric measurements. RESULTS Findings revealed inhibition effect by 48.56% and 47.4% together with change in the DNA structural properties for samples exposed to 0.5 Hz and 0.7 Hz respectively. Moreover the data indicated important role of duty cycle on the inhibition mechanism. CONCLUSION It is concluded that there are two different mechanisms of interaction between positive electric pulse and microorganism occurred; 0.5 Hz caused rupture in cell wall while 0.7 Hz caused denaturation of the inner consistent of the cell.
Collapse
Affiliation(s)
- Fadel M Ali
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Reem H Elgebaly
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mona S Elneklawi
- Department of Biomedical Equipments & Systems, Faculty of Applied Medical Sciences, October 6 University, Giza, Egypt
| | - Amal S Othman
- Medical Laboratory Department, Faculty of Applied Medical Sciences, October 6 University, Giza, Egypt
| |
Collapse
|
10
|
Hussain R, Shahror R, Karpati F, Roomans GM. Glucocorticoids can affectPseudomonas aeruginosa(ATCC 27853) internalization and intracellular calcium concentration in cystic fibrosis bronchial epithelial cells. Exp Lung Res 2015; 41:383-92. [DOI: 10.3109/01902148.2015.1046199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Pseudomonas aeruginosa-induced bleb-niche formation in epithelial cells is independent of actinomyosin contraction and enhanced by loss of cystic fibrosis transmembrane-conductance regulator osmoregulatory function. mBio 2015; 6:e02533. [PMID: 25714715 PMCID: PMC4358002 DOI: 10.1128/mbio.02533-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa can infect almost any site in the body but most often targets epithelial cell-lined tissues such as the airways, skin, and the cornea of the eye. A common predisposing factor is cystic fibrosis (CF), caused by defects in the cystic fibrosis transmembrane-conductance regulator (CFTR). Previously, we showed that when P. aeruginosa enters epithelial cells it replicates intracellularly and occupies plasma membrane blebs. This phenotype is dependent on the type 3 secretion system (T3SS) effector ExoS, shown by others to induce host cell apoptosis. Here, we examined mechanisms for P. aeruginosa-induced bleb formation, focusing on its relationship to apoptosis and the CFTR. The data showed that P. aeruginosa-induced blebbing in epithelial cells is independent of actin contraction and is inhibited by hyperosmotic media (400 to 600 mOsM), distinguishing bacterially induced blebs from apoptotic blebs. Cells with defective CFTR displayed enhanced bleb formation upon infection, as demonstrated using bronchial epithelial cells from a patient with cystic fibrosis and a CFTR inhibitor, CFTR(Inh)-172. The defect was found to be correctable either by incubation in hyperosmotic media or by complementation with CFTR (pGFP-CFTR), suggesting that the osmoregulatory function of CFTR counters P. aeruginosa-induced bleb-niche formation. Accordingly, and despite their reduced capacity for bacterial internalization, CFTR-deficient cells showed greater bacterial occupation of blebs and enhanced intracellular replication. Together, these data suggest that P. aeruginosa bleb niches are distinct from apoptotic blebs, are driven by osmotic forces countered by CFTR, and could provide a novel mechanism for bacterial persistence in the host. Pseudomonas aeruginosa is an opportunistic pathogen problematic in hospitalized patients and those with cystic fibrosis (CF). Previously, we showed that P. aeruginosa can enter epithelial cells and replicate within them and traffics to the membrane blebs that it induces. This “bleb-niche” formation requires ExoS, previously shown to cause apoptosis. Here, we show that the driving force for bleb-niche formation is osmotic pressure, differentiating P. aeruginosa-induced blebs from apoptotic blebs. Either CFTR inhibition or CFTR mutation (as seen in people with CF) causes P. aeruginosa to make more bleb niches and provides an osmotic driving force for blebbing. CFTR inhibition also enhances bacterial occupation of blebs and intracellular replication. Since CFTR is targeted for removal from the plasma membrane when P. aeruginosa invades a healthy cell, these findings could relate to pathogenesis in both CF and healthy patient populations.
