2
|
Kant RJ, Coulombe KLK. Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues. Acta Biomater 2018; 69:42-62. [PMID: 29371132 PMCID: PMC5831518 DOI: 10.1016/j.actbio.2018.01.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/15/2017] [Accepted: 01/15/2018] [Indexed: 12/14/2022]
Abstract
The field of tissue engineering has turned towards biomimicry to solve the problem of tissue oxygenation and nutrient/waste exchange through the development of vasculature. Induction of angiogenesis and subsequent development of a vascular bed in engineered tissues is actively being pursued through combinations of physical and chemical cues, notably through the presentation of topographies and growth factors. Presenting angiogenic signals in a spatiotemporal fashion is beginning to generate improved vascular networks, which will allow for the creation of large and dense engineered tissues. This review provides a brief background on the cells, mechanisms, and molecules driving vascular development (including angiogenesis), followed by how biomaterials and growth factors can be used to direct vessel formation and maturation. Techniques to accomplish spatiotemporal control of vascularization include incorporation or encapsulation of growth factors, topographical engineering, and 3D bioprinting. The vascularization of engineered tissues and their application in angiogenic therapy in vivo is reviewed herein with an emphasis on the most densely vascularized tissue of the human body - the heart. STATEMENT OF SIGNIFICANCE Vascularization is vital to wound healing and tissue regeneration, and development of hierarchical networks enables efficient nutrient transfer. In tissue engineering, vascularization is necessary to support physiologically dense engineered tissues, and thus the field seeks to induce vascular formation using biomaterials and chemical signals to provide appropriate, pro-angiogenic signals for cells. This review critically examines the materials and techniques used to generate scaffolds with spatiotemporal cues to direct vascularization in engineered and host tissues in vitro and in vivo. Assessment of the field's progress is intended to inspire vascular applications across all forms of tissue engineering with a specific focus on highlighting the nuances of cardiac tissue engineering for the greater regenerative medicine community.
Collapse
Affiliation(s)
- Rajeev J Kant
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA.
| |
Collapse
|
3
|
Huang F, Liu Y, Yang X, Che D, Qiu K, Hammock BD, Wang J, Wang MH, Chen J, Huang H. Shexiang Baoxin pills promotes angiogenesis in myocardial infarction rats via up-regulation of 20-HETE-mediated endothelial progenitor cells mobilization. Atherosclerosis 2017. [PMID: 28646793 DOI: 10.1016/j.atherosclerosis.2017.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Therapeutic angiogenesis is a pivotal strategy for ischemic heart disease. The aim of the present study was to determine the effect and molecular mechanism of Shexiang Baoxin pills, a widely-used traditional Chinese medicine for ischemic heart disease, on angiogenesis in a rat model of myocardial infarction (MI). METHODS We used the occlusion of left anterior descending coronary artery of Sprague-Dawley rats as a model of MI. The MI rats were treated with distilled water, Shexiang Baoxin pills, or Shexiang Baoxin pills + HET0016 (a selective blocker of the biosynthesis of 20-hydroxyeicosatetraenoic acid (20-HETE) at 10 mg/kg/day), respectively. Sham-operated rats were used as controls. RESULTS Treatment with Shexiang Baoxin pills increases the level of serum 20-HETE in MI rats, which can be suppressed by HET0016 treatment. Shexiang Baoxin pills shows cardio-protective effects on MI rats, including improving cardiac function, decreasing infarction area, and promoting angiogenesis in peri-infarct area. The protective effects of Shexiang Baoxin pills are partly inhibited by HET0016. Furthermore, Shexiang Baoxin pills enhances the number of circulating endothelial progenitor cells (EPCs) and the expression of the vascular endothelial growth factor (VEGF), based on immunohistochemical analysis, in peri-infarct area of MI rats, which is partly suppressed by HET0016. CONCLUSIONS Shexiang Baoxin pills may partially participate in angiogenesis in MI rats. The protective mechanism of Shexiang Baoxin pills may be mediated via up-regulation of 20-HETE, which promotes EPCs mobilization and VEGF expression.
