1
|
Hajishengallis G, Arce S, Gockel CM, Connell TD, Russell MW. Immunomodulation with Enterotoxins for the Generation of Secretory Immunity or Tolerance: Applications for Oral Infections. J Dent Res 2016; 84:1104-16. [PMID: 16304439 DOI: 10.1177/154405910508401205] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The heat-labile enterotoxins, such as cholera toxin (CT), and the labile toxins types I and II (LT-I and LT-II) of Escherichia coli have been extensively studied for their immunomodulatory properties, which result in the enhancement of immune responses. Despite superficial similarity in structure, in which a toxic A subunit is coupled to a pentameric binding B subunit, different toxins have different immunological properties. Administration of appropriate antigens admixed with or coupled to these toxins by oral, intranasal, or other routes in experimental animals induces mucosal IgA and circulating IgG antibodies that have protective potential against a variety of enteric, respiratory, or genital infections. These include the generation of salivary antibodies that may protect against colonization with mutans streptococci and the development of dental caries. However, exploitation of these adjuvants for human use requires an understanding of their mode of action and the separation of their desirable immunomodulatory properties from their toxicity. Recent findings have revealed that adjuvant action is not critically dependent upon the enzymic activity of the A subunits, and that the isolated B subunits may exert different effects on cells of the immune system than do the intact toxins. Interaction of the toxins with immunocompetent cells is not exclusively dependent upon their conventional ganglioside receptors. Immunomodulatory effects have been observed on dendritic cells, macrophages, CD4+ and CD8+ T-cells, and B-cells. Numerous factors—including the precise form of the toxin adjuvant, properties of the antigen, whether and how they are coupled, route of administration, and species of animal model—affect the outcome, whether this is enhanced humoral and cellular immunity, or specific induced tolerance toward the antigen.
Collapse
Affiliation(s)
- G Hajishengallis
- Department of Microbiology, Immunology, and Parasitology, and Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | |
Collapse
|
2
|
Hajishengallis G, Connell TD. Type II heat-labile enterotoxins: structure, function, and immunomodulatory properties. Vet Immunol Immunopathol 2012; 152:68-77. [PMID: 23137790 DOI: 10.1016/j.vetimm.2012.09.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The heat-labile enterotoxins (HLTs) of Escherichia coli and Vibrio cholerae are classified into two major types on the basis of genetic, biochemical, and immunological properties. Type I and Type II HLT have been intensively studied for their exceptionally strong adjuvant activities. Despite general structural similarities, these molecules, in intact or derivative (non-toxic) forms, display notable differences in their mode of immunomodulatory action. The molecular basis of these differences has remained largely uncharacterized until recently. This review focuses on the Type II HLTs and their immunomodulatory properties which depend largely on interactions with unique gangliosides and Toll-like receptors that are not utilized by the Type I HLTs.
Collapse
Affiliation(s)
- George Hajishengallis
- University of Pennsylvania School of Dental Medicine, Department of Microbiology, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
3
|
Miranda A, de León J, Roque-Navarro L, Fernández L. Cytofluorimetric evaluation of N-glycolylated GM3 ganglioside expression on murine leukocytes. Immunol Lett 2011; 137:38-45. [DOI: 10.1016/j.imlet.2011.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 01/14/2011] [Accepted: 02/01/2011] [Indexed: 02/06/2023]
|
4
|
Connell TD. Cholera toxin, LT-I, LT-IIa and LT-IIb: the critical role of ganglioside binding in immunomodulation by type I and type II heat-labile enterotoxins. Expert Rev Vaccines 2007; 6:821-34. [PMID: 17931161 DOI: 10.1586/14760584.6.5.821] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The heat-labile enterotoxins expressed by Vibrio cholerae (cholera toxin) and Escherichia coli (LT-I, LT-IIa and LT-IIb) are potent systemic and mucosal adjuvants. Coadministration of the enterotoxins with a foreign antigen produces an augmented immune response to that antigen. Although each enterotoxin has potent adjuvant properties, the means by which the enterotoxins induce various immune responses are distinctive for each adjuvant. Various mutants have been engineered to dissect the functions of the enterotoxins required for their adjuvanticity. The capacity to strongly bind to one or more specific ganglioside receptors appears to drive the distinctive immunomodulatory properties associated with each enterotoxin. Mutant enterotoxins with ablated or altered ganglioside-binding affinities have been employed to investigate the role of gangliosides in enterotoxin-dependent immunomodulation.