Collapse
|
12
|
Mahmood F, Hakimiyan A, Jayaraman V, Wood S, Sivaramakrishnan G, Rehman T, Reuhs BL, Chubinskaya S, Shafikhani SH. A novel human antimicrobial factor targets Pseudomonas aeruginosa through its type III secretion system. J Med Microbiol 2013; 62:531-539. [PMID: 23288430 DOI: 10.1099/jmm.0.051227-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic bacterial pathogen. Despite its metabolic and virulence versatility, it has not been shown to infect articular joints, which are areas that are rarely infected with bacteria in general. We hypothesized that articular joints possess antimicrobial activity that limits bacterial survival in these environments. We report that cartilages secrete a novel antimicrobial factor, henceforth referred to as the cartilage-associated antimicrobial factor (CA-AMF), with potent antimicrobial activity. Importantly, CA-AMF exhibited significantly more antimicrobial activity against P. aeruginosa strains with a functional type III secretion system (T3SS). We propose that CA-AMF represents a new class of human antimicrobial factors in innate immunity, one which has evolved to selectively target pathogenic bacteria among the beneficial and commensal microflora. The T3SS is the first example, to the best of our knowledge, of a pathogen-specific molecular target in this antimicrobial defence system.
Collapse
Affiliation(s)
- Fareeha Mahmood
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Arnavaz Hakimiyan
- Department of Food Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Vijayakumar Jayaraman
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Stephen Wood
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Tooba Rehman
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Bradley L Reuhs
- Department of Food Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Susanna Chubinskaya
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H Shafikhani
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
13
|
Derivatives of plant phenolic compound affect the type III secretion system of Pseudomonas aeruginosa via a GacS-GacA two-component signal transduction system. Antimicrob Agents Chemother 2011; 56:36-43. [PMID: 21968370 DOI: 10.1128/aac.00732-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic therapy is the most commonly used strategy to control pathogenic infections; however, it has contributed to the generation of antibiotic-resistant bacteria. To circumvent this emerging problem, we are searching for compounds that target bacterial virulence factors rather than their viability. Pseudomonas aeruginosa, an opportunistic human pathogen, possesses a type III secretion system (T3SS) as one of the major virulence factors by which it secretes and translocates T3 effector proteins into human host cells. The fact that this human pathogen also is able to infect several plant species led us to screen a library of phenolic compounds involved in plant defense signaling and their derivatives for novel T3 inhibitors. Promoter activity screening of exoS, which encodes a T3-secreted toxin, identified two T3 inhibitors and two T3 inducers of P. aeruginosa PAO1. These compounds alter exoS transcription by affecting the expression levels of the regulatory small RNAs RsmY and RsmZ. These two small RNAs are known to control the activity of carbon storage regulator RsmA, which is responsible for the regulation of the key T3SS regulator ExsA. As RsmY and RsmZ are the only targets directly regulated by GacA, our results suggest that these phenolic compounds affect the expression of exoS through the GacSA-RsmYZ-RsmA-ExsA regulatory pathway.
Collapse
|
14
|
Lepanto P, Bryant DM, Rossello J, Datta A, Mostov KE, Kierbel A. Pseudomonas aeruginosa interacts with epithelial cells rapidly forming aggregates that are internalized by a Lyn-dependent mechanism. Cell Microbiol 2011; 13:1212-22. [PMID: 21615664 DOI: 10.1111/j.1462-5822.2011.01611.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Growing evidence is pointing to the importance of multicellular bacterial structures in the interaction of pathogenic bacteria with their host. Transition from planktonic to host cell-associated multicellular structures is an essential infection step that has not been described for the opportunistic human pathogen Pseudomonas aeruginosa. In this study we show that P. aeruginosa interacts with the surface of epithelial cells mainly forming aggregates. Dynamics of aggregate formation typically follow a sigmoidal curve. First, a single bacterium attaches at cell-cell junctions. This is followed by rapid recruitment of free-swimming bacteria and association of bacterial cells resulting in the formation of an aggregate on the order of minutes. Aggregates are associated with phosphatidylinositol 3,4,5-trisphosphate (PIP3)-enriched host cell membrane protrusions. We further show that aggregates can be rapidly internalized into epithelial cells. Lyn, a member of the Src family tyrosine kinases previously implicated in P. aeruginosa infection, mediates both PIP3-enriched protrusion formation and aggregate internalization. Our results establish the first framework of principles that define P. aeruginosa transition to multicellular structures during interaction with host cells.
