1
|
Herrera-Rincon C, Panetsos F. Substitution of natural sensory input by artificial neurostimulation of an amputated trigeminal nerve does not prevent the degeneration of basal forebrain cholinergic circuits projecting to the somatosensory cortex. Front Cell Neurosci 2014; 8:385. [PMID: 25452715 PMCID: PMC4231972 DOI: 10.3389/fncel.2014.00385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 10/29/2014] [Indexed: 11/13/2022] Open
Abstract
Peripheral deafferentation downregulates acetylcholine (ACh) synthesis in sensory cortices. However, the responsible neural circuits and processes are not known. We irreversibly transected the rat infraorbital nerve and implanted neuroprosthetic microdevices for proximal stump stimulation, and assessed cytochrome-oxidase and choline- acetyl-transferase (ChAT) in somatosensory, auditory and visual cortices; estimated the number and density of ACh-neurons in the magnocellular basal nucleus (MBN); and localized down-regulated ACh-neurons in basal forebrain using retrograde labeling from deafferented cortices. Here we show that nerve transection, causes down regulation of MBN cholinergic neurons. Stimulation of the cut nerve reverses the metabolic decline but does not affect the decrease in cholinergic fibers in cortex or cholinergic neurons in basal forebrain. Artifical stimulation of the nerve also has no affect of ACh-innervation of other cortices. Cortical ChAT depletion is due to loss of corticopetal MBN ChAT-expressing neurons. MBN ChAT downregulation is not due to a decrease of afferent activity or to a failure of trophic support. Basalocortical ACh circuits are sensory specific, ACh is provided to each sensory cortex "on demand" by dedicated circuits. Our data support the existence of a modality-specific cortex-MBN-cortex circuit for cognitive information processing.
Collapse
Affiliation(s)
- Celia Herrera-Rincon
- Neurocomputing and Neurorobotics Research Group, Universidad Complutense de Madrid Madrid, Spain ; Biomathematics Department, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid Madrid, Spain ; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos Madrid, Spain
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Universidad Complutense de Madrid Madrid, Spain ; Biomathematics Department, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid Madrid, Spain ; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos Madrid, Spain ; Department of Industrial Engineering and Management Systems, University of Central Florida Orlando, FL, USA
| |
Collapse
|
2
|
Aoki C, Kabak S. Cholinergic terminals in the cat visual cortex: Ultrastructural basis for interaction with glutamate-immunoreactive neurons and other cells. Vis Neurosci 2009; 8:177-91. [PMID: 1347700 DOI: 10.1017/s0952523800002832] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractAcetylcholine (ACh) is one of the transmitters utilized by extrathalamic afferents to modulate stimulus-driven neurotransmission and experience-dependent plasticity in the visual cortex. Since these processes also depend on the activation of glutamatergic receptors, cholinergic terminals may exert their effects via direct modulation of excitatory neurotransmission. The objective of this study was to determine whether the ultrastructural relationships between cholinergic terminals, glutamate-immunoreactive neurons, and other unlabeled cells support this idea. Sections from aldehyde-fixed visual cortex (area 17) of adult cats were immunolabled for the following molecules: (1) choline acetyltransferase (ChAT), the acetylcholine-synthesizing enzyme; (2) L-glutamate; or (3) ChAT simultaneously with L-glutamate by combining electron-microscopic immunogold and immunoperoxidase techniques. None of the cortical terminals were dually labeled, suggesting that (1) the labeling procedure was free of chemical or immunological cross reactions; and (2) glutamate immunoreactivity probably reflects the transmitter, and not metabolic, pool of L-glutamate. Comparisons between cholinergic and noncholinergic axons revealed that (1) ChAT-immunoreactive axons formed fewer identifiable synaptic contacts within single ultrathin sections (P < 0.01 using chi-square test); and (2) more of the cholinergic axons occurred directly opposed to other terminals (P < 0.0015 by chi-square test), including 21% of which resided directly across asymmetric, axo-spinous junctions. Dual labeling showed that a third of the synaptic targets for cholinergic terminals contained detectable levels of glutamate immunoreactivity. Some of the axo-spinous junctions juxtaposed to cholinergic axons also exhibited glutamate immunoreactivity presynaptically. These observations provide ultrastructural evidence for direct, cholinergic modulation of glutamatergic pyramidal neurons within the mammalian neocortex. Prevalence of juxtapositions between cholinergic terminals and axo-spinous synapses supports the following ideas: (1) ACh may modulate the release of noncholinergic transmitters, including Glu; (2) Glu may modulate ACh release; and (3) these processes may be concurrent with cholinergic modulation of glutamatergic synapses at postsynaptic sites.
