1
|
Paramitha D, Chabaud S, Bolduc S, Hermawan H. Biological Assessment of Zn-Based Absorbable Metals for Ureteral Stent Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3325. [PMID: 31614757 PMCID: PMC6829415 DOI: 10.3390/ma12203325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/01/2019] [Accepted: 10/09/2019] [Indexed: 01/02/2023]
Abstract
The use of ureteral stents to relieve urinary tract obstruction is still challenged by the problems of infection, encrustation, and compression, leading to the need for early removal procedures. Biodegradable ureteral stents, commonly made of polymers, have been proposed to overcome these problems. Recently, absorbable metals have been considered as potential materials offering both biodegradation and strength. This work proposed zinc-based absorbable metals by firstly evaluating their cytocompatibility toward normal primary human urothelial cells using 2D and 3D assays. In the 2D assay, the cells were exposed to different concentrations of metal extracts (i.e., 10 mg/mL of Zn-1Mg and 8.75 mg/mL of Zn-0.5Al) for up to 3 days and found that their cytoskeletal networks were affected but were recovered at day 3, as observed by immunofluorescence. In the 3D ureteral wall tissue construct, the cells formed a multilayered urothelium, as found in native tissue, with the presence of tight junctions at the superficial layer and laminin at the basal layer, indicating a healthy tissue condition even with the presence of the metal samples for up to 7 days of exposure. The basal cells attached to the metal surface as seen in a natural spreading state with pseudopodia and fusiform morphologies, indicating that the metals were non-toxic.
Collapse
Affiliation(s)
- Devi Paramitha
- Department of Mining, Metallurgical and Materials Engineering & CHU de Québec Research Center, Laval University, Quebec City, QC G1V 0A6, Canada.
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center, Laval University, Quebec City, QC G1J 1Z4, Canada.
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center, Laval University, Quebec City, QC G1J 1Z4, Canada.
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center, Laval University, Quebec City, QC G1J 1Z4, Canada.
| | - Hendra Hermawan
- Department of Mining, Metallurgical and Materials Engineering & CHU de Québec Research Center, Laval University, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|
2
|
Bunimovich-Mendrazitsky S, Pisarev V, Kashdan E. Modeling and simulation of a low-grade urinary bladder carcinoma. Comput Biol Med 2015; 58:118-29. [DOI: 10.1016/j.compbiomed.2014.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/26/2014] [Indexed: 10/24/2022]
|
3
|
Zhidkova OV, Petrov NS, Popov BV. Preparation and characteristics of growth and marker properties of urinary bladder mesenchymal stem cells. J EVOL BIOCHEM PHYS+ 2013. [DOI: 10.1134/s0022093013010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Zhang Y, Atala A. Urothelial cell culture: stratified urothelial sheet and three-dimensional growth of urothelial structure. Methods Mol Biol 2013; 945:383-99. [PMID: 23097119 DOI: 10.1007/978-1-62703-125-7_23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Urothelial cells line the urinary tract, including the renal pelvis, ureters, bladder, superior urethra, and the central ducts of the prostate. They are highly specialized epithelial cell types possessing unique features, imparting important functional roles in the urinary system. They act as a permeability barrier and protect underlying muscle tissues from the caustic effects of urine while also expanding with bladder filling to adjust urine pressures. The multilayered urothelium is typically structured with differentiated, mature surface cells and less mature basal cells. The basal cell layer contains tissue-specific stem cells able to self-renew for the lifetime of the mammal and also produces a pool of maturing cells for tissue homeostasis. Maintaining regenerative basal cells in a culture facilitates urothelial cell growth in vitro. Additionally, epithelial-mesenchymal communication, epithelial-matrix interactions, and cytokines/growth factors are required to maintain the normal structure and function of mature urothelial cells in vitro and to induce stem cell differentiation into urothelial cells. These cultures are useful to study the biology and physiology of the urinary tract, particularly for the development of cell-based tissue engineering strategies in urology. This chapter describes methods for the isolation of urothelial cells and their maintenance in monolayer culture, and methods for the production of multilayer urothelial cell sheets and three-dimensional cocultures of urothelial and mesenchymal cells.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Urology, Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
5
|
Abstract
This chapter reviews the use of urothelial cells as a means to enhance tissue regeneration and wound healing in urinary tract system. It addresses the properties of urothelial cells, including their role as a permeability barrier to protect underlying muscle tissue from the caustic effects of urine and as one of the main cell types, along with smooth muscle cells, that are used in urethral or bladder tissue engineering today. This description includes a general overview of various isolation techniques and culture methods that have been developed to improve urinary tract reconstruction in vivo and aid the characterization of growth factor expression in vitro. The chapter then describes various applications using urothelial cells, including production of multilayer urothelial sheets, tissue engineered bladder mucosa, tissue engineered urethra, and tissue engineered bladder. It also outlines the advantages of sandwich and layered coculture of these cells and the effects of epithelial-stromal cell interactions during tissue regeneration or wound healing processes in the urinary tract.
