1
|
Sarvizadeh M, Hasanpour O, Naderi Ghale-Noie Z, Mollazadeh S, Rezaei M, Pourghadamyari H, Masoud Khooy M, Aschner M, Khan H, Rezaei N, Shojaie L, Mirzaei H. Allicin and Digestive System Cancers: From Chemical Structure to Its Therapeutic Opportunities. Front Oncol 2021; 11:650256. [PMID: 33987085 PMCID: PMC8111078 DOI: 10.3389/fonc.2021.650256] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
Digestive system cancer tumors are one of the major causes of cancer-related fatalities; the vast majority of them are colorectal or gastric malignancies. Epidemiological evidence confirmed that allium-containing food, such as garlic, reduces the risk of developing malignancies. Among all compounds in garlic, allicin has been most researched, as it contains sulfur and produces many second degradation compounds, such as sulfur dioxide, diallyl sulfide (DAS), diallyl trisulfide (DATS), and diallyl disulfide (DADS) in the presence of enzymatic reactions in gastric juice. These substances have shown anti-inflammatory, antidiabetic, antihypertensive, antifungal, antiviral, antibacterial, and anticancer efficacy, including gastrointestinal (GI) cancers, leukemia, and skin cancers. Herein, we summarize the therapeutic potential of allicin in the treatment of GI cancers.
Collapse
Affiliation(s)
- Mahshad Sarvizadeh
- Nutrition and Endocrine Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Hasanpour
- School of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Rezaei
- Department of Diabetes, Obesity and Metabolism, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Nima Rezaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Layla Shojaie
- Department of Medicine, Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Anti-adipogenic Effect of β-Carboline Alkaloids from Garlic ( Allium sativum). Foods 2019; 8:foods8120673. [PMID: 31842405 PMCID: PMC6963209 DOI: 10.3390/foods8120673] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 01/11/2023] Open
Abstract
Garlic (Allium sativum L.) is utilized worldwide for culinary and medicinal use and has diverse health benefits. As part of our ongoing research to identify bioactive components from natural resources, phytochemical analysis of the methanolic extract of garlic led to the isolation and characterization of six compounds: Three eugenol diglycosides (1-3) and three β-carboline alkaloids (4-6). In particular, the absolute configurations of β-carboline alkaloids (5 and 6) were established by gauge-including atomic orbital nuclear magnetic resonance chemical shift calculations, followed by DP4+ analysis. Here, we evaluated the effects of compounds 1-6 on 3T3-L1 preadipocyte adipogenesis and lipid metabolism. 3T3-L1 adipocyte differentiation was evaluated using Oil Red O staining; the expression of adipogenic genes was detected using RT-qPCR. Among compounds 1-6, (1R,3S)-1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (6) inhibited 3T3-L1 preadipocyte adipogenesis and reduced the expression of adipogenic genes (Fabp4, PPARγ, C/EBPβ, Adipsin, and Adipoq). Moreover, it markedly decreased the actylation of α-tubulin, which is crucial for cytoskeletal remodeling during adipogenesis. Anti-adipogenic effects were observed upon treatment with compound 6, not only during the entire process, but also on the first two days of adipogenesis. Additionally, treatment with compound 6 regulated the expression of genes involved in adipocyte lipid metabolism, decreasing the lipogenic gene (SREBP1) and increasing lipolytic genes (ATGL and HSL). We provide experimental evidence of the health benefits of using (1R,3S)-1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid obtained from garlic to prevent excessive adipogenesis in obesity.
