1
|
Engevik MA, Banks LD, Engevik KA, Chang-Graham AL, Perry JL, Hutchinson DS, Ajami NJ, Petrosino JF, Hyser JM. Rotavirus infection induces glycan availability to promote ileum-specific changes in the microbiome aiding rotavirus virulence. Gut Microbes 2020; 11:1324-1347. [PMID: 32404017 PMCID: PMC7524290 DOI: 10.1080/19490976.2020.1754714] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Multiple studies have identified changes within the gut microbiome in response to diarrheal-inducing bacterial pathogens. However, examination of the microbiome in response to viral pathogens remains understudied. Compounding this, many studies use fecal samples to assess microbiome composition; which may not accurately mirror changes within the small intestine, the primary site for most enteric virus infections. As a result, the functional significance of small intestinal microbiome shifts during infection is not well defined. To address these gaps, rotavirus-infected neonatal mice were examined for changes in bacterial community dynamics, host gene expression, and tissue recovery during infection. Profiling bacterial communities using 16S rRNA sequencing suggested significant and distinct changes in ileal communities in response to rotavirus infection, with no significant changes for other gastrointestinal (GI) compartments. At 1-d post-infection, we observed a loss in Lactobacillus species from the ileum, but an increase in Bacteroides and Akkermansia, both of which exhibit mucin-digesting capabilities. Concomitant with the bacterial community shifts, we observed a loss of mucin-filled goblet cells in the small intestine at d 1, with recovery occurring by d 3. Rotavirus infection of mucin-producing cell lines and human intestinal enteroids (HIEs) stimulated release of stored mucin granules, similar to in vivo findings. In vitro, incubation of mucins with Bacteroides or Akkermansia members resulted in significant glycan degradation, which altered the binding capacity of rotavirus in silico and in vitro. Taken together, these data suggest that the response to and recovery from rotavirus-diarrhea is unique between sub-compartments of the GI tract and may be influenced by mucin-degrading microbes.
Collapse
Affiliation(s)
- Melinda A. Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA,Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Lori D. Banks
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Kristen A. Engevik
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Alexandra L. Chang-Graham
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Jacob L. Perry
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Diane S. Hutchinson
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Nadim J. Ajami
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph F. Petrosino
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph M. Hyser
- Alkek Center for Metagenomic and Microbiome Research, Baylor College of Medicine, Houston, TX, USA,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA,CONTACT Joseph M. Hyser 1 Baylor Plaza, HoustonTX77030, USA
| |
Collapse
|
2
|
Rotavirus epidemiology and vaccine demand: considering Bangladesh chapter through the book of global disease burden. Infection 2017; 46:15-24. [DOI: 10.1007/s15010-017-1082-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/11/2017] [Indexed: 01/12/2023]
|
3
|
Kolpakov SA, Kolpakova EP. ADAPTATION OF HUMAN ROTAVIRUS STRAINS OF GROUP A TO THE REPRODUCTION IN PASSAGED CELL CULTURES. Vopr Virusol 2017; 62:138-143. [PMID: 36494982 DOI: 10.18821/0507-4088-2017-62-3-138-143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 12/13/2022]
Abstract
The incidence of rotavirus gastroenteritis in the world still has no tendency to reduction. The development of an effective vaccine would reduce or, in the future, even defeat this highly contagious dangerous disease. However, both in Russia and abroad there is still no developed technique for adapting and cultivating strains of the human rotavirus A that would stably produce a high "yield" of virus progeny in transplanted culture cells. The phenomenon of gene exchange for the segmented genome of rotavirus was used by foreign researchers to create the rotavirus vaccine using reassortant strains which are the result of joint cultivation of low-titer (1-2·106 virions per ml) human rotavirus strains and rotavirus strains of animals, such as monkey rotavirus SA-11 or Nebraska calf rotavirus diarrhea providing a relatively high "yield" of virus progeny (1·107-1·108). It is clear that such vaccine compositions will not be able to replace a full-fledged vaccine of human rotavirus strains of different serotypes, but they can be used for the time being as a solution to the problem. Ideally, a rotavirus vaccine is needed that includes the full set of G and P serotypes of rotaviruses circulating in the territory of their application. The paper describes an original technique for adaptation and cultivation of human rotaviruses of group A on the culture of transplantable cells developed by the authors. This technique allows 5·108 virions to be obtained per 1 ml of culture fluid. High-titer cultivated strains of human rotavirus that can be used as vaccine strains were obtained, as well as highly-active antigens for the construction of diagnostic test-systems.
Collapse
Affiliation(s)
- S A Kolpakov
- Rostov Scienific Research institute of Microbiology and Parasitology
| | - E P Kolpakova
- Rostov Scienific Research institute of Microbiology and Parasitology
| |
Collapse
|
4
|
Abstract
Rotavirus, a member of the family Reoviridae, was identified as the leading etiological agent of severe gastroenteritis in infants and young children in 1973. The rotavirus genome is composed of 11 gene segments of double-stranded (ds)RNA. During the last 40 years, a large amount of basic research on rotavirus structure, genome, antigen, replication, pathogenesis, epidemiology, immune responses, and evolution has been accumulated. This article reviews the fundamental aspects of rotavirology including recent important achievements in research.
