1
|
Tavella D, Ouellette DR, Garofalo R, Zhu K, Xu J, Oloo EO, Negron C, Ihnat PM. A novel method for in silico assessment of Methionine oxidation risk in monoclonal antibodies: Improvement over the 2-shell model. PLoS One 2022; 17:e0279689. [PMID: 36580468 PMCID: PMC9799309 DOI: 10.1371/journal.pone.0279689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022] Open
Abstract
Over the past decade, therapeutic monoclonal antibodies (mAbs) have established their role as valuable agents in the treatment of various diseases ranging from cancers to infectious, cardiovascular and autoimmune diseases. Reactive groups of the amino acids within these proteins make them susceptible to many kinds of chemical modifications during manufacturing, storage and in vivo circulation. Among these reactions, the oxidation of methionine residues to their sulfoxide form is a commonly observed chemical modification in mAbs. When the oxidized methionine is in the complementarity-determining region (CDR), this modification can affect antigen binding and thus abrogate biological activity. For these reasons, it is essential to identify oxidation liabilities during the antibody discovery and development phases. Here, we present an in silico method, based on protein modeling and molecular dynamics simulations, to predict the oxidation-liable residues in the variable region of therapeutic antibodies. Previous studies have used the 2-shell water coordination number descriptor (WCN) to identify methionine residues susceptible to oxidation. Although the WCN descriptor successfully predicted oxidation liabilities when the residue was solvent exposed, the method was much less accurate for partially buried methionine residues. Consequently, we introduce a new descriptor, WCN-OH, that improves the accuracy of prediction of methionine oxidation susceptibility by extending the theoretical framework of the water coordination number to incorporate the effects of polar amino acids side chains in close proximity to the methionine of interest.
Collapse
Affiliation(s)
- Davide Tavella
- AbbVie Bioresearch Center, Worcester, Massachusetts, United States of America
- * E-mail: (DT); (CN)
| | - David R. Ouellette
- AbbVie Bioresearch Center, Worcester, Massachusetts, United States of America
| | - Raffaella Garofalo
- AbbVie Deutschland GmbH & Co. KG, Analytical Innovation and Mass Spectrometry, Knollstrasse, Ludwigshafen, Germany
| | - Kai Zhu
- Schrödinger, Inc., New York, New York, United States of America
| | - Jianwen Xu
- AbbVie Bioresearch Center, Worcester, Massachusetts, United States of America
| | - Eliud O. Oloo
- Schrödinger, Inc., New York, New York, United States of America
| | - Christopher Negron
- AbbVie Bioresearch Center, Worcester, Massachusetts, United States of America
- * E-mail: (DT); (CN)
| | - Peter M. Ihnat
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| |
Collapse
|
2
|
Fichtner M, Schuster S, Stark H. Determination of scoring functions for protein damage susceptibility. Biosystems 2019; 187:104035. [PMID: 31614190 DOI: 10.1016/j.biosystems.2019.104035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Protein damage (partly followed by protein aggregation) plays a significant role in ageing, cancer and in neurodegenerative and other diseases. It is known that the proteinogenic amino acids differ in their susceptibility to non-enzymatic modification, such as hydroxylation, peroxidation, chlorination etc. In a novel bioinformatics approach, we introduce measures to quantify the susceptibility of the 20 standard proteinogenic amino acids to such modification. Based on these amino acid scores, we calculated different susceptibilities for 116,387 proteins, testing various scoring approaches. These approaches are based on review articles, text mining and a combination of both. We also show an application by combining the score information with a tool for visualization.