Collapse
|
6
|
Abstract
Urinary diversion after radical cystectomy in patients with bladder cancer normally takes the form of an ileal conduit or neobladder. However, such diversions are associated with a number of complications including increased risk of infection. A plausible alternative is the construction of a neobladder (or bladder tissue) in vitro using autologous cells harvested from the patient. Biomaterials can be used as a scaffold for naturally occurring regenerative stem cells to latch onto to regrow the bladder smooth muscle and epithelium. Such engineered tissues show great promise in urologic tissue regeneration, but are faced with a number of challenges. For example, the differentiation mesenchymal stem cells from various sources can be difficult and the smooth muscle cells formed do not precisely mimic the natural cells.
Collapse
|
7
|
Eastman R, Leaf EM, Zhang D, True LD, Sweet RM, Seidel K, Siebert JR, Grady R, Mitchell ME, Bassuk JA. Fibroblast growth factor-10 signals development of von Brunn's nests in the exstrophic bladder. Am J Physiol Renal Physiol 2010; 299:F1094-110. [PMID: 20719973 PMCID: PMC2980411 DOI: 10.1152/ajprenal.00056.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 08/16/2010] [Indexed: 12/29/2022] Open
Abstract
von Brunn's nests have long been recognized as precursors of benign lesions of the urinary bladder mucosa. We report here that von Brunn's nests are especially prevalent in the exstrophic bladder, a birth defect that predisposes the patient to formation of bladder cancer. Cells of von Brunn's nest were found to coalesce into a stratified, polarized epithelium which surrounds itself with a capsule-like structure rich in types I, III, and IV collagen. Histocytochemical analysis and keratin profiling demonstrated that nested cells exhibited a phenotype similar, but not identical, to that of urothelial cells of transitional epithelium. Immunostaining and in situ hybridization analysis of exstrophic tissue demonstrated that the FGF-10 receptor is synthesized and retained by cells of von Brunn's nest. In contrast, FGF-10 is synthesized and secreted by mesenchymal fibroblasts via a paracrine pathway that targets basal epithelial cells of von Brunn's nests. Small clusters of 10pRp cells, positive for both FGF-10 and its receptor, were observed both proximal to and inside blood vessels in the lamina propria. The collective evidence points to a mechanism where von Brunn's nests develop under the control of the FGF-10 signal transduction system and suggests that 10pRp cells may be the original source of nested cells.
Collapse
Affiliation(s)
- Rocky Eastman
- Program in Human Urothelial Biology, Center for Tissue and Cell Sciences, Seattle Children's Research Institute, 1900 9th Ave., Mailstop C9S-5, Seattle, WA 98101, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wright KJ, Hultgren SJ. Sticky fibers and uropathogenesis: bacterial adhesins in the urinary tract. Future Microbiol 2006; 1:75-87. [PMID: 17661687 DOI: 10.2217/17460913.1.1.75] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adhesins mediate the introduction of bacteria to the host in the sometimes life-long relationship of uropathogenic Esherichia coli (UPEC) and the human urinary tract. As a class of extracellular proteins, adhesins enable bacteria to adhere to and, in some cases, invade host tissue; adhesins render UPEC virulent and permit host colonization. Adhesin receptor interactions at the host interface determine tissue tropism and disease progression in that niche, with each adhesin preferring unique sites within the urinary tract. This review focuses on known adhesins implicated in uropathogenesis, the structural basis of tissue tropism, postinvasion intracellular replication, current therapeutic design strategies, and newly discovered fimbrial gene clusters that may play a role in urinary tract infections.