Collapse
|
5
|
Abstract
A growing body of evidence warrants a revision of the received/conventional wisdom of rotavirus infection as synonymous with acute gastroenteritis. Rotavirus vaccines have boosted our interest and knowledge of this virus, but also importantly, they may have changed the landscape of the disease. Extraintestinal spread of rotavirus is well documented, and the clinical spectrum of the disease is widening. Furthermore, the positive impact of current rotavirus vaccines in reducing seizure hospitalization rates should prompt a reassessment of the actual burden of extraintestinal manifestations of rotavirus diseases. This article discusses current knowledge of the systemic extraintestinal manifestations of rotavirus infection and their underlying mechanisms, and aims to pave the way for future clinical, public health and research questions.
Collapse
Affiliation(s)
- Irene Rivero-Calle
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain; Genetics, Vaccines, Infections and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
| | - José Gómez-Rial
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain; Genetics, Vaccines, Infections and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Galicia, Spain; Genetics, Vaccines, Infections and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario and Universidade de Santiago de Compostela (USC), Galicia, Spain.
| |
Collapse
|
6
|
|
7
|
Ramani S, Atmar RL. Acute Gastroenteritis Viruses. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Desselberger U. Rotaviruses. Virus Res 2014; 190:75-96. [DOI: 10.1016/j.virusres.2014.06.016] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 01/12/2023]
|
9
|
Absence of genetic differences among G10P[11] rotaviruses associated with asymptomatic and symptomatic neonatal infections in Vellore, India. J Virol 2014; 88:9060-71. [PMID: 24899175 DOI: 10.1128/jvi.01417-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Rotaviruses (RVs) are leading causes of severe diarrhea and vomiting in infants and young children. RVs with G10P[11] genotype specificity have been associated with symptomatic and asymptomatic neonatal infections in Vellore, India. To identify possible viral genetic determinants responsible for differences in symptomology, the genome sequences of G10P[11] RVs in stool samples of 19 neonates with symptomatic infections and 20 neonates with asymptomatic infections were determined by Sanger and next-generation sequencing. The data showed that all 39 viruses had identical genotype constellations (G10-P[11]-I2-R2-C2-M2-A1-N1-T1-E2-H3), the same as those of the previously characterized symptomatic N155 Vellore isolate. The data also showed that the RNA and deduced protein sequences of all the Vellore G10P[11] viruses were nearly identical; no nucleotide or amino acid differences were found that correlated with symptomatic versus asymptomatic infection. Next-generation sequencing data revealed that some stool samples, both from neonates with symptomatic infections and from neonates with asymptomatic infections, also contained one or more positive-strand RNA viruses (Aichi virus, astrovirus, or salivirus/klassevirus) suspected of being potential causes of pediatric gastroenteritis. However, none of the positive-strand RNA viruses could be causally associated with the development of symptoms. These results indicate that the diversity of clinical symptoms in Vellore neonates does not result from genetic differences among G10P[11] RVs; instead, other undefined factors appear to influence whether neonates develop gastrointestinal disease symptoms. IMPORTANCE Rotavirus (RV) strains have been identified that preferentially replicate in neonates, in some cases, without causing gastrointestinal disease. Surveillance studies have established that G10P[11] RVs are a major cause of neonatal infection in Vellore, India, with half of infected neonates exhibiting symptoms. We used Sanger and next-generation sequencing technologies to contrast G10P[11] RVs recovered from symptomatic and asymptomatic neonates. Remarkably, the data showed that the RNA genomes of the viruses were virtually indistinguishable and lacked any differences that could explain the diversity of clinical outcomes among infected Vellore neonates. The sequencing results also indicated that some symptomatic and some asymptomatic Vellore neonates were infected with other enteric viruses (Aichi virus, astrovirus, salvirus/klassevirus); however, none could be correlated with the presence of symptoms in neonates. Together, our findings suggest that other poorly defined factors, not connected to the genetic makeup of the Vellore G10P[11] viruses, influence whether neonates develop gastrointestinal disease symptoms.
