1
|
Jeong EH, Cho SY, Vaidya B, Ha SH, Jun S, Ro HJ, Lee Y, Lee J, Kwon J, Kim D. Human Norovirus Replication in Temperature-Optimized MDCK Cells by Forkhead Box O1 Inhibition. J Microbiol Biotechnol 2020; 30:1412-1419. [PMID: 32522961 PMCID: PMC9745657 DOI: 10.4014/jmb.2003.03071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
Human noroviruses (HuNoVs) are a leading cause of gastroenteritis outbreaks worldwide. However, the paucity of appropriate cell culture model for HuNoV replication has prevented developing effective anti-HuNoV therapy. In this study, first, the replication of the virus at various temperatures in different cells was compared, which showed that lowering the culture temperature from 37°C significantly increased virus replication in Madin-Darby canine kidney (MDCK) cells. Second, the expression levels of autophagy-, immune-, and apoptosis-related genes at 30°C and 37°C were compared to explore factors affecting HuNoV replication. HuNoV cultured at 37°C showed significantly increased autophagy- (ATG5 and ATG7) and immune- (IFNA, IFNB, ISG15, and NFKB) related genes compared to mock. However, the virus cultured at 30°C showed significantly decreased expression of autophagy- (ATG5 and ATG7) and not significantly different in major immune- (IFNA, ISG15, and NFKB) related genes compared to mock. Importantly, expression of the transcription factor FOXO1, which controls autophagy- and immune-related gene expression, was significantly lower at 30°C. Moreover, FOXO1 inhibition in temperature-optimized MDCK cells enhanced HuNoV replication, highlighting FOXO1 inhibition as an approach for successful virus replication. In the temperature-optimized cells, various HuNoV genotypes were successfully replicated, with GI.8 showing the highest replication levels followed by GII.1, GII.3, and GII.4. Furthermore, ultrastructural analysis of the infected cells revealed functional HuNoV replication at low temperature, with increased cellular apoptosis and decreased autophagic vacuoles. In conclusion, temperature-optimized MDCK cells can be used as a convenient culture model for HuNoV replication by inhibiting FOXO1, providing adaptability to different genotypes.
Collapse
Affiliation(s)
- Eun-Hye Jeong
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Se-Young Cho
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bipin Vaidya
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang Hoon Ha
- Division of Biotechnology, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Sangmi Jun
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon 34133, Republic of Korea,Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hyun-Joo Ro
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon 34133, Republic of Korea,Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yujeong Lee
- Korea Basic Science Institute, Cheongju 28119, Republic of Korea,Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Juhye Lee
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joseph Kwon
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon 34133, Republic of Korea,J.K. Phone: +82-42-865-3446 Fax: +82-42-865-3419 E-mail:
| | - Duwoon Kim
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju 61186, Republic of Korea,Corresponding authors D.K. Phone: +82-62-530-2144 Fax: +82-62-530-2149 E-mail:
| |
Collapse
|
2
|
Walters RW, Grunst T, Bergelson JM, Finberg RW, Welsh MJ, Zabner J. Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. J Biol Chem 1999; 274:10219-26. [PMID: 10187807 DOI: 10.1074/jbc.274.15.10219] [Citation(s) in RCA: 278] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent identification of two receptors for the adenovirus fiber protein, coxsackie B and adenovirus type 2 and 5 receptor (CAR), and the major histocompatibility complex (MHC) Class I alpha-2 domain allows the molecular basis of adenoviral infection to be investigated. Earlier work has shown that human airway epithelia are resistant to infection by adenovirus. Therefore, we examined the expression and localization of CAR and MHC Class I in an in vitro model of well differentiated, ciliated human airway epithelia. We found that airway epithelia express CAR and MHC Class I. However, neither receptor was present in the apical membrane; instead, both were polarized to the basolateral membrane. These findings explain the relative resistance to adenovirus infection from the apical surface. In contrast, when the virus was applied to the basolateral surface, gene transfer was much more efficient because of an interaction of adenovirus fiber with its receptors. In addition, when the integrity of the tight junctions was transiently disrupted, apically applied adenovirus gained access to the basolateral surface and enhanced gene transfer. These data suggest that the receptors required for efficient infection are not available on the apical surface, and interventions that allow access to the basolateral space where fiber receptors are located increase gene transfer efficiency.
Collapse
Affiliation(s)
- R W Walters
- Departments of Internal Medicine, Howard Hughes Medical Institute, Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|