Collapse
Affiliation(s)
- Kelly J Wright
- Washington University School of Medicine, Department of Molecular Microbiology, Washington University School of Medicine, MO 63110, USA.
| | | |
Collapse
|
9
|
Hill GE, Fenwick S, Matthews BJ, Chivers RA, Southgate J. The effect of low-intensity pulsed ultrasound on repair of epithelial cell monolayers in vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2005; 31:1701-6. [PMID: 16344132 DOI: 10.1016/j.ultrasmedbio.2005.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 07/26/2005] [Accepted: 08/04/2005] [Indexed: 05/05/2023]
Abstract
Low intensity pulsed ultrasound (LIPUS) is widely used to accelerate tissue regeneration following injury, but the biological mechanisms of this effect are poorly understood. An in vitro model of epithelial wound healing was used to investigate the effect of LIPUS on the reepithelialization of scrape wounds in normal human urothelial (NHU) cell monolayers. The effects of clinical doses of ultrasound treatment on NHU cell growth and migration were investigated in cells grown under optimal conditions, without growth supplements and in media containing low vs. physiological calcium concentrations. No differences in cell growth or migration were observed. We conclude that there is no direct effect upon uro-epithelial regeneration by therapeutic ultrasound in vitro and suggest that any stimulation of epithelial wound repair in vivo may occur indirectly, for example by modulating the extracellular matrix composition and/or production of paracrine factors by the stroma.
Collapse
Affiliation(s)
- Gemma E Hill
- The Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York, UK
| | | | | | | | | |
Collapse
|
10
|
Sen B, Wang A, Hester SD, Robertson JL, Wolf DC. Gene expression profiling of responses to dimethylarsinic acid in female F344 rat urothelium. Toxicology 2005; 215:214-26. [PMID: 16122865 DOI: 10.1016/j.tox.2005.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 07/08/2005] [Accepted: 07/11/2005] [Indexed: 11/16/2022]
Abstract
Gene expression profiling has been shown to be useful for identifying underlying mechanisms of toxicity, determining patterns of biological response, and elucidating candidate markers of exposure and response. Inorganic arsenic (iAs) is a human carcinogen and epidemiologic evidence implicates it in the development of urinary bladder cancer. Dimethylarsinic acid (DMA), the major excreted metabolite of iAs in humans, is a known rat bladder carcinogen. To examine the changes associated with DMA exposure, microarray analysis of the urothelium was performed in female F344 rats exposed to non-toxic and toxic doses of DMA in their drinking water for 28 days. A novel method for isolating predominantly urothelial cells was developed. Gene expression profiling of the urothelium using a custom 2-dye spotted array revealed that DMA treatment modulated the expression of transcripts of genes that regulate apoptosis, cell cycle regulation and the oxidative stress response. Expression of genes mapping to pathways involved in cancer control processes were also altered after DMA exposure. Morphological data suggested a dose dependent increase in cellular toxicity. Significant changes in differential gene expression were present after all treatments event at doses where standard toxicological responses were not detectable. The greatest perturbation in gene expression was present in rats after treatment with 40 ppm DMA. Doses which produced no histologic or ultrastructural evidence of toxicity (non-toxic) could be differentiated from toxic doses based on the expression of a subset of genes, which control cell signaling and the stress response. These reported changes in gene expression show similarities between the mechanisms of action of DMA in vivo and those previously described for iAs in vitro. These data illustrate the utility of transcriptional profiling and its potential in predicting key mechanistic pathways involved in toxicity and as a time efficient tool to inform the mode of action analysis in risk assessment.