Collapse
|
10
|
Rotavirus antigenemia in children is associated with more severe clinical manifestations of acute gastroenteritis. Pediatr Infect Dis J 2014; 33:366-71. [PMID: 24136370 DOI: 10.1097/inf.0000000000000118] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Rotavirus (RV) antigenemia and RNAemia are common findings in rotavirus-infected children. Sporadic associations between RV antigenemia and extraintestinal manifestations of RV infection have been observed. We examined the clinical severity of RV gastroenteritis in patients with and without RV antigenemia or RNAemia. METHODS Stool, serum and whole blood samples were collected from children seen with acute gastroenteritis in Tampere University Hospital and studied for RV using reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Only exclusively RV-positive specimens were included into this study. The patients were divided into groups according to RV findings from stool, serum and blood specimens. Clinical manifestations were graded according to 20-point Vesikari scoring system. RESULTS Of 374 children, 155 (41%) had RV in their stools. Of these 155 children, 105 (67%) were found to have RV RNA in the serum; of those, 94 (90%) had also RV enzyme-linked immunosorbent assay antigen. Thus antigenemia occurred in 61% (94 cases) of RV-infected children all of whom had concomitant RNAemia. Neither antigenemia nor RNAemia were detected in 85 patients with non-RV gastroenteritis. Patients who had RV RNA and RV antigen in both serum and stools were more likely to have a higher level of fever and more severe vomiting than patients who had RV only in stools. G1 genogroup RV was more often associated with RNAemia and antigenemia than other genogroups combined. CONCLUSION Rotavirus antigenemia and viremia are commonly detected in children hospitalized for RV gastroenteritis and may be associated with increased severity of fever and vomiting.
Collapse
|
11
|
Abstract
A new paradigm of rotavirus disease is emerging and rotavirus infection is no longer considered to be localized and confined to the GI tract. New evidence indicates that rotavirus infection is systemic. Viral antigen and infectious virus frequently enter the circulation in both children and animal model systems. Clinical case reports of systemic sequelae to rotavirus infection in children continue to accumulate, suggesting involvement in systemic disease syndromes. The use of animal models is providing biological and molecular evidence for infection at peripheral sites. Thus, infection at peripheral sites may account for reports of systemic sequelae to rotavirus infection. The importance of systemic sequelae and the ability of vaccination to prevent such sequelae remains to be determined.
Collapse
Affiliation(s)
- Robert F Ramig
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Ball JM, Schroeder ME, Williams CV, Schroeder F, Parr RD. Mutational analysis of the rotavirus NSP4 enterotoxic domain that binds to caveolin-1. Virol J 2013; 10:336. [PMID: 24220211 PMCID: PMC3924327 DOI: 10.1186/1743-422x-10-336] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/22/2013] [Indexed: 01/11/2023] Open
Abstract
Background Rotavirus (RV) nonstructural protein 4 (NSP4) is the first described viral enterotoxin, which induces early secretory diarrhea in neonatal rodents. Our previous data show a direct interaction between RV NSP4 and the structural protein of caveolae, caveolin-1 (cav-1), in yeast and mammalian cells. The binding site of cav-1 mapped to the NSP4 amphipathic helix, and led us to examine which helical face was responsible for the interaction. Methods A panel of NSP4 mutants were prepared and tested for binding to cav-1 by yeast two hybrid and direct binding assays. The charged residues of the NSP4 amphipathic helix were changed to alanine (NSP446-175-ala6); and three residues in the hydrophobic face were altered to charged amino acids (NSP446-175-HydroMut). In total, twelve mutants of NSP4 were generated to define the cav-1 binding site. Synthetic peptides corresponding to the hydrophobic and charged faces of NSP4 were examined for structural changes by circular dichroism (CD) and diarrhea induction by a neonatal mouse study. Results Mutations of the hydrophilic face (NSP446-175-Ala6) bound cav-1 akin to wild type NSP4. In contrast, disruption of the hydrophobic face (NSP446-175-HydroMut) failed to bind cav-1. These data suggest NSP4 and cav-1 associate via a hydrophobic interaction. Analyses of mutant synthetic peptides in which the hydrophobic residues in the enterotoxic domain of NSP4 were altered suggested a critical hydrophobic residue. Both NSP4HydroMut112-140, that contains three charged amino acids (aa113, 124, 131) changed from the original hydrophobic residues and NSP4AlaAcidic112-140 that contained three alanine residues substituted for negatively charged (aa114, 125, 132) amino acids failed to induce diarrhea. Whereas peptides NSP4wild type 112−140 and NSP4AlaBasic112-140 that contained three alanine substituted for positively charged (aa115, 119, 133) amino acids, induced diarrhea. Conclusions These data show that the cav-1 binding domain is within the hydrophobic face of the NSP4 amphipathic helix. The integrity of the helical structure is important for both cav-1 binding and diarrhea induction implying a connection between NSP4 functional and binding activities.
Collapse
Affiliation(s)
- Judith M Ball
- Department of Pathobiology, Texas A&M University, TVMC, College Station, Texas 77843-4467, USA.
| | | | | | | | | |
Collapse
|
13
|
Abstract
Rotavirus infection is a significant cause of childhood morbidity and mortality worldwide. Although infection primarily causes gastroenteritis and dehydration, systemic signs and neurologic manifestations in rotavirus infection are widely recognized. The pathophysiologic origins of neurologic signs in rotavirus infection remain incompletely understood. We present a 4-year-old girl with clinical features of severe cerebellitis in association with abnormalities detected on magnetic resonance imaging. Rotavirus nucleic acid was demonstrated in both serum and cerebrospinal fluid. Severe neurologic sequelae remain after 2 years of follow-up. This report adds further evidence supporting a direct role for rotavirus in neurologic illness.