Collapse
Affiliation(s)
- Terry D Connell
- School of Medicine and Biomedical Sciences, Department of Microbiology and Immunology, 138 Farber Hall, 3435 Main St, Buffalo, NY 14214, USA.
| |
Collapse
|
5
|
Inhibition of T cell proliferation by cholera toxin involves the modulation of costimulatory molecules CTLA-4 and CD28. Immunol Lett 2007; 115:59-69. [PMID: 18031829 DOI: 10.1016/j.imlet.2007.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 10/04/2007] [Accepted: 10/08/2007] [Indexed: 11/21/2022]
Abstract
Cholera toxin (CT) is known to inhibit the proliferation of murine and human T lymphocytes. In this study we have analysed the mechanisms underlying the inhibitory effect of CT on subpopulations of human CD4+ and CD8+ T lymphocytes. We show that CT dramatically prevents the activation of resting T lymphocytes, whereas it has a minor effect on cells that have been previously activated. Analysis of DNA content of the CT-treated T cells showed an arrest in the G(0)/G(1) phase and this correlated with high expression of the cyclin-dependent kinase inhibitor p27(kip). Moreover, we show that CT up-regulates the expression of the inhibitory molecule CTLA-4 in naïve, effector and memory resting CD4+ T cells and in resting CD8+ T lymphocytes. The regulation of CTLA-4 expression by CT is at the transcriptional level. Indeed, in cells treated with CT we observed an increase of two mRNA variants coding for the membrane and the soluble CTLA-4 molecules. In parallel with the up-regulation of the inhibitory CTLA-4, CT down-modulates the costimulatory molecule CD28 on CD4+ and CD8+ resting T cells. The increased expression of CTLA-4 played a role in controlling T cell activation and function as blocking anti-CTLA-4 F(ab')(2) mAbs partially inhibited anti-CD3 mAbs induced proliferation. These findings show that the inhibition of T cell proliferation by CT affects early stages of the T cell activation and involves the modulation of costimulatory molecules CTLA-4 and CD28 on resting T cells.
Collapse
|
6
|
Arce S, Nawar HF, Muehlinghaus G, Russell MW, Connell TD. In vitro induction of immunoglobulin A (IgA)- and IgM-secreting plasma blasts by cholera toxin depends on T-cell help and is mediated by CD154 up-regulation and inhibition of gamma interferon synthesis. Infect Immun 2007; 75:1413-23. [PMID: 17220318 PMCID: PMC1828582 DOI: 10.1128/iai.01367-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholera toxin (CT) and the type II heat-labile enterotoxins (LT-IIa and LT-IIb) are potent immunological adjuvants which are hypothesized to enhance the production of antibody (Ab)-secreting cells, although their mechanisms of action are not fully understood. The treatment of splenic cells with concanavalin A (ConA) plus CT enhanced the production of immunoglobulin A (IgA) and IgM by dividing cells that expressed high levels of major histocompatibility complex class II (MHC-II), CD19, and CD138 and low levels of B220 a phenotype characteristic of plasma blasts. LT-IIa or LT-IIb moderately enhanced IgA and IgM production without enhancing plasma blast differentiation. CT up-regulated CD25, CD69, CD80, CD86, and MHC-II in isolated B cells but failed to induce proliferation or differentiation. The treatment of unfractionated splenic cells with ConA plus CT induced B-cell proliferation and differentiation, but the elimination of CD4(+) T cells inhibited this effect. CT treatment of ConA-activated CD4(+) T cells up-regulated CD134 and CD154, whereas the blockage of CD40-CD154 interactions inhibited the induction of plasma blasts and Ig synthesis. The treatment of unfractionated splenic cells with CT, LT-IIa, or LT-IIb enhanced the production of interleukin-6 (IL-6) and IL-10, whereas the production of gamma interferon was inhibited in both CD4(+) and CD8(+) T cells mostly by CT. Thus, major regulatory effects of CT on lymphocytes are likely exerted early during the induction of immune responses when B and T cells initially encounter antigen. Neither LT-IIa or LT-IIb had these effects, indicating that type II enterotoxins augment Ab responses by other mechanisms.