Collapse
|
3
|
TONG DANDAN, QU HUI, MENG XIANGNING, JIANG YANG, LIU DUANYANG, YE SHENGQIAN, CHEN HE, JIN YAN, FU SONGBIN, GENG JINGSHU. S-allylmercaptocysteine promotes MAPK inhibitor-induced apoptosis by activating the TGF-β signaling pathway in cancer cells. Oncol Rep 2014; 32:1124-32. [PMID: 24970681 DOI: 10.3892/or.2014.3295] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/23/2014] [Indexed: 11/05/2022] Open
|
4
|
Cysteine S-conjugate β-lyases: important roles in the metabolism of naturally occurring sulfur and selenium-containing compounds, xenobiotics and anticancer agents. Amino Acids 2010; 41:7-27. [PMID: 20306345 DOI: 10.1007/s00726-010-0552-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 03/01/2010] [Indexed: 12/13/2022]
Abstract
Cysteine S-conjugate β-lyases are pyridoxal 5'-phosphate-containing enzymes that catalyze β-elimination reactions with cysteine S-conjugates that possess a good leaving group in the β-position. The end products are aminoacrylate and a sulfur-containing fragment. The aminoacrylate tautomerizes and hydrolyzes to pyruvate and ammonia. The mammalian cysteine S-conjugate β-lyases thus far identified are enzymes involved in amino acid metabolism that catalyze β-lyase reactions as non-physiological side reactions. Most are aminotransferases. In some cases the lyase is inactivated by reaction products. The cysteine S-conjugate β-lyases are of much interest to toxicologists because they play an important key role in the bioactivation (toxication) of halogenated alkenes, some of which are produced on an industrial scale and are environmental contaminants. The cysteine S-conjugate β-lyases have been reviewed in this journal previously (Cooper and Pinto in Amino Acids 30:1-15, 2006). Here, we focus on more recent findings regarding: (1) the identification of enzymes associated with high-M(r) cysteine S-conjugate β-lyases in the cytosolic and mitochondrial fractions of rat liver and kidney; (2) the mechanism of syncatalytic inactivation of rat liver mitochondrial aspartate aminotransferase by the nephrotoxic β-lyase substrate S-(1,1,2,2-tetrafluoroethyl)-L-cysteine (the cysteine S-conjugate of tetrafluoroethylene); (3) toxicant channeling of reactive fragments from the active site of mitochondrial aspartate aminotransferase to susceptible proteins in the mitochondria; (4) the involvement of cysteine S-conjugate β-lyases in the metabolism/bioactivation of drugs and natural products; and (5) the role of cysteine S-conjugate β-lyases in the metabolism of selenocysteine Se-conjugates. This review emphasizes the fact that the cysteine S-conjugate β-lyases are biologically more important than hitherto appreciated.
Collapse
|
5
|
Aviello G, Abenavoli L, Borrelli F, Capasso R, Izzo AA, Lembo F, Romano B, Capasso F. Garlic: Empiricism or Science? Nat Prod Commun 2009. [DOI: 10.1177/1934578x0900401231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Garlic (Allium sativum L. fam. Alliaceae) is one of the best-researched, best-selling herbal remedies and is also commonly used as a food and a spice. Garlic constituents include enzymes (for example, alliinase) and sulfur-containing compounds, including alliin, and compounds produced enzymatically from alliin (for example, allicin). Traditionally, it has been employed to treat infections, wounds, diarrhea, rheumatism, heart disease, diabetes, and many other disorders. Experimentally, it has been shown to exert antilipidemic, antihypertensive, antineoplastic, antibacterial, immunostimulant and hypoglycemic actions. Clinically, garlic has been evaluated for a number of conditions, including hypertension, hypercholesterolemia, intermittent claudication, diabetes, rheumatoid arthritis, common cold, as an insect repellent, and for the prevention of arteriosclerosis and cancer. Systematic reviews are available for the possible antilipidemic, antihypertensive, antithrombotic and chemopreventive effects. However, the clinical evidence is far from compelling. Garlic appears to be generally safe although allergic reactions may occur.