Collapse
Affiliation(s)
- Banalata Sen
- US Environmental Protection Agency, National Health and Environmental Effects Laboratory, Md B143-06, 109 TW Alexander Drive, Research Triangle Park, NC 27711, USA.
| | | | | | | | | |
Collapse
|
11
|
Maurer S, Feil G, Stenzl A. In vitro stratifiziertes Urothelium und seine Bedeutung für die rekonstruktive Urologie. Urologe A 2005; 44:738-42. [PMID: 15952014 DOI: 10.1007/s00120-005-0847-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
There are two main objectives regarding tissue engineering in reconstructive urology: (1) to provide the surgeon with autologous tissue for urogenital reconstructive purposes and (2) to create the framework for experimental investigations to better understand the structure and function of the tissues involved. In the last years urothelial cell culture has become a routine laboratory technique. There is sufficient cellular output after isolation and propagation to seed cells as single cell suspensions on biodegradable matrices for the construction of cell-matrix implants. In recent publications attention was directed toward using established primary cell cultures for in vitro stratification of multilayered urothelial sheets. Urothelial sheets have been used quite successfully for covering acellular matrices for bladder augmentation in dog and minipig models. However, up to now there has been no clinical application in humans of urothelial sheets generated in vitro. Here we review facts about the different strategies for generating multilayered urothelial sheets.
Collapse
Affiliation(s)
- S Maurer
- Labor für Tissue Engineering, Klinik für Urologie, Eberhard-Karls-Universität, Tübingen.
| | | | | |
Collapse
|
12
|
Romih R, Korosec P, de Mello W, Jezernik K. Differentiation of epithelial cells in the urinary tract. Cell Tissue Res 2005; 320:259-68. [PMID: 15778856 DOI: 10.1007/s00441-004-1005-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 09/14/2004] [Indexed: 10/25/2022]
Abstract
Uroplakins, cytokeratins and the apical plasma membrane were studied in the epithelia of mouse urinary tract. In the simple epithelium covering the inner medulla of the renal pelvis, no uroplakins or cytokeratin 20 were detected and cells had microvilli on their apical surface. The epithelium covering the inner band of the outer medulla became pseudostratified, with the upper layer consisting of large cells with stalks connecting them to the basal lamina. Uroplakins and cytokeratin 20 were not expressed in these cells. However, some superficial cells appeared without connections to the basal lamina; these cells expressed uroplakins Ia, Ib, II and III and cytokeratin 20, they contained sparse small uroplakin-positive cytoplasmic vesicles and their apical surface showed both microvilli and ridges. Cytokeratin 20 was seen as dots in the cytoplasm. This epithelium therefore showed partial urothelial differentiation. The epithelium covering the outer band of the outer medulla gradually changed from a two-layered to a three-layered urothelium with typical umbrella cells that contained all four uroplakins. Cytokeratin 20 was organized into a complex network. The epithelium possessed an asymmetric unit membrane at the apical cell surface and fusiform vesicles. Umbrella cells were also observed in the ureter and urinary bladder. In males and females, the urothelium ended in the bladder neck and was continued by a non-keratinized stratified epithelium in the urethra in which no urothelial cell differentiation markers were detected. We thus show here the expression, distribution and organization of specific proteins associated with the various cell types in the urinary tract epithelium.
Collapse
Affiliation(s)
- Rok Romih
- Medical faculty, Institute of Cell Biology, Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
13
|
Anderson GG, Martin SM, Hultgren SJ. Host subversion by formation of intracellular bacterial communities in the urinary tract. Microbes Infect 2004; 6:1094-101. [PMID: 15380779 DOI: 10.1016/j.micinf.2004.05.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Urinary tract infections pose a serious health threat with respect to antibiotic resistance and high recurrence rates. While the host robustly responds to bacterial infiltration into the bladder, uropathogenic Escherichia coli can survive the onslaught to persist for months after initially infecting. To accomplish this feat, uropathogenic E. coli forms intracellular bacterial communities, with many biofilm-like properties, within the bladder epithelium. These communities may allow bacteria to subvert host defenses and form a persistent reservoir in the bladder.