Collapse
|
14
|
Yang W, McCrae MA. The molecular biology of rotaviruses X: intercellular dissemination of rotavirus NSP4 requires glycosylation and is mediated by direct cell-cell contact through cytoplasmic extrusions. Arch Virol 2011; 157:305-14. [DOI: 10.1007/s00705-011-1174-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/08/2011] [Indexed: 01/11/2023]
|
15
|
Yang W, McCrae MA. The rotavirus enterotoxin (NSP4) promotes re-modeling of the intracellular microtubule network. Virus Res 2011; 163:269-74. [PMID: 22036730 DOI: 10.1016/j.virusres.2011.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/14/2011] [Accepted: 10/15/2011] [Indexed: 01/07/2023]
Abstract
Expression of the rotavirus enterotoxin (NSP4) in transfected monkey kidney cells was found to result in a dramatic re-modeling of the microtubule (MT) network. This important centrosome organized cytoskeletal element was dissolved by expression of NSP4 and re-formed in a ring array at the periphery of the cell, similar to that seen following normal virus infection. Site directed mutagenesis of the N-linked glycosylation sites in NSP4 was employed to show that glycosylation of NSP4 was not required for it to promote changes in the MT network. This result together with experiments using conventional inhibitors indicated that NSP4's ability to cause elevation of intracellular calcium levels was also not necessary to effect the changes in the MT network. Use of the centrosome function inhibitor nocodazole demonstrated that NSP4 based remodeling of the MT network was dominant over the normal organizational role of the centrosome. Finally the remodeling of the MT network was shown not to be linked to cellular apoptosis or necrosis. The potential importance of this newly recognised role for NSP4 in the overall process of intracellular pathogenesis by rotaviruses is discussed.
Collapse
Affiliation(s)
- Weiming Yang
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
16
|
Gibbons TF, Storey SM, Williams CV, McIntosh A, Mitchel DM, Parr RD, Schroeder ME, Schroeder F, Ball JM. Rotavirus NSP4: Cell type-dependent transport kinetics to the exofacial plasma membrane and release from intact infected cells. Virol J 2011; 8:278. [PMID: 21645398 PMCID: PMC3129587 DOI: 10.1186/1743-422x-8-278] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/06/2011] [Indexed: 11/10/2022] Open
Abstract
Background Rotavirus NSP4 localizes to multiple intracellular sites and is multifunctional, contributing to RV morphogenesis, replication and pathogenesis. One function of NSP4 is the induction of early secretory diarrhea by binding surface receptors to initiate signaling events. The aims of this study were to determine the transport kinetics of NSP4 to the exofacial plasma membrane (PM), the subsequent release from intact infected cells, and rebinding to naïve and/or neighboring cells in two cell types. Methods Transport kinetics was evaluated using surface-specific biotinylation/streptavidin pull-downs and exofacial exposure of NSP4 was confirmed by antibody binding to intact cells, and fluorescent resonant energy transfer. Transfected cells similarly were monitored to discern NSP4 movement in the absence of infection or other viral proteins. Endoglycosidase H digestions, preparation of CY3- or CY5- labeled F(ab)2 fragments, confocal imaging, and determination of preferential polarized transport employed standard laboratory techniques. Mock-infected, mock-biotinylated and non-specific antibodies served as controls. Results Only full-length (FL), endoglycosidase-sensitive NSP4 was detected on the exofacial surface of two cell types, whereas the corresponding cell lysates showed multiple glycosylated forms. The C-terminus of FL NSP4 was detected on exofacial-membrane surfaces at different times in different cell types prior to its release into culture media. Transport to the PM was rapid and distinct yet FL NSP4 was secreted from both cell types at a time similar to the release of virus. NSP4-containing, clarified media from both cells bound surface molecules of naïve cells, and imaging showed secreted NSP4 from one or more infected cells bound neighboring cell membranes in culture. Preferential sorting to apical or basolateral membranes also was distinct in different polarized cells. Conclusions The intracellular transport of NSP4 to the PM, translocation across the PM, exposure of the C-terminus on the cell surface and subsequent secretion occurs via an unusual, complex and likely cell-dependent process. The exofacial exposure of the C-terminus poses several questions and suggests an atypical mechanism by which NSP4 traverses the PM and interacts with membrane lipids. Mechanistic details of the unconventional trafficking of NSP4, interactions with host-cell specific molecules and subsequent release require additional study.