Collapse
Affiliation(s)
- Sergio Arce
- The Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, 138 Farber Hall, 3435 Main St., Buffalo, NY 14214, USA.
| | | | | | | | | |
Collapse
|
7
|
Arce S, Nawar HF, Russell MW, Connell TD. Differential binding of Escherichia coli enterotoxins LT-IIa and LT-IIb and of cholera toxin elicits differences in apoptosis, proliferation, and activation of lymphoid cells. Infect Immun 2005; 73:2718-27. [PMID: 15845474 PMCID: PMC1087339 DOI: 10.1128/iai.73.5.2718-2727.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholera toxin (CT), LT-IIa, and LT-IIb are potent adjuvants which induce distinct T-helper (Th)-cell cytokine profiles and immunoglobulin G (IgG) subclass and IgA antibody responses. To determine if the distinct immune regulatory effects observed for LT-IIa, LT-IIb, and CT are elicited by binding of the enterotoxins to their cognate ganglioside receptors, the lineages of lymphoid cells that interact with the three enterotoxins and their effects on various lymphocyte responses in vitro were evaluated. Binding patterns of LT-IIa, LT-IIb, and CT to several lymphoid cell populations were distinctive for each enterotoxin. LT-IIa and CT, but not LT-IIb, induced apoptosis in CD8(+) T cells. LT-IIa(T34I), a mutant with no detectable binding to gangliosides, did not induce apoptosis. Blockade of GM(1) on the surface of CD8(+) T cells by LT-IIa(T14I), a mutant that binds only to GM(1) but does not induce apoptosis, did not inhibit induction of apoptosis by LT-IIa. Mitogen-induced proliferation of CD8(+) T cells was abrogated by treatment with CT, while resting CD8(+) T cells which were sensitive to LT-IIa-induced apoptosis became more resistant to apoptosis after mitogen activation. Exposure to CT, but not to LT-IIa or LT-IIb, inhibited mitogen-driven CD4(+) T-cell proliferation and expression of CD25 and CD69. In mitogen-stimulated B cells, CT, but not LT-IIa or LT-IIb, enhanced expression levels of CD86, while only CT induced B-cell differentiation into plasma cells. Thus, LT-IIa, LT-IIb, and CT exhibit distinguishable immunomodulatory properties which are likely dependent upon their capacities to recognize different ganglioside receptors on lymphocytes.
Collapse
Affiliation(s)
- Sergio Arce
- Department of Microbiology and Immunology, The University of Buffalo, State University of New York at Buffalo, 138 Farber Hall, 3435 Main St., Buffalo, NY 12214, USA.
| | | | | | | |
Collapse
|
8
|
Martin M, Hajishengallis G, Metzger DJ, Michalek SM, Connell TD, Russell MW. Recombinant antigen-enterotoxin A2/B chimeric mucosal immunogens differentially enhance antibody responses and B7-dependent costimulation of CD4(+) T cells. Infect Immun 2001; 69:252-61. [PMID: 11119513 PMCID: PMC97879 DOI: 10.1128/iai.69.1.252-261.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ADP-ribosylating enterotoxins, cholera toxin (CT) and the Escherichia coli heat-labile toxin (LT-IIa), have been shown to enhance mucosal and systemic antibody (Ab) responses to coadministered antigens. The purpose of the present study was to compare the ability of the nontoxic A2/B subunits of these toxins, which have distinct targeting properties, to augment the immunogenicity of a genetically coupled protein antigen. Structurally similar chimeric proteins were generated by genetically replacing the toxic A1 subunit of CT or LT-IIa with the saliva-binding region (SBR) from the streptococcal adhesin AgI/II. Intranasal immunization of BALB/c mice with either chimeric protein induced significantly higher plasma and mucosal anti-SBR immunoglobulin A (IgA) and IgG Ab responses than SBR alone. Moreover, compared to SBR-LT-IIaA2/B, SBR-CTA2/B elicited significantly higher levels of plasma IgG1 and salivary IgA anti-SBR Ab responses. Ex vivo and in vitro experiments revealed that SBR-CTA2/B selectively up-regulated B7-2 expression on murine B cells isolated from both the nasal associated lymphoid tissue, cervical lymph nodes, and spleen. In contrast, SBR-LT-IIaA2/B had little effect on B7-1 or B7-2 expression on B220(+), CD11b(+), or CD11c(+) cells. Analysis of the functional costimulatory activity of SBR-CTA2/B-treated B cells revealed a significant enhancement in anti-CD3-stimulated CD4(+) T-cell proliferative responses, and this proliferation was significantly reduced by treatment with anti-B7-2 but not with anti-B7-1 or isotype control Abs. Thus, SBR-CTA2/B and SBR-LT-IIaA2/B exhibit distinct patterns of antibody responses associated with differential effects on B7-2 expression and subsequent costimulatory effects on CD4(+) T cells.