Collapse
Affiliation(s)
- C Aoki
- Center for Neural Science, New York University, NY 10003
| | | |
Collapse
|
3
|
Aznavour N, Watkins KC, Descarries L. Postnatal development of the cholinergic innervation in the dorsal hippocampus of rat: Quantitative light and electron microscopic immunocytochemical study. J Comp Neurol 2008; 486:61-75. [PMID: 15834959 DOI: 10.1002/cne.20501] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Choline acetyltransferase (ChAT) immunocytochemistry was used to examine the distribution and ultrastructural features of the acetylcholine (ACh) innervation in the dorsal hippocampus of postnatal rat. The length of ChAT-immunostained axons was measured and the number of ChAT-immunostained varicosities counted, in each layer of CA1, CA3, and dentate gyrus, at postnatal ages P8, P16, and P32. At P8, an elaborate network of varicose ChAT-immunostained axons was already visible. At P16, the laminar distribution of this network resembled that in the adult, but adult densities were reached only by P32. Between P8 and P32, the mean densities for the three regions increased from 8.4 to 14 meters of axons and 2.3 to 5.7 million varicosities per cubic millimeter of tissue. At the three postnatal ages, the ultrastructural features of ChAT-immunostained axon varicosities from the strata pyramidale and radiatum of CA1 were similar between layers and comparable to those in adult, except for an increasing frequency of mitochondria (up to 41% at P32). The proportion of these profiles displaying a synaptic junction was equally low at all ages, indicating an average synaptic incidence of 7% for whole varicosities, as previously found in adult. The observed junctions were small, usually symmetrical, and made mostly with dendritic branches. These results demonstrate the precocious and rapid maturation of the hippocampal cholinergic innervation and reveal its largely asynaptic nature as soon as it is formed. They emphasize the remarkable growth capacities of individual ACh neurons and substantiate a role for diffuse transmission by ACh during hippocampal development.
Collapse
Affiliation(s)
- Nicolas Aznavour
- Département de Pathologie et Biologie Cellulaire, Centre de Recherche en Sciences Neurologiques, Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | |
Collapse
|
4
|
Mechawar N, Descarries L. The cholinergic innervation develops early and rapidly in the rat cerebral cortex: a quantitative immunocytochemical study. Neuroscience 2002; 108:555-67. [PMID: 11738494 DOI: 10.1016/s0306-4522(01)00389-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A recently developed method for determining the length of cholinergic axons and number of cholinergic axon varicosities (terminals) in brain sections immunostained for choline acetyltransferase was used to estimate the areal and laminar densities of the cholinergic innervation in rat frontal (motor), parietal (somatosensory) and occipital (visual) cortex at different postnatal ages. This cortical innervation showed an early beginning, a few immunostained fibers being already present in the cortical subplate at birth. In the first two postnatal weeks, it developed rapidly along three parameters: a progressive increase in the number of varicosities per unit length of axon, and a lengthening and branching of the axons. Between postnatal days 4 and 16, the number of varicosities increased steadily from two to four per 10 microm of cholinergic axon. The mean densities of cholinergic axons increased from 1.4 to 9.6, 1.7 to 9.3 and 0.7 to 7.2 m/mm(3), and the corresponding densities of varicosities from 0.4 to 3.9, 0.4 to 3.5, and 0.2 to 2.6x10(6)/mm(3) in the frontal, parietal and occipital areas, respectively. The rate of growth was maximal during these first two weeks, after which the laminar pattern characteristic of each area appeared to be established. Adult values were almost reached by postnatal day 16 in the parietal cortex, but maturation proceeded further in the frontal and particularly in the occipital cortex. These quantitative data on the ingrowth and maturation of the cholinergic innervation in postnatal rat cerebral cortex substantiate a role for acetylcholine in the development of this brain region and emphasize the striking growth capacity of individual cholinergic neurons.