Collapse
Affiliation(s)
- Gregory G Anderson
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8230, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
14
|
Walker DC, Hill G, Wood SM, Smallwood RH, Southgate J. Agent-Based Computational Modeling of Wounded Epithelial Cell Monolayers. IEEE Trans Nanobioscience 2004; 3:153-63. [PMID: 15473067 DOI: 10.1109/tnb.2004.833680] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Computational modeling of biological systems, or in silico biology, is an emerging tool for understanding structure and order in biological tissues. Computational models of the behavior of epithelial cells in monolayer cell culture have been developed and used to predict the healing characteristics of scratch wounds made to urothelial cell cultures maintained in low- and physiological [Ca2+] environments. Both computational models and in vitro experiments demonstrated that in low exogenous [Ca2+], the closure of 500-microm scratch wounds was achieved primarily by cell migration into the denuded area. The wound healing rate in low (0.09 mM) [Ca2+] was approximately twice as rapid as in physiological (2 mM) [Ca2+]. Computational modeling predicted that in cell cultures that are actively proliferating, no increase in the fraction of cells in the S-phase would be expected, and this conclusion was supported experimentally in vitro by bromodeoxyuridine incorporation assay. We have demonstrated that a simple rule-based model of cell behavior, incorporating rules relating to contact inhibition of proliferation and migration, is sufficient to qualitatively predict the calcium-dependent pattern of wound closure observed in vitro. Differences between the in vitro and in silico models suggest a role for wound-induced signaling events in urothelial cell cultures.
Collapse
Affiliation(s)
- D C Walker
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK
| | | | | | | | | |
Collapse
|
15
|
Varley CL, Stahlschmidt J, Smith B, Stower M, Southgate J. Activation of peroxisome proliferator-activated receptor-gamma reverses squamous metaplasia and induces transitional differentiation in normal human urothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1789-98. [PMID: 15111325 PMCID: PMC1615665 DOI: 10.1016/s0002-9440(10)63737-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We observed that in urothelium, both cornifying and noncornifying forms of squamous metaplasia are accompanied by changes in the localization of the nuclear hormone receptors, peroxisome proliferator activated receptor gamma (PPAR-gamma) and retinoid X receptor (RXR-alpha). To obtain objective evidence for a role for PPAR-gamma-mediated signaling in urothelial differentiation, we examined expression of the cytokeratin isotypes CK13, CK20, and CK14 as indicators of transitional, terminal transitional, and squamous differentiation, respectively, in cultures of normal human urothelial cells. In control culture conditions, normal human urothelial cells showed evidence of squamous differentiation (CK14+, CK13-, CK20-). Treatment with the high-affinity PPAR-gamma agonist, troglitazone (TZ), resulted in gain of CK13 and loss of CK14 protein expression. The effect of TZ was significantly augmented when the autocrine-stimulated epidermal growth factor receptor pathway was inhibited and this resulted in induction of CK20 expression. The RXR-specific inhibitors PA452, HX531, and HX603 inhibited the TZ-induced CK13 expression, supporting a role for RXR in the induction of CK13 expression. Thus, signaling through PPAR-gamma can mediate transitional differentiation of urothelial cells and this is modulated by growth regulatory programs.