Collapse
Affiliation(s)
- M Martin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
9
|
Martin M, Metzger DJ, Michalek SM, Connell TD, Russell MW. Comparative analysis of the mucosal adjuvanticity of the type II heat-labile enterotoxins LT-IIa and LT-IIb. Infect Immun 2000; 68:281-7. [PMID: 10603399 PMCID: PMC97132 DOI: 10.1128/iai.68.1.281-287.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholera toxin (CT) and the heat-labile enterotoxin of Escherichia coli (LT-I) are members of the serogroup I heat-labile enterotoxins (HLT) and can serve as systemic and mucosal adjuvants. However, information is lacking with respect to the structurally related but antigenically distinct serogroup II HLT, LT-IIa and LT-IIb, which have different binding specificities for ganglioside receptors. The purpose of this study was to assess the effectiveness of LT-IIa and LT-IIb as mucosal adjuvants in comparison to the prototypical type I HLT, CT. BALB/c mice were immunized by the intranasal (i.n.) route with the surface protein adhesin AgI/II of Streptococcus mutans alone or supplemented with an adjuvant amount of CT, LT-IIa, or LT-IIb. Antigen-specific antibody responses in saliva, vaginal wash, and plasma were assayed by enzyme-linked immunosorbent assay. Mice given AgI/II with LT-IIa or LT-IIb by the i.n. route had significantly higher mucosal and systemic antibody responses than mice immunized with AgI/II alone. Anti-AgI/II immunoglobulin A (IgA) antibody activity in saliva and vaginal secretions of mice given AgI/II with LT-IIa or LT-IIb was statistically similar in magnitude to that seen in mice given AgI/II and CT. LT-IIb significantly enhanced the number of AgI/II-specific antibody-secreting cells in the draining superficial cervical lymph nodes compared to LT-IIa and CT. LT-IIb and CT induced significantly higher plasma anti-AgI/II IgG titers compared to LT-IIa. When LT-IIb was used as adjuvant, the proportion of plasma IgG2a relative to IgG1 anti-AgI/II antibody was elevated in contrast to the predominance of IgG1 antibodies promoted by AgI/II alone or when CT or LT-IIa was used. In vitro stimulation of AgI/II-specific cells from the superficial lymph nodes and spleen revealed that LT-IIa and LT-IIb induced secretion of interleukin-4 and significantly higher levels of gamma interferon compared to CT. These results demonstrate that the type II HLT LT-IIa and LT-IIb exhibit potent and distinct adjuvant properties for stimulating immune responses to a noncoupled protein immunogen after mucosal immunization.
Collapse
Affiliation(s)
- M Martin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | | | |
Collapse
|
10
|
Vajdi M. Studies on the Extractability of Gangliosides with Various Solvents. SEP SCI TECHNOL 1994. [DOI: 10.1080/01496399408002190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Qi Y, Xue QM. Ganglioside levels in hypoxic brains from neonatal and premature infants. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1991; 14:87-97. [PMID: 1910361 DOI: 10.1007/bf03159929] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study, 13 cases of newborn term-gestational infants and six cases of premature infants who died of hypoxia were selected for the determination of ganglioside levels in several regions of brains obtained at autopsy. Cases were divided into three groups according to the hypoxic interval and gestational age: Group A, six cases of newborn infants. The average time of hypoxia was 6.4 h. Group B, seven cases of newborn infants. The average time of hypoxia was about 71 h. Group C, six cases of premature infants. The average hypoxia time was 34.7 h. Frontal cortex, forebrain, hippocampus, and parahippocampal gyrus and cerebellum of each brain were examined. The method of Ladisch and Gillard (1985) was used to purify and quantify gangliosides. The results showed that total gangliosides decreased significantly in three regions of cerebral hemispheres of group B and in four brain regions of group C, as compared with group A (p less than 0.01). The amount of gangliosides in frontal cortex in group B was lower than in group C (p less than 0.01). The four major gangliosides (GM1, GD1a, GD1b, and GT1b) were all reduced in cerebral hemispheres of group B and C. In hypoxic brains, the percentage of gangliosides also showed some alterations. There was less GD1a in the cerebral hemispheres of group B and the frontal cortex of group C. The amount of GD1b was also less in the frontal cortex and forebrain of group B than in group A or C. The results suggest that severe hypoxia might cause decreases in brain gangliosides that correlate to the severity of brain damage.