Collapse
Affiliation(s)
- Maximilian Fichtner
- Matthias Schleiden Institute, Department of Bioinformatics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany.
| | - Stefan Schuster
- Matthias Schleiden Institute, Department of Bioinformatics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
| | - Heiko Stark
- Matthias Schleiden Institute, Department of Bioinformatics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany; Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 07743 Jena, Germany
| |
Collapse
|
3
|
Sankar K, Hoi KH, Yin Y, Ramachandran P, Andersen N, Hilderbrand A, McDonald P, Spiess C, Zhang Q. Prediction of methionine oxidation risk in monoclonal antibodies using a machine learning method. MAbs 2018; 10:1281-1290. [PMID: 30252602 PMCID: PMC6284603 DOI: 10.1080/19420862.2018.1518887] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/15/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022] Open
Abstract
Monoclonal antibodies (mAbs) have become a major class of protein therapeutics that target a spectrum of diseases ranging from cancers to infectious diseases. Similar to any protein molecule, mAbs are susceptible to chemical modifications during the manufacturing process, long-term storage, and in vivo circulation that can impair their potency. One such modification is the oxidation of methionine residues. Chemical modifications that occur in the complementarity-determining regions (CDRs) of mAbs can lead to the abrogation of antigen binding and reduce the drug's potency and efficacy. Thus, it is highly desirable to identify and eliminate any chemically unstable residues in the CDRs during the therapeutic antibody discovery process. To provide increased throughput over experimental methods, we extracted features from the mAbs' sequences, structures, and dynamics, used random forests to identify important features and develop a quantitative and highly predictive in silico methionine oxidation model.
Collapse
Affiliation(s)
- Kannan Sankar
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Kam Hon Hoi
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, USA
| | - Yizhou Yin
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
- Institute for Bioscience and Biotechnology Research, Biological Sciences Graduate Program, University of Maryland, Rockville, MD, USA
| | - Prasanna Ramachandran
- Department of Analytical Development and Quality Control, Genentech, South San Francisco, CA, USA
| | - Nisana Andersen
- Department of Analytical Development and Quality Control, Genentech, South San Francisco, CA, USA
| | - Amy Hilderbrand
- Department of Analytical Development and Quality Control, Genentech, South San Francisco, CA, USA
| | - Paul McDonald
- Department of Purification Development and Bioprocess Development, Genentech, South San Francisco, CA, USA
| | - Christoph Spiess
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Qing Zhang
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, USA
| |
Collapse
|
4
|
Mueller C, Altenburger U, Mohl S. Challenges for the pharmaceutical technical development of protein coformulations. J Pharm Pharmacol 2017; 70:666-674. [DOI: 10.1111/jphp.12731] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/26/2017] [Indexed: 12/27/2022]
Abstract
Abstract
Objectives
This review discusses challenges to stability, analytics and manufacturing of protein coformulations. Furthermore, general considerations to be taken into account for the pharmaceutical development of coformulated protein drug products are highlighted.
Key findings
Coformulation of two or more active substances in one single dosage form has recently seen increasing use offering several advantages, such as increased efficacy and/or the overall reduction of adverse event incidents in patients. Most marketed coformulated drug products are composed of small molecules. As proteins are not only comparatively large but also complex molecules, the maintenance of their physicochemical integrity within a formulation throughout pharmaceutical processing, storage, transport, handling and patient administration to ensure proper pharmacokinetics and pharmacodynamics in vivo already represents various challenges for single-entity products. Thus, nowadays, only sparse biologics-based coformulations can be found, as additional complexity during development is given for these products.
Summary
The complexity of the dosage form and the protein molecules results into additional challenges to formulation, manufacture, storage, transport, handling and patient administration, stability and analytics during the pharmaceutical development of protein coformulations. Various points have to be considered during different stages of development in order to obtain a safe and efficacious product.