Collapse
Affiliation(s)
- Claire Lucy Varley
- Department of Biology, Jack Birch Unit of Molecular Carcinogenesis, University of York, York, United Kingdom
| | | | | | | | | |
Collapse
|
16
|
Fraser M, Thomas DF, Pitt E, Harnden P, Trejdosiewicz LK, Southgate J. A surgical model of composite cystoplasty with cultured urothelial cells: a controlled study of gross outcome and urothelial phenotype. BJU Int 2004; 93:609-16. [PMID: 15008741 DOI: 10.1111/j.1464-410x.2003.04675.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES To study the outcome of composite cystoplasty using cultured urothelial cells combined with de-epithelialized colon or uterus in a porcine surgical model, using appropriate controls, and to characterize the neo-epithelium created by composite cystoplasty. MATERIALS AND METHODS Urothelial cells were isolated and propagated in vitro from open bladder biopsies taken from nine female minipigs. Cohesive sheets of confluent urothelial cells were transferred to polyglactin carrier meshes and sutured to de-epithelialized autologous colon in four animals and de-epithelialized autologous uterus in five. These composite segments were then used for augmentation cystoplasty. Conventional colocystoplasty, de-epithelialized colocystoplasty and sham operations were carried out in six control animals. After killing the animals at approximately 90 days the bladders were removed for examination and immunohistochemical analysis, using a panel of antibodies against cytokeratins and urothelial differentiation-associated antigens. RESULTS Macroscopically, the bladders augmented with composite segments derived from uterine muscle had no evidence of shrinkage or contracture. Histological analysis showed that in four of five composite uterocystoplasties, the neo-urothelium was stratified and had a transitional morphology, although in some areas coverage was incomplete. Immunohistochemical analysis showed evidence of squamous differentiation in both native and augmented segments. All composite and de-epithelialized colonic segments showed significant contraction with poor urothelial coverage, reflecting the unsuitability of the thin-walled porcine colon for de-epithelialization. CONCLUSIONS The functional and macroscopic outcome of bladder augmentation with a composite derived from cultured urothelium and de-epithelialized smooth muscle of uterine origin endorses the feasibility of composite cystoplasty.
Collapse
Affiliation(s)
- M Fraser
- Department of Paediatric Urology, Cancer Research UK Clinical Centre, St. James's University Hospital, Leeds, UK
| | | | | | | | | | | |
Collapse
|
17
|
Southgate J, Cross W, Eardley I, Thomas DFM, Trejdosiewicz LK. Bladder reconstruction--from cells to materials. Proc Inst Mech Eng H 2003; 217:311-6. [PMID: 12885202 DOI: 10.1243/095441103322060776] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Surgical reconstruction of the urinary bladder is performed on patients of all ages for a diverse range of conditions, including congenital abnormalities, bladder dysfunction, trauma and cancer. The most common material utilized to augment or replace the bladder during these procedures is a segment of the patient's own intestine. However, this procedure ('enterocytoplasty') is associated with significant clinical complications that arise due to the exposure of the epithelial lining of the intestine to urine. A number of alternative approaches are being actively developed to find a practical and functional substitute for native bladder tissue. These range from 'composite enterocystoplasty', where the de-epithelialized intestine wall is lined with bladder epithelial cells that have been propagated in vitro, to augmenting the urinary system with natural or synthetic biomaterials that may incorporate in vitro-propagated cells. However, if tissue-engineered products are to have therapeutic application in bladder reconstruction, a number of issues remain to be addressed; these issues are discussed briefly below.
Collapse
Affiliation(s)
- J Southgate
- Jack Birch Unit of Molecular Carcinogenesis, University of York, York, UK
| | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- W R Cross
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, Heslington, York, and Department of Urology, St James's University Hospital, Leeds, UK
| | | | | |
Collapse
|
19
|
Brown AL, Farhat W, Merguerian PA, Wilson GJ, Khoury AE, Woodhouse KA. 22 week assessment of bladder acellular matrix as a bladder augmentation material in a porcine model. Biomaterials 2002; 23:2179-90. [PMID: 11962659 DOI: 10.1016/s0142-9612(01)00350-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies on the reconstruction of porcine bladder using bladder acellular matrix allograft (BAMA) have indicated positive preliminary results with respect to graft shrinkage and cellular repopulation. The current study was conducted to investigate the feasibility of using BAMA in a similar model of bladder reconstruction out to longer time frames (22 weeks). At predetermined time points, the macroscopic, histological and mechanical properties of explanted native and BAMA tissues were evaluated and compared. Macroscopically, contracture of the BAMA was observed. The peripheral regions of the grafts experienced extensive cellular repopulation. Towards the centre however, all grafts were consistently devoid of organized smooth muscle bundles and a well-developed urothelium. An alteration in both the amount and organization of collagen was also observed within this region. Significant differences (p < 0.05) in the rupture strain and the elastic modulus of the BAMA compared to native bladder tissue appear to correlate with macroscopic graft contracture as well as the fibroproliferative tissue response of the matrix.