Collapse
Affiliation(s)
- Feifei Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yang Liu
- Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Department of Cardiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Xia Yang
- Department of Biochemistry, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, China; Key Laboratory of Functional Molecules from Marine Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou, China
| | - Di Che
- Key Laboratory of Functional Molecules from Marine Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou, China; Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Kaifeng Qiu
- Department of Pharmacy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Research Center, University of California, Davis, USA
| | - Jingfeng Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mong-Heng Wang
- Department of Physiology, Augusta University, Augusta, GA 30912, USA
| | - Jie Chen
- Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China; Department of Radiation Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Hui Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Maeda K, Alarcon EI, Suuronen EJ, Ruel M. Optimizing the host substrate environment for cardiac angiogenesis, arteriogenesis, and myogenesis. Expert Opin Biol Ther 2017; 17:435-447. [PMID: 28274146 DOI: 10.1080/14712598.2017.1293038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The diseased host milieu, such as endothelial dysfunction (ED), decreased NO bioavailability, and ischemic/inflammatory post-MI environment, hamper the clinical success of existing cardiac regenerative therapies. Area covered: In this article, current strategies including pharmacological and nonpharmacological approaches for improving the diseased host milieu are reviewed. Specifically, the authors provide focus on: i) the mechanism of ED in patients with cardiovascular diseases, ii) the current results of ED improving strategies in pre-clinical and clinical studies, and iii) the use of biomaterials as a novel modulator in damaged post-MI environment. Expert opinion: Adjunct therapies which improve host endothelial function have demonstrated promising outcomes, potentially overcoming disappointing results of cell therapy in human studies. In the future, elucidation of the interactions between the host tissue and therapeutic agents, as well as downstream signaling pathways, will be the next challenges in enhancing regenerative therapy. More careful investigations are also required to establish these agents' safety and efficacy for wide usage in humans.
Collapse
Affiliation(s)
- Kay Maeda
- a Divisions of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , ON , Canada
| | - Emilio I Alarcon
- a Divisions of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , ON , Canada
| | - Erik J Suuronen
- a Divisions of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , ON , Canada
| | - Marc Ruel
- a Divisions of Cardiac Surgery , University of Ottawa Heart Institute , Ottawa , ON , Canada
| |
Collapse
|
5
|
Fan D, Takawale A, Shen M, Wang W, Wang X, Basu R, Oudit GY, Kassiri Z. Cardiomyocyte A Disintegrin And Metalloproteinase 17 (ADAM17) Is Essential in Post-Myocardial Infarction Repair by Regulating Angiogenesis. Circ Heart Fail 2015; 8:970-9. [PMID: 26136458 DOI: 10.1161/circheartfailure.114.002029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 06/17/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND A disintegrin and metalloproteinase 17 (ADAM17) is a membrane-bound enzyme that mediates shedding of many membrane-bound molecules, thereby regulating multiple cellular responses. We investigated the role of cardiomyocyte ADAM17 in myocardial infarction (MI). METHODS AND RESULTS Cardiomyocyte-specific ADAM17 knockdown mice (ADAM17(flox/flox)/α-MHC-Cre; f/f/Cre) and parallel controls (ADAM17(flox/flox); f/f) were subjected to MI by ligation of the left anterior descending artery. Post MI, f/f/Cre mice showed compromised survival, higher rates of cardiac rupture, more severe left ventricular dilation, and suppressed ejection fraction compared with parallel f/f-MI mice. Ex vivo ischemic injury (isolated hearts) resulted in comparable recovery in both genotypes. Myocardial vascular density (fluorescent-labeled lectin perfusion and CD31 immunofluorescence staining) was significantly lower in the infarct areas of f/f/Cre-MI compared with f/f-MI mice. Activation of vascular endothelial growth factor receptor 2 (VEGFR2), its mRNA, and total protein levels were reduced in infarcted myocardium in ADAM17 knockdown mice. Transcriptional regulation of VEGFR2 by ADAM17 was confirmed in cocultured cardiomyocyte-fibroblast as ischemia-induced VEGFR2 expression was blocked by ADAM17-siRNA. Meanwhile, ADAM17-siRNA did not alter VEGFA bioavailability in the conditioned media. ADAM17 knockdown mice (f/f/Cre-MI) exhibited reduced nuclear factor-κB activation (DNA binding) in the infarcted myocardium, which could underlie the suppressed VEGFR2 expression in these hearts. Post MI, inflammatory response was not altered by ADAM17 downregulation. CONCLUSIONS This study highlights the key role of cardiomyocyte ADAM17 in post-MI recovery by regulating VEGFR2 transcription and angiogenesis, thereby limiting left ventricular dilation and dysfunction. Therefore, ADAM17 upregulation, within the physiological range, could provide protective effects in ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Dong Fan