Collapse
Affiliation(s)
- Gabriella Aviello
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - Ludovico Abenavoli
- Department of Experimental and Clinical Medicine, University “Magna Graecia”, Catanzaro, Italy
| | - Francesca Borrelli
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - Raffaele Capasso
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - Angelo Antonio Izzo
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - Francesca Lembo
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - Barbara Romano
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - Francesco Capasso
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
|
7
|
Ngo SNT, Williams DB, Cobiac L, Head RJ. Does garlic reduce risk of colorectal cancer? A systematic review. J Nutr 2007; 137:2264-9. [PMID: 17885009 DOI: 10.1093/jn/137.10.2264] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is the 3rd leading cause of cancer death in the United States and the 2nd leading cause of cancer death in Australia. Environmental factors play important roles in the multiple-stage process of CRC and nutritional intervention has been identified as playing a major role in its prevention. The aim of this study was to review systematically the scientific evidence from all studies conducted over the last decade that examined effects of garlic on CRC. Levels of evidence were ranked from level I to level V according to study designs and the quality of each study was assessed against a set of quality criteria based on those used by the National Health and Medical Research Council in Australia. One randomized controlled trial (RCT, level II) reported a statistically significant 29% reduction in both size and number of colon adenomas in CRC patients taking aged garlic extract. Five of 8 case control/cohort studies (level III) suggested a protective effect of high intake of raw/cooked garlic and 2 of 8 of these studies suggested a protective effect for distal colon. A published meta-analysis (level III) of 7 of these studies confirmed this inverse association, with a 30% reduction in relative risk. Eleven animal studies (level V) demonstrated a significant anticarcinogenic effect of garlic and/or its active constituents. On balance, there is consistent scientific evidence derived from RCT of animal studies reporting protective effects of garlic on CRC despite great heterogeneity of measures of intakes among human epidemiological studies.
Collapse
Affiliation(s)
- Suong N T Ngo
- Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, 5000 Australia.
| | | | | | | |
Collapse
|
8
|
Rahman MS. Allicin and Other Functional Active Components in Garlic: Health Benefits and Bioavailability. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2007. [DOI: 10.1080/10942910601113327] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Matsuura N, Miyamae Y, Yamane K, Nagao Y, Hamada Y, Kawaguchi N, Katsuki T, Hirata K, Sumi SI, Ishikawa H. Aged garlic extract inhibits angiogenesis and proliferation of colorectal carcinoma cells. J Nutr 2006; 136:842S-846S. [PMID: 16484577 DOI: 10.1093/jn/136.3.842s] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Because colorectal cancer is likely to develop in many people at some point during their lives, prevention has become a high priority. Diet and nutrition play an important role during the multistep colon carcinogenic process. Garlic has been traditionally used as a spice and is well known for its medicinal properties; several studies have indicated its pharmacologic functions, including its anticarcinogenic properties. However, the mechanisms by which garlic can prevent colorectal cancer remain to be elucidated. This study investigated the effect of aged garlic extract (AGE) on the growth of colorectal cancer cells and their angiogenesis, which are important microenvironmental factors in carcinogenesis. AGE suppressed the proliferation of 3 different colorectal cancer cell lines-HT29, SW480, and SW620-in the same way, but its effects on the invasive activities of these 3 cell lines were different. the invasive activities of SW480 and SW620 cells were inhibited by AGE, whereas AGE had no effect on the invasive activity of Ht29 cells. The action of AGE appears to be dependent on the type of cancer cell. On the other hand, AGE enhanced the adhesion of endothelial cells to collagen and fibronectin and suppressed cell motility and invasion. AGE also inhibited the proliferation and tube formation of endothelial cells potently. These results suggest that AGE could prevent tumor formation by inhibiting angiogenesis through the suppression of endothelial cell motility, proliferation, and tube formation. AGE would be a good chemopreventive agent for colorectal cancer because of its antiproliferative action on colorectal carcinoma cells and inhibitory activity on angiogenesis.