Collapse
Affiliation(s)
- Paola Lepanto
- Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | | | | | | | | | | |
Collapse
|
15
|
Bradbury RS, Roddam LF, Merritt A, Reid DW, Champion AC. Virulence gene distribution in clinical, nosocomial and environmental isolates of Pseudomonas aeruginosa. J Med Microbiol 2010; 59:881-890. [PMID: 20430902 DOI: 10.1099/jmm.0.018283-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The virulence factor genotypes of a large cohort of clinical, nosocomial environment and community environment isolates (184 in total) of Pseudomonas aeruginosa from Tasmania, Australia, were determined by PCR. The virulence factor genotype of the majority of isolates was highly conserved, with the exception of the virulence gene exoU, which demonstrated low prevalence (33 isolates; 18 %) in the population tested. Isolates collected from the environment of intensive therapy wards (intensive care unit and neurosurgical units) of the major tertiary referral hospital in Tasmania were found to be more likely (P<0.001 and P<0.05, respectively) to possess the virulence factor gene exoU than all other isolates. Adult cystic fibrosis isolates showed a decreased prevalence of the exoU gene (P<0.01) when compared to other clinical isolates (P<0.01), which may indicate decreased virulence. No specific virulence factor genotype was associated with the cystic fibrosis epidemic strains tested.
Collapse
Affiliation(s)
- R. S. Bradbury
- CF Research Group, Menzies Research Institute, School of Medicine, University of Tasmania, Collins Street, Hobart, TAS, Australia
- Microbiology Department, Royal Hobart Hospital, Liverpool Street, Hobart, TAS, Australia
| | - L. F. Roddam
- CF Research Group, Menzies Research Institute, School of Medicine, University of Tasmania, Collins Street, Hobart, TAS, Australia
| | - A. Merritt
- Burkholderia Research Group, PathWest Laboratory Medicine, Hospital Avenue, Nedlands, WA, Australia
| | - D. W. Reid
- Department of Respiratory Medicine, Royal Hobart Hospital, Liverpool Street, Hobart, TAS, Australia
- CF Research Group, Menzies Research Institute, School of Medicine, University of Tasmania, Collins Street, Hobart, TAS, Australia
| | - A. C. Champion
- CF Research Group, Menzies Research Institute, School of Medicine, University of Tasmania, Collins Street, Hobart, TAS, Australia
| |
Collapse
|
16
|
Abstract
Hospital-acquired bacterial pneumonia is a common and serious complication of modern medical care. Many aspects of such infections remain unclear, including the mechanisms by which invading pathogens resist clearance by the innate immune response and the tendency of the infections to be polymicrobial. Here, we used a mouse model of infection to show that Pseudomonas aeruginosa, a leading cause of hospital-acquired pneumonia, interferes with the ability of recruited phagocytic cells to eradicate bacteria from the lung. Early in infection, phagocytic cells, predominantly neutrophils, are recruited to the lungs but are incapacitated when they enter the airways by the P. aeruginosa toxin ExoU. The resulting paucity of functioning phagocytes allows P. aeruginosa to persist within the lungs and results in local immunosuppression that facilitates superinfection with less-pathogenic bacteria. Together, our results provide explanations for previous reports linking ExoU-secreting P. aeruginosa with more severe pulmonary infections and for the tendency of hospital-acquired pneumonia to be polymicrobial.
Collapse
|
17
|
Brandt S, Shafikhani S, Balachandran P, Jin S, Hartig R, König W, Engel J, Backert S. Use of a novel coinfection system reveals a role for Rac1, H-Ras, and CrkII phosphorylation in Helicobacter pylori-induced host cell actin cytoskeletal rearrangements. ACTA ACUST UNITED AC 2007; 50:190-205. [PMID: 17428306 DOI: 10.1111/j.1574-695x.2007.00234.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Helicobacter pylori CagA protein induces profound morphological changes in the host cytoskeleton and cell scattering, but the signalling involved is poorly understood. Pseudomonas aeruginosa also affects host actin cytoskeleton in a variety of ways by injecting the ExoS and ExoT toxins which encode N-terminal GTPase activating protein and C-terminal ADP-ribosyltransferase (ADPRT) activities. In this study we developed a novel coinfection assay to gain new insights into CagA effector protein functions. We found that P. aeruginosa injecting either ExoT or ExoS efficiently prevented the H. pylori-induced scattering phenotype. Both the Rho-GAP and the ADPRT domains of ExoS were needed to block the H. pylori-induced actin cytoskeletal rearrangements, whereas either domain of ExoT was sufficient for this activity. This strategy revealed common pathways subverted by different pathogens, and aided in the definition of signalling cascades that control the CagA-mediated cell scattering and elongation. We identified Crk adapter proteins, Rac1 and H-Ras, but not RhoA or Cdc42, which are the ExoS and/or ExoT targets, as crucial components of the CagA-induced phenotype. In addition, we show that ADP-ribosylation of CrkII by ExoT blocks phosphorylation of CrkII at Y-221, which is also important for the CagA-induced signalling.