Collapse
Affiliation(s)
- Claudia Mueller
- Late-Stage Pharmaceutical and Process Development, Pharmaceutical Development and Supplies, PTD Biologics Europe (PTDE-P), F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Ulrike Altenburger
- Late-Stage Pharmaceutical and Process Development, Pharmaceutical Development and Supplies, PTD Biologics Europe (PTDE-P), F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Silke Mohl
- Late-Stage Pharmaceutical and Process Development, Pharmaceutical Development and Supplies, PTD Biologics Europe (PTDE-P), F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
5
|
Hill JJ, Shalaev EY, Zografi G. The importance of individual protein molecule dynamics in developing and assessing solid state protein preparations. J Pharm Sci 2014; 103:2605-2614. [PMID: 24867196 DOI: 10.1002/jps.24021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 11/09/2022]
Abstract
Processing protein solutions into the solid state is a common approach for generating stable amorphous protein mixtures that are suitable for long-term storage. Great care is typically given to protecting the protein native structure during the various drying steps that render it into the amorphous solid state. However, many studies illustrate that chemical and physical degradations still occur in spite of this amorphous material having good glassy properties and it being stored at temperatures below its glass transition temperature (Tg). Because of these persistent issues and recent biophysical studies that have refined the debate ascribing meaning to the molecular dynamical transition temperature and Tg of protein molecules, we provide an updated discussion on the impact of assessing and managing localized, individual protein molecule nondiffusive motions in the context of proteins being prepared into bulk amorphous mixtures. Our aim is to bridge the pharmaceutical studies addressing bulk amorphous preparations and their glassy behavior, with the biophysical studies historically focused on the nondiffusive internal protein dynamics and a protein's activity, along with their combined efforts in assessing the impact of solvent hydrogen-bonding networks on local stability. We also provide recommendations for future research efforts in solid-state formulation approaches.
Collapse
Affiliation(s)
- John J Hill
- Department of Bioengineering, University of Washington, Seattle, WA 98195.
| | | | - George Zografi
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222
| |
Collapse
|
6
|
Wang T, Kumru OS, Yi L, Wang YJ, Zhang J, Kim JH, Joshi SB, Middaugh CR, Volkin DB. Effect of ionic strength and pH on the physical and chemical stability of a monoclonal antibody antigen-binding fragment. J Pharm Sci 2013; 102:2520-37. [PMID: 23824562 DOI: 10.1002/jps.23645] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/29/2013] [Accepted: 05/31/2013] [Indexed: 12/21/2022]
Abstract
Monoclonal antibody (mAb) fragments are emerging as promising alternatives to full-length mAbs as protein therapeutic candidates. Antigen-binding fragments (Fabs) are the most advanced with three Fab-based drug products currently approved. This work presents preformulation characterization data on the effect of pH, NaCl concentration, and various cationic excipients on the physical and chemical stability of a Fab molecule with multiple negatively charged Asp residues in the complementarity-determining region. Conformational stability was evaluated using an empirical phase diagram approach based on circular dichroism, intrinsic Trp and extrinsic 8-anilino-1-naphthalene sulfonate (ANS) fluorescence, and static light scattering measurements. The effect of NaCl concentration, various cationic excipients and pH on the Fab molecule's conformational stability, aggregation propensity, and chemical stability (Asp isomerization) was determined by differential scanning calorimetry, optical density measurements at 350 nm (OD350 ), and ion-exchange chromatography, respectively. Increasing NaCl concentration increased the overall conformational stability, decreased aggregation rates, and lowered the rates of Asp isomerization. No such trends were noted for pH or cationic excipients. The potential interrelationships between protein conformational and chemical stability are discussed in the context of designing stable protein formulations.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lewandowska-Andralojc A, Kazmierczak F, Hug GL, Hörner G, Marciniak B. Photoinduced CC-coupling Reactions of Rigid Diastereomeric Benzophenone-Methionine Dyads. Photochem Photobiol 2012; 89:14-23. [DOI: 10.1111/j.1751-1097.2012.01210.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/18/2012] [Indexed: 11/27/2022]
Affiliation(s)
| | | | | | - Gerald Hörner
- Institut für Chemie; Technische Universität Berlin; Berlin; Germany
| | | |
Collapse
|
8
|
Salinas BA, Sathish HA, Shah AU, Carpenter JF, Randolph TW. Buffer-dependent fragmentation of a humanized full-length monoclonal antibody. J Pharm Sci 2010; 99:2962-74. [PMID: 20091831 PMCID: PMC3938388 DOI: 10.1002/jps.22056] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During storage stability studies of a monoclonal antibody (mAb) it was determined that the primary route of degradation involved fragmentation into lower molecular weight species. The fragmentation was characterized with size-exclusion high performance liquid chromatography (SE-HPLC), SDS-PAGE, and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. Fragmentation proceeded via hydrolysis, likely catalyzed by trace metal ions, of a peptide bond in the hinge region of the mAb's heavy chain, which produced two prominent low molecular weight species during storage: a single, free Fab fragment and a Fab + Fc fragment. The fragmentation is observed in phosphate-buffered solutions at two ionic strengths but not in histidine-buffered solutions at identical ionic strengths. Chaotrope-induced and thermally induced unfolding studies of the mAb indicated differences in the unfolding pathways between the two buffer solutions. The folding intermediate observed during chaotrope-induced unfolding was further characterized by intrinsic fluorescence quenching, which suggested that a small portion of the molecule is resistant to chaotrope-induced unfolding in histidine buffer systems. The thermally induced unfolding indicates a reduction in cooperativity of the unfolding process in the presence of histidine relative to phosphate. A relationship between the histidine-induced effects on unfolding pathway and the relative resistance to fragmentation is suggested.