Collapse
Affiliation(s)
- Nariaki Matsuura
- Department of Molecular-Targeting Cancer Prevention and Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pinto JT, Krasnikov BF, Cooper AJL. Redox-sensitive proteins are potential targets of garlic-derived mercaptocysteine derivatives. J Nutr 2006; 136:835S-841S. [PMID: 16484576 DOI: 10.1093/jn/136.3.835s] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular investigations support existing clinical and epidemiological data that garlic-derived allylsulfides reduce cancer risk. Various allylsulfides can diminish progression of cancer cells at either the G1/S or G2/M phase. Allylsulfide derivatives modify redox-sensitive signal pathways and cause growth inhibition, mitotic arrest, and apoptosis induction. Whether allylsulfides modify intracellular redox potentials by affecting the ratio of glutathione:glutathione disulfide and/or by interacting directly with sulfhydryl domains on regulatory or catalytic-signal proteins requires further investigation. To understand the possible biochemical mechanisms contributing to the protective effects of allylsulfides, we investigated the ability of these compounds to undergo enzyme-catalyzed transformations. In addition to catalyzing gamma-elimination reactions, gamma-cystathionase can perform beta-elimination reactions with cysteinyl S-conjugates derived from garlic extracts when the S-alkyl group (R) is larger than ethyl. The reaction products are pyruvate, ammonium, and a sulfur-containing fragment (RSH). beta-Lyase substrates of gamma-cystathionase thus far identified from garlic include: S-allyl-L-cysteine (R=CH2=CHCH2-), S-allylmercapto-L-cysteine (R=CH2=CHCH2S-), and S-propylmercapto-L-cysteine (R=CH3CH2CH2S-). Mercapto derivatives yield persulfide products (RSSH) that are potential sources of sulfane sulfur, which may modify protein function by reacting at important cysteinyl domains. Thus, beta-elimination reactions with cysteine S-conjugates in garlic may modify cancer-cell growth by targeting redox-sensitive signal proteins at sulfhydryl sites, thereby regulating cell proliferation and/or apoptotic responses. These interactions may be useful in identifying efficacy of garlic-derived compounds and/or developing other novel organosulfur compounds that may modify intracellular redox potentials or interact with thiols associated within cysteine domains in regulatory, catalytic, signal, or structural proteins.
Collapse
Affiliation(s)
- John T Pinto
- Burke Medical Research Institute, White Plains, NY 10605, USA.
| | | | | |
Collapse
|
11
|
Abstract
Cysteine S-conjugate beta-lyases are pyridoxal 5'-phosphate-containing enzymes that catalyze beta-elimination reactions with cysteine S-conjugates that possess an electron-withdrawing group attached at the sulfur. The end products of the beta-lyase reaction are pyruvate, ammonium and a sulfur-containing fragment. If the sulfur-containing fragment is reactive, the parent cysteine S-conjugate may be toxic, particularly to kidney mitochondria. Halogenated alkenes are examples of electrophiles that are bioactivated (toxified) by conversion to cysteine S-conjugates. These conjugates are converted by cysteine S-conjugate beta-lyases to thioacylating fragments. Several cysteine S-conjugates found in allium foods (garlic and onion) are beta-lyase substrates. This finding may account in part for the chemopreventive activity of allium products. This review (1) identifies enzymes that catalyze cysteine S-conjugate beta-lyase reactions, (2) suggests that toxicant channeling may contribute to halogenated cysteine S-conjugate-induced toxicity to mitochondria, and (3) proposes mechanisms that may contribute to the antiproliferative effects of sulfur-containing fragments eliminated from allium-derived cysteine S-conjugates.
Collapse
Affiliation(s)
- A J L Cooper
- Department of Biochemistry, Weill Medical College, Cornell University, New York, New York, USA.