Collapse
Affiliation(s)
- Sabine Brandt
- Department of Medical Microbiology, Otto von Guericke University, Magdeburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Balachandran P, Dragone L, Garrity-Ryan L, Lemus A, Weiss A, Engel J. The ubiquitin ligase Cbl-b limits Pseudomonas aeruginosa exotoxin T-mediated virulence. J Clin Invest 2007; 117:419-27. [PMID: 17235393 PMCID: PMC1765809 DOI: 10.1172/jci28792] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 11/21/2006] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa, an important cause of opportunistic infections in humans, delivers bacterial cytotoxins by type III secretion directly into the host cell cytoplasm, resulting in disruption of host cell signaling and host innate immunity. However, little is known about the fate of the toxins themselves following injection into the host cytosol. Here, we show by both in vitro and in vivo studies that the host ubiquitin ligase Cbl-b interacts with the type III-secreted effector exotoxin T (ExoT) and plays a key role in vivo in limiting bacterial dissemination mediated by ExoT. We demonstrate that, following polyubiquitination, ExoT undergoes regulated proteasomal degradation in the host cell cytosol. ExoT interacts with the E3 ubiquitin ligase Cbl-b and Crk, the substrate for the ExoT ADP ribosyltransferase (ADPRT) domain. The efficiency of degradation is dependent upon the activity of the ADPRT domain. In mouse models of acute pneumonia and systemic infection, Cbl-b is specifically required to limit the dissemination of ExoT-producing bacteria whereas c-Cbl plays no detectable role. To the best of our knowledge, this represents the first identification of a mammalian gene product that is specifically required for in vivo resistance to disease mediated by a type III-secreted effector.
Collapse
Affiliation(s)
- Priya Balachandran
- Program in Microbial Pathogenesis and Host Defense,
Department of Medicine,
Division of Pediatric Immunology/Rheumatology, Department of Pediatrics,
Biomedical Sciences Graduate Program,
Departments of Microbiology and Immunology,
Howard Hughes Medical Institute,
Division of Rheumatology, Department of Medicine, and
Rosalind Russell Medical Research Center for Arthritis, University of California, San Francisco, San Francisco, California, USA
| | - Leonard Dragone
- Program in Microbial Pathogenesis and Host Defense,
Department of Medicine,
Division of Pediatric Immunology/Rheumatology, Department of Pediatrics,
Biomedical Sciences Graduate Program,
Departments of Microbiology and Immunology,
Howard Hughes Medical Institute,
Division of Rheumatology, Department of Medicine, and
Rosalind Russell Medical Research Center for Arthritis, University of California, San Francisco, San Francisco, California, USA
| | - Lynne Garrity-Ryan
- Program in Microbial Pathogenesis and Host Defense,
Department of Medicine,
Division of Pediatric Immunology/Rheumatology, Department of Pediatrics,
Biomedical Sciences Graduate Program,
Departments of Microbiology and Immunology,
Howard Hughes Medical Institute,
Division of Rheumatology, Department of Medicine, and
Rosalind Russell Medical Research Center for Arthritis, University of California, San Francisco, San Francisco, California, USA
| | - Armando Lemus
- Program in Microbial Pathogenesis and Host Defense,
Department of Medicine,
Division of Pediatric Immunology/Rheumatology, Department of Pediatrics,
Biomedical Sciences Graduate Program,
Departments of Microbiology and Immunology,
Howard Hughes Medical Institute,
Division of Rheumatology, Department of Medicine, and
Rosalind Russell Medical Research Center for Arthritis, University of California, San Francisco, San Francisco, California, USA
| | - Arthur Weiss
- Program in Microbial Pathogenesis and Host Defense,
Department of Medicine,
Division of Pediatric Immunology/Rheumatology, Department of Pediatrics,
Biomedical Sciences Graduate Program,
Departments of Microbiology and Immunology,
Howard Hughes Medical Institute,