Collapse
Affiliation(s)
- Branden A Salinas
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA.
| | | | | | | | | |
Collapse
|
9
|
Stevens RC, Sancho J, Martinez A. Rescue of misfolded proteins and stabilization by small molecules. Methods Mol Biol 2010; 648:313-324. [PMID: 20700723 DOI: 10.1007/978-1-60761-756-3_22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Increasing stability of functional proteins by binding small compounds and ions has long been used to extend shelf-life of protein formulations in the pharmacological and biotechnological industry. Likewise, the therapeutic application of small molecules for in vivo recovery and maintenance of structure and function of proteins is steadily increasing. Compounds that can rescue misfolded proteins by stimulating their correct folding and/or the stabilization of native-like conformations in vivo are referred to as pharmacological chaperones. Here we present thermal-shift and isothermal methods for the high-throughput screening of stabilizing pharmacological chaperones for soluble and membrane proteins. The effect of selected hit compounds on the kinetics of protein synthesis is further evaluated by an in vitro transcription-translation rapid translation system. These procedures can be integrated in an interdisciplinary and translational approach for the search of personalized pharmacological chaperones in genetic misfolding diseases.
Collapse
|
10
|
Abstract
In recent decades, protein-based therapeutics have substantially expanded the field of molecular pharmacology due to their outstanding potential for the treatment of disease. Unfortunately, protein pharmaceuticals display a series of intrinsic physical and chemical instability problems during their production, purification, storage, and delivery that can adversely impact their final therapeutic efficacies. This has prompted an intense search for generalized strategies to engineer the long-term stability of proteins during their pharmaceutical employment. Due to the well known effect that glycans have in increasing the overall stability of glycoproteins, rational manipulation of the glycosylation parameters through glycoengineering could become a promising approach to improve both the in vitro and in vivo stability of protein pharmaceuticals. The intent of this review is therefore to further the field of protein glycoengineering by increasing the general understanding of the mechanisms by which glycosylation improves the molecular stability of protein pharmaceuticals. This is achieved by presenting a survey of the different instabilities displayed by protein pharmaceuticals, by addressing which of these instabilities can be improved by glycosylation, and by discussing the possible mechanisms by which glycans induce these stabilization effects.