Collapse
Affiliation(s)
- Thomas F Gibbons
- Department of Pathobiology Texas A&M University, TVMC, College Station, TX 77843-4467, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
OBJECTIVES Few methods exist to noninvasively study in vivo gastrointestinal motility in animal models of enteric infections. None have been used on mouse pups, which often display more severe symptoms during enteric infections than adult mice. This study sought to determine whether digital fluoroscopy could be used to evaluate gastrointestinal motility in mouse pups as well as adult mice. MATERIALS AND METHODS Fluoroscopic imaging studies were performed on normal 6- to 8-week-old adult mice and 12-day-old pups to develop protocols for evaluating gastric and intestinal wall movements and changes in stomach sizes. These protocols were then applied to evaluate motility in an established rotavirus mouse model. Imaging studies were performed on adult mice at 0, 2, and 4 days postinfection and on 12-day-old pups at 2 days postinfection. RESULTS Fluoroscopic studies revealed postnatal differences of gastric peristalsis and rates of intestinal contractions between normal mouse pups and adult mice. Studies of the rotavirus mouse model revealed that differences in gastric function occur between rotavirus-infected and control mouse pups, but no discernible difference occurs between infected and control adult mice. In contrast, there were no detectable differences in rates of intestinal wall movements between control pups with normal stools and infected pups with loose stools. CONCLUSIONS These results demonstrate that fluoroscopy can evaluate in vivo motility in mouse pups and by doing so provide findings that are clinically relevant to the study of enteric infections in young.
Collapse
|
18
|
Abstract
Infecting nearly every child by age five, rotaviruses are the major causative agents of severe gastroenteritis in young children. While much is known about the structure of these nonenveloped viruses and their components, the exact mechanism of viral cell entry is still poorly understood. A consensus opinion that appears to be emerging from recent studies is that rotavirus cell entry involves a series of complex and coordinated events following proteolytic priming of the virus. Rotaviruses attach to the cell through sialic acid containing receptors, with integrins and Hsc70 acting as postattachment receptors, all localized on lipid rafts. Unlike other endocytotic mechanisms, this internalization pathway appears to be independent of clathrin or caveola. Equally complex and coordinated is the fascinating structural gymnastics of the VP4 spikes that are implicated in facilitating optimal interface between viral and host components. While these studies only begin to capture the basic cellular, molecular, and structural mechanisms of cell entry, the unusual features they have uncovered and many intriguing questions they have raised undoubtedly will prompt further investigations.
Collapse
Affiliation(s)
- Matthew Baker
- National Center for Macromolecular Imaging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | | |
Collapse
|
19
|
Boshuizen JA, Rossen JWA, Sitaram CK, Kimenai FFP, Simons-Oosterhuis Y, Laffeber C, Büller HA, Einerhand AWC. Rotavirus enterotoxin NSP4 binds to the extracellular matrix proteins laminin-beta3 and fibronectin. J Virol 2004; 78:10045-53. [PMID: 15331737 PMCID: PMC514988 DOI: 10.1128/jvi.78.18.10045-10053.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rotavirus is the most important cause of viral gastroenteritis and dehydrating diarrhea in young children. Rotavirus nonstructural protein 4 (NSP4) is an enterotoxin that was identified as an important agent in symptomatic rotavirus infection. To identify cellular proteins that interact with NSP4, a two-hybrid technique with Saccharomyces cerevisiae was used. NSP4 cDNA, derived from the human rotavirus strain Wa, was cloned into the yeast shuttle vector pGBKT7. An intestinal cDNA library derived from Caco-2 cells cloned into the yeast shuttle vector pGAD10 was screened for proteins that interact with NSP4. Protein interactions were confirmed in vivo by coimmunoprecipitation and immunohistochemical colocalization. After two-hybrid library screening, we repeatedly isolated cDNAs encoding the extracellular matrix (ECM) protein laminin-beta3 (amino acids [aa] 274 to 878) and a cDNA encoding the ECM protein fibronectin (aa 1755 to 1884). Using deletion mutants of NSP4, we mapped the region of interaction with the ECM proteins between aa 87 and 145. Deletion analysis of laminin-beta3 indicated that the region comprising aa 726 to 875 of laminin-beta3 interacts with NSP4. Interaction of NSP4 with either laminin-beta3 or fibronectin was confirmed by coimmunoprecipitation. NSP4 was present in infected enterocytes and in the basement membrane (BM) of infected neonatal mice and colocalized with laminin-beta3, indicating a physiological interaction. In conclusion, two-hybrid screening with NSP4 yielded two potential target proteins, laminin-beta3 and fibronectin, interacting with the enterotoxin NSP4. The release of NSP4 from the basal side of infected epithelial cells and the subsequent binding to ECM proteins localized at the BM may signify a new mechanism by which rotavirus disease is established.