Division of Rheumatology, Department of Medicine, and
Rosalind Russell Medical Research Center for Arthritis, University of California, San Francisco, San Francisco, California, USA
| | - Joanne Engel
- Program in Microbial Pathogenesis and Host Defense,
Department of Medicine,
Division of Pediatric Immunology/Rheumatology, Department of Pediatrics,
Biomedical Sciences Graduate Program,
Departments of Microbiology and Immunology,
Howard Hughes Medical Institute,
Division of Rheumatology, Department of Medicine, and
Rosalind Russell Medical Research Center for Arthritis, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
19
|
Shafikhani SH, Engel J. Pseudomonas aeruginosa type III-secreted toxin ExoT inhibits host-cell division by targeting cytokinesis at multiple steps. Proc Natl Acad Sci U S A 2006; 103:15605-10. [PMID: 17030800 PMCID: PMC1622869 DOI: 10.1073/pnas.0605949103] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that requires preexisiting epithelial injury to cause acute infections. We report that P. aeruginosa inhibits mammalian cytokinesis in a type III secretion system and exotoxin T (ExoT)-dependent manner. ExoT is a bifunctional type III secretion system effector protein that contains an N-terminal GTPase-activating protein domain and a C-terminal ADP-ribosyl transferase domain. Each of its domains inhibits cytokinesis in a kinetically, morphologically, and mechanistically distinct manner. The GTPase-activating protein-mediated inhibition of cytokinesis occurs early, likely as a consequence of its inhibitory effect on RhoA. The ADP-ribosyl transferase domain inhibits late steps of cytokinesis by blocking syntaxin-2 localization to the midbody, an event essential for completion of cytokinesis. These findings provide an example of a bacterial pathogen targeting cytokinesis.
Collapse
Affiliation(s)
| | - Joanne Engel
- *Division of Infectious Diseases, Department of Medicine and
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Whitchurch CB, Beatson SA, Comolli JC, Jakobsen T, Sargent JL, Bertrand JJ, West J, Klausen M, Waite LL, Kang PJ, Tolker-Nielsen T, Mattick JS, Engel JN. Pseudomonas aeruginosa fimL regulates multiple virulence functions by intersecting with Vfr-modulated pathways. Mol Microbiol 2005; 55:1357-78. [PMID: 15720546 PMCID: PMC1266277 DOI: 10.1111/j.1365-2958.2005.04479.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Virulence of Pseudomonas aeruginosa involves the co-ordinate expression of a range of factors including type IV pili (tfp), the type III secretion system (TTSS) and quorum sensing. Tfp are required for twitching motility, efficient biofilm formation, and for adhesion and type III secretion (TTS)-mediated damage to mammalian cells. We describe a novel gene (fimL) that is required for tfp biogenesis and function, for TTS and for normal biofilm development in P. aeruginosa. The predicted product of fimL is homologous to the N-terminal domain of ChpA, except that its putative histidine and threonine phosphotransfer sites have been replaced with glutamine. fimL mutants resemble vfr mutants in many aspects including increased autolysis, reduced levels of surface-assembled tfp and diminished production of type III secreted effectors. Expression of vfr in trans can complement fimL mutants. vfr transcription and production is reduced in fimL mutants whereas cAMP levels are unaffected. Deletion and insertion mutants of fimL frequently revert to wild-type phenotypes suggesting that an extragenic suppressor mutation is able to overcome the loss of fimL. vfr transcription and production, as well as cAMP levels, are elevated in these revertants, while Pseudomonas quinolone signal (PQS) production is reduced. These results suggest that the site(s) of spontaneous mutation is in a gene(s) which lies upstream of vfr transcription, cAMP, production, and PQS synthesis. Our studies indicate that Vfr and FimL are components of intersecting pathways that control twitching motility, TTSS and autolysis in P. aeruginosa.