Collapse
Affiliation(s)
- Ricardo J Solá
- Laboratory for Applied Biochemistry and Biotechnology, Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Facundo Bueso Bldg., Lab-215, PO Box 23346, San Juan, Puerto Rico 00931-3346
| | | |
Collapse
|
11
|
Matilainen L, Larsen KL, Wimmer R, Keski-Rahkonen P, Auriola S, Järvinen T, Jarho P. The effect of cyclodextrins on chemical and physical stability of glucagon and characterization of glucagon/gamma-CD inclusion complexes. J Pharm Sci 2008; 97:2720-9. [PMID: 17918736 DOI: 10.1002/jps.21209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The purpose of the study was to evaluate the effect of cyclodextrin (CD) complexation on the chemical and physical stability of a polypeptide hormone glucagon and to study the interactions between glucagon and gamma-cyclodextrin molecules in inclusion complexes. The chemical stability of glucagon at pH 2.0 was studied with HPLC-UV and HPLC-MS/MS. The physical stability of glucagon at pH 2.5 was studied by measuring the turbidity (A(405 nm)) and viscosity (Ostwald capillary viscosimeter) of the samples. The structure of glucagon/gamma-CD complexes at pH 2.5 was studied with 2D-NMR. The presence of various CDs increased the chemical half-life of glucagon at pH 2.0 (37 degrees C, 0.01 M HCl, ionic strength 0.15) and prolonged the lag-time before aggregation at pH 2.5 (0.9% (w/v) NaCl in 3.2 mM HCl). The NMR studies showed that the side chains of all the aromatic amino acid residues (Phe6, Tyr10, Tyr13, Phe22, Trp25) and leucines (Leu14 and Leu26) of glucagon interacted with the cavities of the gamma-CD molecules. The present study shows that glucagon forms inclusion complexes with cyclodextrins in acidic solution, resulting in an improvement in its chemical and physical stability.
Collapse
Affiliation(s)
- Laura Matilainen
- Department of Pharmaceutical Chemistry, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
12
|
Napper S, Prasad L, Delbaere LTJ. Structural investigation of a phosphorylation-catalyzed, isoaspartate-free, protein succinimide: crystallographic structure of post-succinimide His15Asp histidine-containing protein. Biochemistry 2008; 47:9486-96. [PMID: 18702519 PMCID: PMC2732578 DOI: 10.1021/bi800847a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aspartates and asparagines can spontaneously cyclize with neighboring main-chain amides to form succinimides. These succinimides hydrolyze to a mixture of isoaspartate and aspartate products. Phosphorylation of aspartates is a common mechanism of protein regulation and increases the propensity for succinimide formation. Although typically regarded as a form of protein damage, we hypothesize succinimides could represent an effective mechanism of phosphoaspartate autophosphatase activity, provided hydrolysis is limited to aspartate products. We previously reported the serendipitous creation of a protein, His15Asp histidine-containing protein (HPr), which undergoes phosphorylation-catalyzed formation of a succinimide whose hydrolysis is seemingly exclusive for aspartate formation. Here, through the high-resolution structure of postsuccinimide His15Asp HPr, we confirm the absence of isoaspartate residues and propose mechanisms for phosphorylation-catalyzed succinimide formation and its directed hydrolysis to aspartate. His15Asp HPr represents the first characterized protein example of an isoaspartate-free succinimide and lends credence to the hypothesis that intramolecular cyclization could represent a physiological mechanism of autophosphatase activity. Furthermore, this indicates that current strategies for succinimide evaluation, based on isoaspartate detection, underestimate the frequencies of these reactions. This is considerably significant for evaluation of protein stability and integrity.
Collapse
Affiliation(s)
- Scott Napper
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada.
| | | | | |
Collapse
|
13
|
Wakankar AA, Borchardt RT. Formulation considerations for proteins susceptible to asparagine deamidation and aspartate isomerization. J Pharm Sci 2006; 95:2321-36. [PMID: 16960822 DOI: 10.1002/jps.20740] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The asparagine (Asn) deamidation and aspartate (Asp) isomerization reactions are nonenzymatic intra-molecular reactions occurring in peptides and proteins that are a source of major stability concern in the formulation of these biomolecules. The mechanisms for the deamidation and isomerization reactions are similar since they both proceed through an intra-molecular cyclic imide (Asu) intermediate. The formation of the Asu intermediate, which involves the attack by nitrogen of the peptide backbone on the carbonyl carbon of the Asn or the Asp side chain, is the rate-limiting step in both the deamidation and the isomerization reactions at physiological pH. In this article, the influence of factors such as formulation conditions, protein primary sequence, and protein structure on the reactivity of Asn and Asp residues in proteins are reviewed. The importance of formulation conditions such as pH and solvent dielectric in influencing deamidation and isomerization reaction rates is addressed. Formulation strategies that could improve the stability of proteins to deamidation and isomerization reactions are described. The review is intended to provide information to formulation scientists, based on protein sequence and structure, to predict potential degradative sites on a protein molecule and to enable formulation scientists to set appropriate formulation conditions to minimize reactivity of Asn and Asp residues in protein therapeutics.