Collapse
Affiliation(s)
- N Mechawar
- Département de pathologie, and Centre de recherche en sciences neurologiques, Faculté de médecine, Université de Montréal, P.O. Box 6128, Succursale Centre-ville, H3C 3J7, Montreal, QC, Canada
| | | |
Collapse
|
5
|
Mechawar N, Cozzari C, Descarries L. Cholinergic innervation in adult rat cerebral cortex: a quantitative immunocytochemical description. J Comp Neurol 2000; 428:305-18. [PMID: 11064369 DOI: 10.1002/1096-9861(20001211)428:2<305::aid-cne9>3.0.co;2-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A method for determining the length of acetylcholine (ACh) axons and number of ACh axon varicosities (terminals) in brain sections immunostained for choline acetyltransferase (ChAT) was used to estimate the areal and laminar densities of this innervation in the frontal (motor), parietal (somatosensory), and occipital (visual) cortex of adult rat. The number of ACh varicosities per length of axon (4 per 10 microm) appeared constant in the different layers and areas. The mean density of ACh axons was the highest in the frontal cortex (13.0 m/mm(3) vs. 9.9 and 11.0 m/mm(3) in the somatosensory and visual cortex, respectively), as was the mean density of ACh varicosities (5.4 x 10(6)/mm(3) vs. 3.8 and 4.6 x 10(6)/mm(3)). In all three areas, layer I displayed the highest laminar densities of ACh axons and varicosities (e.g., 13.5 m/mm(3) and 5.4 x 10(6)/mm(3) in frontal cortex). The lowest were those of layer IV in the parietal cortex (7.3 m/mm(3) and 2.9 x 10(6)/mm(3)). The lengths of ACh axons under a 1 mm(2) surface of cortex were 26.7, 19.7, and 15.3 m in the frontal, parietal, and occipital areas, respectively, for corresponding numbers of 11.1, 7.7, and 6.4 x 10(6) ACh varicosities. In the parietal cortex, this meant a total of 1.2 x 10(6) synaptic ACh varicosities under a 1 mm(2) surface, 48% of which in layer V alone, according to previous electron microscopic estimates of synaptic incidence. In keeping with the notion that the synaptic component of ACh transmission in cerebral cortex is preponderant in layer V, these quantitative data suggest a role for this innervation in the processing of cortical output as well as input. Extrapolation of particular features of this system in terms of total axon length and number of varicosities in whole cortex, length of axons and number of varicosities per cortically projecting neuron, and concentration of ACh per axon varicosity, should also help in arriving at a better definition of its roles and functional properties in cerebral cortex.
Collapse
Affiliation(s)
- N Mechawar
- Département de pathologie et biologie cellulaire, Faculté de médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | |
Collapse
|
6
|
|
7
|
Descarries L. The hypothesis of an ambient level of acetylcholine in the central nervous system. JOURNAL OF PHYSIOLOGY, PARIS 1998; 92:215-20. [PMID: 9789811 DOI: 10.1016/s0928-4257(98)80013-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent ultrastructural data demonstrate the largely asynaptic character of the cholinergic innervation in many regions of adult rat brain. These data favour the hypothesis of a diffuse transmission/modulation by acetylcholine in the CNS and, by way of consequence, that of a persistent, low level of acetylcholine in the extracellular space.
Collapse
Affiliation(s)
- L Descarries
- Département de pathologie, Faculté de médecine, Université de Montréal, Québec, Canada
| |
Collapse
|
8
|
Gil Z, Connors BW, Amitai Y. Differential regulation of neocortical synapses by neuromodulators and activity. Neuron 1997; 19:679-86. [PMID: 9331357 DOI: 10.1016/s0896-6273(00)80380-3] [Citation(s) in RCA: 428] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Synapses are continually regulated by chemical modulators and by their own activity. We tested the specificity of regulation in two excitatory pathways of the neocortex: thalamocortical (TC) synapses, which mediate specific inputs, and intracortical (IC) synapses, which mediate the recombination of cortical information. Frequency-sensitive depression was much stronger in TC synapses than in IC synapses. The two synapse types were differentially sensitive to presynaptic neuromodulators: only IC synapses were suppressed by activation of GABA(B) receptors, only TC synapses were enhanced by nicotinic acetylcholine receptors, and muscarinic acetylcholine receptors suppressed both synapse types. Modulators also differentially altered the frequency sensitivity of the synapses. Our results suggest a mechanism by which the relative strength and dynamics of input and associational pathways of neocortex are regulated during changes in behavioral state.