Collapse
Affiliation(s)
- Cynthia B. Whitchurch
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, and
| | - Scott A. Beatson
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Biochemistry, University of Queensland, Brisbane, QLD 4072, Australia
| | - James C. Comolli
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Thania Jakobsen
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jennifer L. Sargent
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jacob J. Bertrand
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joyce West
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mikkel Klausen
- Center for Biomedical Microbiology, BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Leslie L. Waite
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pil Jung Kang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tim Tolker-Nielsen
- Center for Biomedical Microbiology, BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - John S. Mattick
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, and
| | - Joanne N. Engel
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- *For correspondence. E-mail
; Tel. (+1) 415 476 7355; Fax (+1) 415 476 9364
| |
Collapse
|
21
|
Kierbel A, Gassama-Diagne A, Mostov K, Engel JN. The phosphoinositol-3-kinase-protein kinase B/Akt pathway is critical for Pseudomonas aeruginosa strain PAK internalization. Mol Biol Cell 2005; 16:2577-85. [PMID: 15772151 PMCID: PMC1087259 DOI: 10.1091/mbc.e04-08-0717] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 02/23/2005] [Accepted: 02/28/2005] [Indexed: 02/07/2023] Open
Abstract
Several Pseudomonas aeruginosa strains are internalized by epithelial cells in vitro and in vivo, but the host pathways usurped by the bacteria to enter nonphagocytic cells are not clearly understood. Here, we report that internalization of strain PAK into epithelial cells triggers and requires activation of phosphatidylinositol 3-kinase (PI3K) and protein kinase B/Akt (Akt). Incubation of Madin-Darby canine kidney (MDCK) or HeLa cells with the PI3K inhibitors LY294002 (LY) or wortmannin abrogated PAK uptake. Addition of the PI3K product phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] to polarized MDCK cells was sufficient to increase PAK internalization. PtdIns(3,4,5)P3 accumulated at the site of bacterial binding in an LY-dependent manner. Akt phosphorylation correlated with PAK invasion. The specific Akt phosphorylation inhibitor SH-5 inhibited PAK uptake; internalization also was inhibited by small interfering RNA-mediated depletion of Akt phosphorylation. Expression of constitutively active Akt was sufficient to restore invasion when PI3K signaling was inhibited. Together, these results demonstrate that the PI3K signaling pathway is necessary and sufficient for the P. aeruginosa entry and provide the first example of a bacterium that requires Akt for uptake into epithelial cells.
Collapse
Affiliation(s)
- A Kierbel
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
22
|
Garrity-Ryan L, Shafikhani S, Balachandran P, Nguyen L, Oza J, Jakobsen T, Sargent J, Fang X, Cordwell S, Matthay MA, Engel JN. The ADP ribosyltransferase domain of Pseudomonas aeruginosa ExoT contributes to its biological activities. Infect Immun 2004; 72:546-58. [PMID: 14688136 PMCID: PMC343945 DOI: 10.1128/iai.72.1.546-558.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Revised: 04/03/2003] [Accepted: 09/22/2003] [Indexed: 11/20/2022] Open
Abstract
ExoT is a type III secreted effector protein found in almost all strains of Pseudomonas aeruginosa and is required for full virulence in an animal model of acute pneumonia. It is comprised of an N-terminal domain with GTPase activating protein (GAP) activity towards Rho family GTPases and a C-terminal ADP ribosyltransferase (ADPRT) domain with minimal activity towards a synthetic substrate in vitro. Consistent with its activity as a Rho family GTPase, ExoT has been shown to inhibit P. aeruginosa internalization into epithelial cells and macrophages, disrupt the actin cytoskeleton through a Rho-dependent pathway, and inhibit wound repair in a scrape model of injured epithelium. We have previously shown that mutation of the invariant arginine of the GAP domain to lysine (R149K) results in complete loss of GAP activity in vitro but only partially inhibits ExoT anti-internalization and cell rounding activity. We have constructed in-frame deletions and point mutations within the ADPRT domain in order to test whether this domain might account for the residual activity observed in ExoT GAP mutants. Deletion of a majority of the ADPRT domain (residues 234 to 438) or point mutations of the ADPRT catalytic site (residues 383 to 385) led to distinct changes in host cell morphology and substantially reduced the ability of ExoT to inhibit in vitro epithelial wound healing over a 24-h period. In contrast, only subtle effects on the efficiency of ExoT-induced bacterial internalization were observed in the ADPRT mutant forms. Expression of each domain individually in Saccharomyces cerevisiae was toxic, whereas expression of each of the catalytically inactive mutant domains was not. Collectively, these data demonstrate that the ADPRT domain of ExoT is active in vivo and contributes to the pathogenesis of P. aeruginosa infections.
Collapse
Affiliation(s)
- L Garrity-Ryan
- Departments of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|