Collapse
Affiliation(s)
- Aditya A Wakankar
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA.
| | | |
Collapse
|
14
|
Rexroad J, Evans RK, Middaugh CR. Effect of pH and ionic strength on the physical stability of adenovirus type 5. J Pharm Sci 2006; 95:237-47. [PMID: 16372304 DOI: 10.1002/jps.20496] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The thermal stability of adenovirus type 5 (Ad5) was investigated over the pH range 3-8 employing a variety of biophysical techniques under conditions of low and high ionic strength. Analysis of the structural stability of Ad5 by dynamic light scattering, intrinsic and extrinsic fluorescence, and second derivative UV absorption spectroscopies suggest that the capsid stability of Ad5 increases with decreasing pH under both ionic strength conditions. Significant aggregation, however, was observed at pH < or = 5 under conditions of low ionic strength. These studies also suggest that the physical stability of Ad5 is significantly enhanced under acidic conditions in the presence of 1 M NaCl. Evaluation of the quaternary structural stability of Ad5 by dynamic light scattering and extrinsic fluorescence spectroscopy suggest that the Ad5 capsid undergoes a two-step dismantling process wherein the viral particles initially expand in size near 50 degrees C and the DNA core is at least partially exposed to the surrounding solvent. Complete capsid disassembly and total exposure of the DNA core follows at higher temperatures. Data generated during these studies were combined employing a multidimensional eigenvector approach that combines data from numerous techniques into a colored representation. This picture, or "empirical phase diagram," provides an intuitive representation of the physical stability of Ad5 over the pH range 4-8 from 10 degrees C to 85 degrees C.
Collapse
Affiliation(s)
- Jason Rexroad
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, 66047, USA
| | | | | |
Collapse
|
15
|
Katayama DS, Kirchhoff CF, Elliott CM, Johnson RE, Borgmeyer J, Thiele BR, Zeng DL, Qi H, Ludwig JD, Manning MC. Retrospective statistical analysis of lyophilized protein formulations of progenipoietin using PLS: Determination of the critical parameters for long-term storage stability. J Pharm Sci 2004; 93:2609-23. [PMID: 15349970 DOI: 10.1002/jps.20170] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although certain criteria have become recognized as being essential for a stable lyophilized formulation, the relative importance of different stability criteria has not been demonstrated quantitatively. This study uses multivariate statistical methods to determine the relative importance of certain formulation variables that affect long-term storage stability of a therapeutic protein. Using the projection to latent structures (PLS) method, a retrospective analysis was conducted of 18 formulations of progenipoietin (ProGP), a potential protein therapeutic agent. The relative importance of composition, pH, maintenance of protein structure (as determined by infrared (IR) spectroscopy), and thermochemical properties of the glassy state (as measured by differential scanning calorimetry (DSC)) were evaluated. Various stability endpoints were assessed and validated models constructed for each using the PLS method. Retention of parent protein and the appearance of degradation products could be adequately modeled using PLS. The models demonstrate the importance of retention of native structure in the solid state and controlling the pH. The relative importance of T(g) in affecting storage stability was low, as all of the samples had T(g) values above the highest storage temperature (40 degrees C). However, other indicators of molecular mobility in the solid state, such as change in DeltaC(p) upon annealing, appear to be important, even for storage below T(g). For the first time, the relative importance of certain properties in controlling long-term storage stability could be assessed quantitatively. In general, the most important parameters appear to be pH and retention of native structure in the solid state. However, for some stability endpoints, the composition (concentration of protein or various excipients), as well as some DSC parameters, were found to be significant in predicting long-term stability.
Collapse
Affiliation(s)
- Derrick S Katayama
- Center for Pharmaceutical Biotechnology, School of Pharmacy, University of Colorado Health Sciences Center, Denver, CO, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|