| | | |
Collapse
|
12
|
Schulz M, Lahmann PH, Boeing H, Hoffmann K, Allen N, Key TJA, Bingham S, Wirfält E, Berglund G, Lundin E, Hallmans G, Lukanova A, Martínez Garcia C, González CA, Tormo MJ, Quirós JR, Ardanaz E, Larrañaga N, Lund E, Gram IT, Skeie G, Peeters PHM, van Gils CH, Bueno-de-Mesquita HB, Büchner FL, Pasanisi P, Galasso R, Palli D, Tumino R, Vineis P, Trichopoulou A, Kalapothaki V, Trichopoulos D, Chang-Claude J, Linseisen J, Boutron-Ruault MC, Touillaud M, Clavel-Chapelon F, Olsen A, Tjønneland A, Overvad K, Tetsche M, Jenab M, Norat T, Kaaks R, Riboli E. Fruit and Vegetable Consumption and Risk of Epithelial Ovarian Cancer: The European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol Biomarkers Prev 2005; 14:2531-5. [PMID: 16284374 DOI: 10.1158/1055-9965.epi-05-0159] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The association between consumption of fruit and vegetables and risk of ovarian cancer is still unclear from a prospective point of view. METHODS Female participants (n = 325,640) of the European Prospective Investigation into Cancer and Nutrition study, free of any cancer at baseline, were followed on average for 6.3 years to develop ovarian cancer. During 2,049,346 person-years, 581 verified cases of primary, invasive epithelial ovarian cancer were accrued. Consumption of fruits and vegetables as well as subgroups of vegetables, estimated from validated dietary questionnaires and calibrated thereafter, was related to ovarian cancer incidence in multivariable hazard regression models. Histologic subtype specific analyses were done. RESULTS Total intake of fruit and vegetables, separately or combined, as well as subgroups of vegetables (fruiting, root, leafy vegetables, cabbages) was unrelated to risk of ovarian cancer. A high intake of garlic/onion vegetables was associated with a borderline significant reduced risk of this cancer. The examination by histologic subtype indicated some differential effects of fruit and vegetable intake on ovarian cancer risk. CONCLUSION Overall, a high intake of fruits and vegetables did not seem to protect from ovarian cancer. Garlic/onion vegetables may exert a beneficial effect. The study of the histologic subtype of the tumor warrants further investigation.
Collapse
Affiliation(s)
- Mandy Schulz
- German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14458 Nuthetal, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Taylor P, Noriega R, Farah C, Abad MJ, Arsenak M, Apitz R. Ajoene inhibits both primary tumor growth and metastasis of B16/BL6 melanoma cells in C57BL/6 mice. Cancer Lett 2005; 239:298-304. [PMID: 16221526 DOI: 10.1016/j.canlet.2005.08.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 08/23/2005] [Indexed: 11/30/2022]
Abstract
Ajoene is an organosulphur compound derived from garlic with important effects on several membrane-associated processes such as platelet aggregation, as well as being cytotoxic for tumor cell lines in vitro. In the present study, we investigated the effect of ajoene on different cell types in vitro, as well as its inhibitory effects on both primary tumors and metastasis in a mouse model. We found ajoene to inhibit tumor cell growth in vitro, but also to inhibit strongly metastasis to lung in the B16/BL6 melanoma tumor model in C57BL/6 mice. As far as we are aware, this is the first report of the anti-metastatic effect of ajoene. Ajoene also inhibited tumor-endothelial cell adhesion, as well as the in vivo TNF-alpha response to lipopolysaccharide. Possible mechanisms of its antitumoral activity are discussed in the light of these results.
Collapse
Affiliation(s)
- Peter Taylor
- Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela.