Collapse
Affiliation(s)
- J A Boshuizen
- Laboratory of Pediatrics, Pediatric Gastroenterology & Nutrition, Erasmus MC, Rm. Ee1571A, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lorrot M, Martin S, Vasseur M. Rotavirus infection stimulates the Cl- reabsorption process across the intestinal brush-border membrane of young rabbits. J Virol 2003; 77:9305-11. [PMID: 12915546 PMCID: PMC187407 DOI: 10.1128/jvi.77.17.9305-9311.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rotavirus is a major cause of infantile gastroenteritis worldwide. However, the mechanisms underlying fluid and electrolyte secretion associated with diarrhea remain largely unknown. We investigated the hypothesis that loss of Cl(-) into the luminal contents during rotavirus infection may be caused by a dysfunction in the chloride absorptive capacity across the intestinal brush-border membrane (BBM). The luminal Cl(-) concentrations in the entire small intestine of young rabbits infected with lapine rotavirus decreased at 1 and 2 days postinfection (dpi), indicating net Cl(-) absorption. At 7 dpi, luminal Cl(-) concentrations were slightly increased, indicating a moderate net Cl(-) secretion. By using a rapid filtration technique, (36)Cl uptake across BBM was quantified by modulating the alkali-metal ion, electrical, chloride, and/or proton gradients. Rotavirus infection caused an identical, 127% +/- 24% increase in all Cl(-) uptake activities (Cl(-)/H(+) symport, Cl(-) conductance, and Cl(-)/anion exchange) observed across the intestinal BBM. The rotavirus activating effects on the symporter started at 1 dpi and persisted up to 7 dpi. Kinetic analyses revealed that rotavirus selectively affected the capacity parameter characterizing the symporter. We report the novel observation that rotavirus infection stimulated the Cl(-) reabsorption process across the intestinal BBM. We propose that the massive Cl(-) reabsorption in villi could partly overwhelm chloride secretion in crypt cells, which possibly increases during rotavirus diarrhea, the resulting imbalance leading to a moderate net chloride secretion.
Collapse
Affiliation(s)
- Mathie Lorrot
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Faculté de Pharmacie, Université de Paris XI, 92296 Châtenay-Malabry, France
| | | | | |
Collapse
|
21
|
Berkova Z, Morris AP, Estes MK. Cytoplasmic calcium measurement in rotavirus enterotoxin-enhanced green fluorescent protein (NSP4-EGFP) expressing cells loaded with Fura-2. Cell Calcium 2003; 34:55-68. [PMID: 12767893 DOI: 10.1016/s0143-4160(03)00022-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The green fluorescent protein (GFP) and its analogs are standard markers of protein expression and intracellular localization of proteins. The fluorescent properties of GFP complicate accurate measurement of intracellular calcium using calcium sensitive fluorophores, which show a great degree of spectral overlap with GFP, or their K(d) values are too high for accurate measurement of subtle changes in cytoplasmic calcium concentrations. Here we describe a simple modification of the standard microscope-based Fura-2 calcium-imaging technique which permits the quantitative measurement of intracellular calcium levels in cells expressing enhanced green fluorescent protein (EGFP) fusion proteins. Longpass emission filtering of the Fura-2 signal in cells expressing an EGFP fusion protein is sufficient to eliminate the EGFP-Fura-2 emission spectra overlap and allows quantitative calibration of intracellular calcium. To validate this technique, we investigated the ability of rotavirus enterotoxin NSP4-EGFP to elevate intracellular calcium levels in mammalian HEK 293 cells. We show here that inducible intracellular expression of NSP4-EGFP fusion protein elevates basal intracellular calcium more than two-fold by a phospholipase C (PLC) independent mechanism.
Collapse
Affiliation(s)
- Z Berkova
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
22
|
Cunliffe NA, Bresee JS, Hart CA. Rotavirus vaccines: development, current issues and future prospects. J Infect 2002; 45:1-9. [PMID: 12217724 DOI: 10.1053/jinf.2002.1012] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The potential benefit of safe and effective rotavirus vaccination in reducing morbidity and especially mortality from rotavirus gastroenteritis among children in developing countries has long been recognised. More recently, the focus of attention shifted to developed countries, where cost-effectiveness analyses justified the routine introduction of rotavirus vaccines into childhood immunisation schedules. The recent withdrawal in the U.S.A. of the first licensed rotavirus vaccine (the tetravalent rhesus reassortant rotavirus vaccine), following investigation into reports of intussusception among a number of vaccinees, has directed attention once more towards rotavirus vaccine use in developing countries. However, issues relating to vaccine safety, efficacy, and cost, remain to be overcome before widespread introduction of rotavirus vaccines can be anticipated.
Collapse
Affiliation(s)
- Nigel A Cunliffe
- Department of Medical Microbiology and Genito-Urinary Medicine, University of Liverpool, Duncan Building, Daulby Street, Liverpool L69 3GA, UK.
| | | | | |
Collapse
|
23
|
Cunliffe NA, Rogerson S, Dove W, Thindwa BDM, Greensill J, Kirkwood CD, Broadhead RL, Hart CA. Detection and characterization of rotaviruses in hospitalized neonates in Blantyre, Malawi. J Clin Microbiol 2002; 40:1534-7. [PMID: 11923390 PMCID: PMC140349 DOI: 10.1128/jcm.40.4.1534-1537.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2001] [Revised: 12/18/2001] [Accepted: 01/19/2002] [Indexed: 11/20/2022] Open
Abstract
In five separate fecal collections spanning three years, group A rotaviruses were detected by enzyme-linked immunosorbent assay in 35 (25%) of 142 specimens obtained from nondiarrheic, hospitalized neonates in Blantyre, Malawi. Molecular characterization of each strain identified, for the first time in neonates, a short electropherotype, genotype P[6], G8 strain type, similar to the dominant, cocirculating community strain detected in symptomatic infants in Blantyre. Partial sequence analysis of the VP4 and NSP4 genes of neonatal and community strains failed to identify changes which could explain the differences in clinical outcome. Neonatal serotype G8 rotaviruses should be considered as potential rotavirus vaccine candidates for use in Malawi.