Collapse
Affiliation(s)
- Z Gil
- Department of Physiology, Zlotowski Center for Neuroscience, Ben-Gurion University, Beer-Sheva, Israel
| | | | | |
Collapse
|
9
|
Umbriaco D, Garcia S, Beaulieu C, Descarries L. Relational features of acetylcholine, noradrenaline, serotonin and GABA axon terminals in the stratum radiatum of adult rat hippocampus (CA1). Hippocampus 1995; 5:605-20. [PMID: 8646286 DOI: 10.1002/hipo.450050611] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In a well-defined sector of adult rat hippocampus (CA1, stratum radiatum), the ultrastructural features of acetylcholine (ACh), noradrenaline (NA), serotonin (5-HT) and GABA axon terminals (varicosities) were compared by electron microscopy after immunostaining with antibodies against choline acetyltransferase, NA, 5-HT and glutamic acid decarboxylase. Approximately 100 sectional profiles of each type were analyzed for size, presence of a synaptic membrane specialization (synaptic incidence) and composition of the microenvironment. An equivalent number of immunonegative varicosity profiles selected at random from the same micrographs were similarly examined. ACh, NA and 5-HT varicosity profiles were of comparable size, and significantly smaller than GABA profiles. They exhibited a low frequency of junctional specialization, amounting to 7%, 15% and 21%, respectively, when extrapolated to the whole volume of these terminals. In contrast, GABA varicosities appeared entirely synaptic. The ACh, NA and 5-HT varicosities also differed from their GABA counterparts in being juxtaposed to a greater number of unlabeled axonal varicosities and a lower number of dendritic branches. In addition, the microenvironment of immunostained terminals showed a much lower number of dendritic spines than that of immunonegative varicosities. This latter finding was viewed as another indication that predominantly asynaptic varicosities do not maintain particular relationships with their immediate surround. It was also concluded that volume transmission represents a major mode of transmission for ACh, NA and 5-HT in adult rat hippocampus, thus contributing to the properties and functions assigned to these transmitters in this part of brain.
Collapse
Affiliation(s)
- D Umbriaco
- Department of Pathology, University of Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
10
|
|
11
|
Umbriaco D, Watkins KC, Descarries L, Cozzari C, Hartman BK. Ultrastructural and morphometric features of the acetylcholine innervation in adult rat parietal cortex: an electron microscopic study in serial sections. J Comp Neurol 1994; 348:351-73. [PMID: 7844253 DOI: 10.1002/cne.903480304] [Citation(s) in RCA: 202] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study was aimed at characterizing the ultrastructural morphology of the normal acetylcholine (ACh) innervation in adult rat parietal cortex. After immunostaining with a monoclonal antibody against purified rat brain choline acetyltransferase (ChAT), more than 100 immunoreactive axonal varicosities (terminals) from each layer of the Par 1 area were photographed and examined in serial thin sections across their entire volume. These varicosities were relatively small, averaging 0.6 micron in diameter, 1.6 microns 2 in surface, and 0.12 micron 3 in volume. In every layer, a relatively low proportion exhibited a synaptic membrane differentiation (10% in layer I, 14% in II-III, 11% in IV, 21% in V, 14% in VI), for a I-VI average of 14%. These synaptic junctions were usually single, symmetrical (> 99%), and occupied a small portion of the surface of varicosities (< 3%). A majority were found on dendritic branches (76%), some on spines (24%), and none on cell bodies. On the whole, the ACh junctional varicosities were significantly larger than their nonjunctional counterparts, and both synaptic and nonsynaptic varicosities could be observed on the same fiber. A subsample of randomized single thin sections from these whole varicosities yielded similar values for size and synaptic frequency as the result of a stereological extrapolation. Also analyzed in single sections, the microenvironment of the ChAT-immunostained varicosities appeared markedly different from that of unlabeled varicosity profiles randomly selected from their vicinity, mainly due to a lower incidence of synaptically targeted dendritic spines. Thus, the normal ACh innervation of adult rat parietal cortex is predominantly nonjunctional (> 85% of its varicosities), and the composition of the microenvironment of its varicosities suggests some randomness in their distribution at the microscopic level. It is unlikely that these ultrastructural characteristics are exclusive to the parietal region. Among other functional implications, they suggest that this system depends predominantly on volume transmission to exert its modulatory effects on cortical activity.