Collapse
Affiliation(s)
- A L Brown
- Department of Chemical Engineering and Applied Chemistry, Institute for Biomaterials and Biomedical Engineering, University of Toronto, Ont., Canada
| | | | | | | | | | | |
Collapse
|
20
|
Diggle CP, Pitt E, Trejdosiewicz LK, Southgate J. Effects of long-chain fatty acids on human urothelial cells in organ culture. Prostaglandins Leukot Essent Fatty Acids 2000; 62:249-52. [PMID: 10882190 DOI: 10.1054/plef.2000.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It has been suggested that tumour-derived cells are differentially sensitive to the anti-proliferative and cytotoxic effects of long chain n-3 and n-6 polyunsaturated fatty acids (PuFAs). We have previously shown that PuFAs are also growth suppressive to highly proliferative normal human urinary bladder uro-epithelial (NHU) cells grown in monolayer culture. To determine if the effects on NHU cells are directly related to the proliferative index, we have studied the effects of long chain fatty acids in a bladder organ culture system, where proliferation and differentiation of the urothelium is under homeostatic control. A 50 microM concentration of fatty acids was chosen as this concentration of PuFA was profoundly growth inhibitory to NHU cells in monolayer culture. In organ culture, 50 microM PuFAs had no detectable effect on the proliferation or on the preservation of urothelial differentiated histioarchitecture, as assessed using a panel of phenotypic markers. These results suggest that the effects of PuFA may be modulated by the tissue microenvironment.
Collapse
Affiliation(s)
- C P Diggle
- Jack Birch Research Unit, University of York, UK
| | | | | | | |
Collapse
|
21
|
Lobban ED, Smith BA, Hall GD, Harnden P, Roberts P, Selby PJ, Trejdosiewicz LK, Southgate J. Uroplakin gene expression by normal and neoplastic human urothelium. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:1957-67. [PMID: 9846985 PMCID: PMC1866332 DOI: 10.1016/s0002-9440(10)65709-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
cDNA sequences for human uroplakins UPIa, UPIb, UPII, and UPIII were cloned and used to investigate uroplakin transcription by normal and neoplastic urothelial cells. Normal urothelium expressed mRNA for all four uroplakins, although UPIII could be detected only by ribonuclease protection assay. By in situ hybridization, UPIa and UPII were confined to superficial cells and UPIb was also expressed by intermediate cells. Cultured normal human urothelial cells showed a proliferative basal/intermediate cell phenotype and constitutive expression of UPIb only. Uroplakin expression by transitional cell carcinoma cell lines was related to their differentiated phenotype in vitro. RT4 cells expressed all uroplakins, VM-CUB-3 expressed three uroplakins, RT112 and HT1376 cells expressed only UPIb in high abundance, and COLO232, KK47, and EJ cells had no detectable expression. These results correlated with patterns of uroplakin expression in tumors. UPIa and UPII were detected superficially only in well differentiated transitional cell carcinoma papillae. UPIb was positive in seven of nine and overexpressed in five of nine noninvasive transitional cell carcinomas and was also present in four of eight invasive transitional cell carcinomas. Lymph node metastases retained the same pattern of UPIb expression as the primary tumor. Unlike the three differentiation-regulated uroplakins, UPIb may have an alternative role in urothelial cell/tissue processes.
Collapse
Affiliation(s)
- E D Lobban
- ICRF Cancer Medicine Research Unit, St. James's University Hospital, Leeds, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|