| | | | | | | | | | | |
Collapse
|
14
|
Xiao D, Pinto JT, Gundersen GG, Weinstein IB. Effects of a series of organosulfur compounds on mitotic arrest and induction of apoptosis in colon cancer cells. Mol Cancer Ther 2005; 4:1388-98. [PMID: 16170031 DOI: 10.1158/1535-7163.mct-05-0152] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We previously reported that the garlic-derived compound S-allylmercaptocysteine (SAMC) causes growth inhibition, mitotic arrest, and induction of apoptosis in SW480 human colon cancer cells by inducing microtubule depolymerization and c-Jun NH(2) terminus kinase-1 activation. In the present study, we compared the aforementioned effects of SAMC to those of a series of garlic-derived and other organosulfur compounds. Among the 10 compounds tested, only SAMC, diallyl disulfide (DADS), and S-trityl-L-cysteine (trityl-cys) cause significant inhibition of cell growth with IC(50) values of 150, 56, and 0.9 micromol/L, respectively. These three compounds also induce G(2)-M cell cycle arrest and apoptosis. Further studies reveal that, like SAMC, the garlic-derived compound DADS exerts antiproliferative effects by binding directly to tubulin and disrupting the microtubule assembly, thus arresting cells in mitosis and triggering mitochondria-mediated signaling pathways that lead to apoptosis. However, the synthetic compound trityl-cys exerts its effect on M-phase arrest and growth inhibition by mechanisms that involve spindle impairment but do not involve disruption of microtubule structure or dynamics. Furthermore, trityl-cys does not induce marked loss of mitochondrial membrane potential or release of cytochrome c, but it does induce caspase-3 activation and poly(ADP-ribose) polymerase cleavage. Structure-function analysis suggests that both the allyl and the disulfide moieties are important features for the antiproliferative effects of SAMC and DADS. These findings may be useful in the identification, synthesis, and development of organosulfur compounds that have anticancer activity.
Collapse
Affiliation(s)
- Danhua Xiao
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | |
Collapse
|
15
|
Oommen S, Anto RJ, Srinivas G, Karunagaran D. Allicin (from garlic) induces caspase-mediated apoptosis in cancer cells. Eur J Pharmacol 2004; 485:97-103. [PMID: 14757128 DOI: 10.1016/j.ejphar.2003.11.059] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Garlic (Allium sativum) has been used for centuries for treating various ailments, and its consumption is said to reduce cancer risk and its extracts and components effectively block experimentally induced tumors. Allicin, the major component present in freshly crushed garlic, is one of the most biologically active compounds of garlic. We found that allicin inhibited the growth of cancer cells of murine and human origin. Allicin induced the formation of apoptotic bodies, nuclear condensation and a typical DNA ladder in cancer cells. Furthermore, activation of caspases-3, -8 and -9 and cleavage of poly(ADP-ribose) polymerase were induced by allicin. The present results demonstrating allicin-induced apoptosis of cancer cells are novel since allicin has not been shown to induce apoptosis previously. Our results also provide a mechanistic basis for the antiproliferative effects of allicin and partly account for the chemopreventive action of garlic extracts reported by earlier workers.
Collapse
Affiliation(s)
- Suby Oommen
- Division of Cancer Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram-695014, Kerala, India
| | | | | | | |
Collapse
|
16
|
Ding XZ, Hennig R, Adrian TE. Lipoxygenase and cyclooxygenase metabolism: new insights in treatment and chemoprevention of pancreatic cancer. Mol Cancer 2003; 2:10. [PMID: 12575899 PMCID: PMC149414 DOI: 10.1186/1476-4598-2-10] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2002] [Accepted: 01/07/2003] [Indexed: 12/20/2022] Open
Abstract
The essential fatty acids, linoleic acid and arachidonic acid play an important role in pancreatic cancer development and progression. These fatty acids are metabolized to eicosanoids by cyclooxygenases and lipoxygenases. Abnormal expression and activities of both cyclooxygenases and lipoxygenases have been reported in pancreatic cancer. In this article, we aim to provide a brief summary of (1) our understanding of the roles of these enzymes in pancreatic cancer tumorigenesis and progression; and (2) the potential of using cyclooxygenase and lipoxygenase inhibitors for pancreatic cancer treatment and prevention.
Collapse
Affiliation(s)
- Xian-Zhong Ding
- Department of Surgery and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Tarry 4-711, Chicago, IL 60611, U.S.A
| | - Rene Hennig
- Department of Surgery and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Tarry 4-711, Chicago, IL 60611, U.S.A
| | - Thomas E Adrian
- Department of Surgery and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Tarry 4-711, Chicago, IL 60611, U.S.A
| |
Collapse
|