Collapse
Affiliation(s)
- D Umbriaco
- Département de Pathologie, Université de Montréal, Quebec, Canada
| | | | | | | | | |
Collapse
|
12
|
Schäfer MK, Weihe E, Varoqui H, Eiden LE, Erickson JD. Distribution of the vesicular acetylcholine transporter (VAChT) in the central and peripheral nervous systems of the rat. J Mol Neurosci 1994; 5:1-26. [PMID: 7857778 DOI: 10.1007/bf02736691] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Expression of the acetylcholine biosynthetic enzyme choline acetyltransferase (ChAT), the vesicular acetylcholine transporter (VAChT), and the high-affinity plasma membrane choline transporter uniquely defines the cholinergic phenotype in the mammalian central (CNS) and peripheral (PNS) nervous systems. The distribution of cells expressing the messenger RNA encoding the recently cloned VAChT in the rat CNS and PNS is described here. The pattern of expression of VAChT mRNA is consistent with anatomical, pharmacological, and histochemical information on the distribution of functional cholinergic neurons in the brain and peripheral tissues of the rat. VAChT mRNA-containing cells are present in brain areas, including neocortex and hypothalamus, in which the existence of cholinergic neurons has been the subject of debate. The demonstration that VAChT is a completely adequate marker for cholinergic neurons should allow the systematic delineation of cholinergic synapses in the rat nervous system when antibodies directed to this protein are available.
Collapse
Affiliation(s)
- M K Schäfer
- Department of Anatomy, Johannes-Gutenberg Universität, Mainz, FRG
| | | | | | | | | |
Collapse
|
13
|
Fuchs JL, Schwark HD. Distribution of [3H]QNB and [125I]alpha-bungarotoxin binding and acetylcholinesterase activity in visual system and hippocampal structures of eleven mammalian species. J Comp Neurol 1993; 329:427-37. [PMID: 8454734 DOI: 10.1002/cne.903290402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This study assessed interspecies differences in regional brain distribution of [3H]QNB binding, [125I]alpha-bungarotoxin binding and acetylcholinesterase activity, by autoradiographic and histochemical methods. Eleven mammalian species were examined, including carnivores (cat, dog), a lagomorph (rabbit), and rodents (squirrel, guinea pig, gerbil, hamster, vole, lemming, rat, mouse). Comparisons were based on primary visual system structures (superior colliculus, lateral geniculate nucleus, primary visual cortex) and the hippocampal formation. The two radioligands differed greatly in the degree of interspecies variation: while the pattern of [3H]QNB binding was quite similar across species, [125I]alpha-bungarotoxin showed striking interspecies diversity. This contrast was most obvious in laminar patterns of the visual cortex and hippocampal formation. Regional distributions of acetylcholinesterase staining were fairly diverse, and were unlike the patterns of either [3H]QNB or [125I]alpha-bungarotoxin. The two ligands showed more consistency in overall levels across species than did acetylcholinesterase. Possible correlates of the differences in interspecies diversity are discussed.
Collapse
Affiliation(s)
- J L Fuchs
- Department of Biological Sciences, University of North Texas, Denton 76203
| | | |
Collapse
|
14
|
Mower GD. Comparison of serotonin 5-HT1 receptors and innervation in the visual cortex of normal and dark-reared cats. J Comp Neurol 1991; 312:223-30. [PMID: 1748729 DOI: 10.1002/cne.903120205] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The visual cortical serotoninergic system was compared in normal and dark-reared cats to determine whether visual experience is necessary for its normal development. In vitro receptor binding of [3H]5-HT indicated an increase in 5-HT1 receptor number in dark-reared cats with no change in affinity. This elevation was specific to the visual cortex and no changes were found in the frontal cortex as a result of dark rearing. Autoradiographic histology revealed that in the normal cat visual cortex, 5-HT1 receptors were present in all cortical layers and were slightly more dense in supragranular and infragranular layers. In dark-reared cats, there was a marked elevation in receptor density in supragranular and infragranular layers and little change within layer IV. Immunohistochemical techniques (anti-5-HT) were used to compare serotoninergic innervation in the visual cortex of normal and dark-reared cats. In normal cat visual cortex, serotonin fibers were most dense in the superficial layers (I-III), least dense in layers IV and VI, and intermediate in layer V. No differences were found between normal and dark-reared cats in the laminar distribution or density of serotoninergic innervation. These results indicate that visual experience is necessary for the normal development of the visual cortical serotonin system. The findings that the effects of dark rearing were specific to the visual cortex and that within the visual cortex these effects were specific to supra- and infragranular layers are consistent with a possible role for serotonin in the prolonged physiological plasticity that occurs in the visual cortex of dark-reared cats.
Collapse
Affiliation(s)
- G D Mower
- Neurology Research, Children's Hospital, Boston, Massachusetts 02115
| |
Collapse
|