- From the Department of Physiology (D.F., A.T., M.S., X.W., Z.K.), Division of Cardiology, Department of Medicine (W.W., R.B., G.Y.O.), Cardiovascular Research Center (D.F., A.T., M.S., X.W., Z.K., W.W., R.B.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Abhijit Takawale
- From the Department of Physiology (D.F., A.T., M.S., X.W., Z.K.), Division of Cardiology, Department of Medicine (W.W., R.B., G.Y.O.), Cardiovascular Research Center (D.F., A.T., M.S., X.W., Z.K., W.W., R.B.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mengcheng Shen
- From the Department of Physiology (D.F., A.T., M.S., X.W., Z.K.), Division of Cardiology, Department of Medicine (W.W., R.B., G.Y.O.), Cardiovascular Research Center (D.F., A.T., M.S., X.W., Z.K., W.W., R.B.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Wang Wang
- From the Department of Physiology (D.F., A.T., M.S., X.W., Z.K.), Division of Cardiology, Department of Medicine (W.W., R.B., G.Y.O.), Cardiovascular Research Center (D.F., A.T., M.S., X.W., Z.K., W.W., R.B.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Xiuhua Wang
- From the Department of Physiology (D.F., A.T., M.S., X.W., Z.K.), Division of Cardiology, Department of Medicine (W.W., R.B., G.Y.O.), Cardiovascular Research Center (D.F., A.T., M.S., X.W., Z.K., W.W., R.B.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ratnadeep Basu
- From the Department of Physiology (D.F., A.T., M.S., X.W., Z.K.), Division of Cardiology, Department of Medicine (W.W., R.B., G.Y.O.), Cardiovascular Research Center (D.F., A.T., M.S., X.W., Z.K., W.W., R.B.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- From the Department of Physiology (D.F., A.T., M.S., X.W., Z.K.), Division of Cardiology, Department of Medicine (W.W., R.B., G.Y.O.), Cardiovascular Research Center (D.F., A.T., M.S., X.W., Z.K., W.W., R.B.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- From the Department of Physiology (D.F., A.T., M.S., X.W., Z.K.), Division of Cardiology, Department of Medicine (W.W., R.B., G.Y.O.), Cardiovascular Research Center (D.F., A.T., M.S., X.W., Z.K., W.W., R.B.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
7
|
Dedkov EI, Christensen LP, Weiss RM, Tomanek RJ. Reduction of heart rate by chronic β1-adrenoceptor blockade promotes growth of arterioles and preserves coronary perfusion reserve in postinfarcted heart. Am J Physiol Heart Circ Physiol 2005; 288:H2684-93. [PMID: 15681710 DOI: 10.1152/ajpheart.01047.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adequate growth of coronary vasculature in the remaining left ventricular (LV) myocardium after myocardial infarction (post-MI) is a crucial factor for myocyte survival and performance. We previously demonstrated that post-MI coronary angiogenesis can be stimulated by bradycardia induced with the ATP-sensitive K+ channel antagonist alinidine. In this study, we tested the hypothesis that heart rate reduction with β-blockade may also induce coronary growth in the post-MI heart. Transmural MI was induced in 12-mo-old male Sprague-Dawley rats by occlusion of the left anterior descending coronary artery. Bradycardia was induced by administration of the β-adrenoceptor blocker atenolol (AT) via drinking water (30 mg/day). Three groups of rats were compared: 1) control/sham (C/SH), 2) MI, and 3) MI + AT. In the MI + AT rats, heart rate was consistently reduced by 25–28% compared with C/SH rats. At 4 wk after left anterior descending coronary ligation, infarct size was similar in MI and MI + AT rats (67.1 and 61.5%, respectively), whereas a greater ventricular hypertrophy occurred in bradycardic rats, as indicated by a higher ventricular weight-to-body weight ratio (3.4 ± 0.1 vs. 2.8 ± 0.1 mg/g in MI rats). Analysis of LV function revealed a smaller drop in ejection fraction in the MI + AT than in the MI group (∼24 vs. ∼35%). Furthermore, in MI + AT rats, maximal coronary conductance and coronary perfusion reserve were significantly improved compared with the MI group. The better myocardial perfusion indexes in MI + AT rats were associated with a greater increase in arteriolar length density than in the MI group. Thus chronic reduction of heart rate induced with β-selective blockade promotes growth of coronary arterioles and, thereby, facilitates regional myocardial perfusion in post-MI hearts.
Collapse
Affiliation(s)
- Eduard I Dedkov
- Dept. of Anatomy and Cell Biology, Carver College of Medicine, 1-402 Bowen Science Bldg., Univ. of Iowa, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|