Collapse
Affiliation(s)
- N A Cunliffe
- Wellcome Trust Research Laboratories, College of Medicine, Universities of Malawi and Liverpool, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
This review focuses on the use and potential of Lactobacillus to prevent infections of the urogenital and intestinal tracts. The presence and dominance of Lactobacillus in the vagina is associated with a reduced risk of bacterial vaginosis and urinary tract infections. The mechanisms appear to involve anti-adhesion factors, by-products such as hydrogen peroxide and bacteriocins lethal to pathogens, and perhaps immune modulation or signaling effects. The instillation of Lactobacillus GR-1 and B-54 or RC-14 strains into the vagina has been shown to reduce the risk of urinary tract infections, and improve the maintenance of a normal flora. Ingestion of these strains into the gut has also been shown to modify the vaginal flora to a more healthy state. In addition, these strains inhibit the growth of intestinal, as well as urogenital pathogens, colonize the gut and protect against infections as shown in mice. Other probiotic strains, such as Lactobacillus GG, have been shown to prevent and treat gastroenteritis caused by rotavirus and bacteria. Given that lactobacilli are not the dominant commensals in a gut which comprises around 10(10) organisms, much work is still needed to define the mechanisms whereby GR-1, RC-14, GG and other strains contribute to health restoration and maintenance. Such critically important studies will require the medical science community to show a willingness to turn away from pharmaceutical remedies as the only solution to health and disease.
Collapse
Affiliation(s)
- Gregor Reid
- Canadian Research and Development Centre for Probiotics, Lawson Health Research Institute, and Department of Microbiology and Immunology at the University of Western Ontario, 268 Grosvenor Street, London, Ontario, N6A 4V2, Canada.
| | | |
Collapse
|
25
|
Abstract
Viruses are important causes of diarrhea. In healthy adults, the main clinical manifestation is acute, self-limited gastroenteritis. Advances in molecular diagnostics have shown that epidemics of acute gastroenteritis most frequently are due to caliciviruses spread through contaminated food or through person-to-person contact. Application of similar technology is needed to make a definitive statement about the role of such candidate viruses as rotavirus, astrovirus, and adenovirus as the cause of nonepidemic acute gastroenteritis in adults. Rarely a previously healthy adult gets acute CMV colitis. CMV and EBV mainly cause diarrhea in immunocompromised patients, however. Advances in prophylaxis and treatment have reduced the frequency and severity of these diseases. Acute infantile gastroenteritis is caused by rotavirus, calcivirus, astrovirus, and adenovirus. These viral diseases of the gut are seen by the physician as routine and rare clinical problems.
Collapse
Affiliation(s)
- R W Goodgame
- Division of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
26
|
Morris AP, Estes MK. Microbes and microbial toxins: paradigms for microbial-mucosal interactions. VIII. Pathological consequences of rotavirus infection and its enterotoxin. Am J Physiol Gastrointest Liver Physiol 2001; 281:G303-10. [PMID: 11447008 DOI: 10.1152/ajpgi.2001.281.2.g303] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rotaviral infection in neonatal animals and young children leads to acute self-limiting diarrhea, but infected adults are mainly asymptomatic. Recently, significant in-roads have been made into our understanding of this disease: both viral infection and virally manufactured nonstructural protein (NSP)4 evoke intracellular Ca(2+) ([Ca(2+)]i) mobilization in native and transformed gastrointestinal epithelial cells. In neonatal mouse pup mucosa models, [Ca(2+)]i elevation leads to age-dependent halide ion movement across the plasma membrane, transepithelial Cl(-) secretion, and, unlike many microbial enterotoxins, initial cyclic nucleotide independence to secretory diarrhea. Similarities between rotavirus infection and NSP4 function suggest that NSP4 is responsible for these enterotoxigenic effects. NSP4-mediated [Ca(2+)]i mobilization may further facilitate diarrhea by signaling through other Ca(2+)-sensitive cellular processes (cation channels, ion and solute transporters) to potentiate fluid secretion while curtailing fluid absorption. Apart from these direct actions in the mucosa at the onset of diarrhea, innate host-mediated defense mechanisms, triggered by either or both viral replication and NSP4-induced [Ca (2+)]i mobilization, sustain the diarrheal response. This secondary component appears to involve the enteric nervous system and may be cyclic nucleotide dependent. Both phases of diarrhea occur in the absence of significant inflammation. Thus age-dependent rotaviral disease represents an excellent experimental paradigm for understanding a noninflammatory diarrhea.
Collapse
Affiliation(s)
- A P Morris
- Department of Integrative Biology, University of Texas at Houston Medical School, Houston, Texas 77030, USA.
| | | |
Collapse
|
27
|
Zhang M, Zeng CQ, Morris AP, Estes MK. A functional NSP4 enterotoxin peptide secreted from rotavirus-infected cells. J Virol 2000; 74:11663-70. [PMID: 11090165 PMCID: PMC112448 DOI: 10.1128/jvi.74.24.11663-11670.2000] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2000] [Accepted: 10/03/2000] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that the nonstructural glycoprotein NSP4 plays a role in rotavirus pathogenesis by functioning as an enterotoxin. One prediction of the mechanism of action of this enterotoxin was that it is secreted from virus-infected cells. In this study, the media of cultured (i) insect cells infected with a recombinant baculovirus expressing NSP4, (ii) monkey kidney (MA104) cells infected with the simian (SA11) or porcine attenuated (OSU-a) rotavirus, and (iii) human intestinal (HT29) cells infected with SA11 were examined to determine if NSP4 was detectable. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis-Western blotting, immunoprecipitation and N-terminal amino acid sequencing identified, in the early media from virus-infected cells, a secreted, cleavage product of NSP4 with an apparent molecular weight of 7,000 that represented amino acids 112 to 175 (NSP4 aa112-175). The secretion of NSP4 aa112-175 was not affected by treatment of cells with brefeldin A but was abolished by treatment with nocodazole and cytochalasin D, indicating that secretion of this protein occurs via a nonclassical, Golgi apparatus-independent mechanism that utilizes the microtubule and actin microfilament network. A partial gene fragment coding for NSP4 aa112-175 was cloned and expressed using the baculovirus-insect cell system. Purified NSP4 aa112-175 increased intracellular calcium mobilization in intestinal cells when added exogenously, and in insect cells when expressed endogenously, similarly to full-length NSP4. NSP4 aa112-175 caused diarrhea in neonatal mice, as did full-length NSP4. These results indicate that NSP4 aa112-175 is a functional NSP4 enterotoxin peptide secreted from rotavirus-infected cells.
Collapse
Affiliation(s)
- M Zhang
- Division of Molecular Virology, Baylor College of Medicine, University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
28
|
Abstract
This review outlines the progress made over the last few years in three chosen areas of intestinal ion transport. In the field of intestinal secretion, research on the secretion of bicarbonate by pancreatic ducts and duodenal epithelia in cystic fibrosis revealed the crucial role of chloride channel (CFTR) in the control of activity of other transporters involved in bicarbonate secretion. In the area of intestinal absorption, studies on the regulation and physiologic roles of epithelial Na(+)/H(+) exchangers confirmed the suspected involvement of recycling in the acute regulation of NHE3 activity and resulted in formulation of new concepts for the roles of NHE3 and NHE2 in the gastrointestinal tract. Finally, the recent discovery of the first known viral enterotoxin revolutionized our understanding of pathomechanisms of secretory diarrhea during viral infections in humans. All of these findings are discussed in the context of their utility to the practicing gastroenterologist.
Collapse
Affiliation(s)
- A J Janecki
- Division of Gastroenterology, Hepatology, and Nutrition, University of Texas Medical School at Houston, 6431 Fannin, 4.234 MSB, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Ruiz MC, Cohen J, Michelangeli F. Role of Ca2+in the replication and pathogenesis of rotavirus and other viral infections. Cell Calcium 2000; 28:137-49. [PMID: 11020376 DOI: 10.1054/ceca.2000.0142] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ca2+ plays a key role in many pathological processes, including viral infections. Rotavirus, the major etiological agent of viral gastroenteritis in children and young animals, provides a useful model to study a number of Ca2+ dependent virus-cell interactions. Rotavirus entry, activation of transcription, morphogenesis, cell lysis, particle release, and the distant action of viral proteins are Ca2+ dependent processes. In the extracellular medium, Ca2+ stabilizes the structure of the viral capsid. During entry into the cell the low cytoplasmic Ca2+ concentration induced the solubilization of the outer protein layer of the capsid and transcriptase activation. Viral protein synthesis modifies Ca2+ homeostasis which, in turn, favours viral morphogenesis and induces cell death. The generation of diarrhea is a multifactorial process involving Ca2+ dependent secretory processes of mediators and water and electrolytes, as well as the induction of cell death in the different cell types that compose the intestinal epithelium. The discovery of the non-structural viral protein NSP4 as a viral enterotoxin and the possible participation of the enteric nervous system in the pathogenesis of diarrhea represent significant advances in its understanding. Ca2+ also plays a role in the replication cycles and pathogenesis of other viral diseases such as poliovirus, Coxsackie virus, cytomegalovirus, vaccinia and measles virus and HIV.
Collapse
Affiliation(s)
- M C Ruiz
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC) Caracas, Venezuela
| | | | | |
Collapse
|