Collapse
Affiliation(s)
- Y Qi
- Department of Neurology, Beijing Friendship Hospital, China
| | | |
Collapse
|
12
|
Thomas FP, Trojaborg W, Nagy C, Santoro M, Sadiq SA, Latov N, Hays AP. Experimental autoimmune neuropathy with anti-GM1 antibodies and immunoglobulin deposits at the nodes of Ranvier. Acta Neuropathol 1991; 82:378-83. [PMID: 1767631 DOI: 10.1007/bf00296548] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antibodies to GM1 or Gal(beta 1-3)GalNAc are associated with motor or sensorimotor neuropathy and with motor neuron disease. To investigate the role of these antibodies in the neurological disorder, rabbits were immunized with GM1 or with Gal(beta 1-3)GalNAc-BSA, and studied serologically, electrophysiologically and pathologically. Development of antibodies to the immunizing antigens was associated with a fall in the ratio of the amplitudes of the compound muscle action potential evoked by proximal versus distal stimulation of the sciatic nerve. Pathological studies revealed mild axonal degeneration and immunoglobulin deposits at the nodes of Ranvier in peripheral nerve, resembling those reported in a patient with motor neuropathy, motor conduction block and anti-GM1 antibodies. These studies provide evidence that anti-GM1 or anti-Gal(beta 1-3)GalNAc antibodies cause conduction abnormalities and indicate that the antibodies may exert their effect, in part, by binding at the nodes of Ranvier in peripheral nerve.
Collapse
Affiliation(s)
- F P Thomas
- Department of Pathology, Division of Neuropathology, College of Physicians & Surgeons, Columbia University, New York, NY
| | | | | | | | | | | | | |
Collapse
|
13
|
Miyagi T, Koseki M, Tsuiki S. Comparative study of the levels of sialyltransferases responsible for the formation of sugar chains in glycoproteins and gangliosides in rat liver and hepatomas. Jpn J Cancer Res 1988; 79:742-9. [PMID: 3137201 PMCID: PMC5917584 DOI: 10.1111/j.1349-7006.1988.tb02231.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sialyltransferases responsible for the formation of sugar chains in glycoproteins were studied in rat hepatoma in comparison with rat liver. Hepatoma induced by feeding Wistar rats with 3'-methyl-4-dimethylaminoazobenzene (MeDAB) was more active than Wistar liver in sialylating asialo-orosomucoid, and this was due to an increased activity of Gal(beta 1----4)GlcNAc (alpha 2----6) sialyltransferase, the major sialyltransferase in these tissues. Gal(beta 1----3,4)GlcNAc (alpha 2----3) sialyltransferase and the sialyltransferase acting on asialo-bovine submaxillary mucin were, however, decreased in the hepatoma. A similar pattern of sialyltransferase alterations was observed in regenerating liver and other tumors such as AH-109A hepatoma and Sato lung cancer, both of which had been inoculated into Donryu rats. In contrast to these sialyltransferases, the activities of the sialyltransferases responsible for the formation of gangliosides were markedly different even between Wistar and Donryu livers. When compared with Wistar liver, MeDAB-induced hepatoma was higher in lactosylceramide- and lower in GM3-sialyltransferase activity, but these two activities were both lower in AH-109A compared with Donryu liver.
Collapse
Affiliation(s)
- T Miyagi
- Research Institute for Tuberculosis and Cancer, Tohoku University, Sendai
| | | | | |
Collapse
|
14
|
Nakaishi H, Sanai Y, Shibuya M, Nagai Y. Analysis of cellular expression of gangliosides by gene transfection. II: Rat 3Y1 cells transformed with several DNAs containing oncogenes (fes, fps, ras & src) invariably express sialosylparagloboside. Biochem Biophys Res Commun 1988; 150:766-74. [PMID: 3342048 DOI: 10.1016/0006-291x(88)90457-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The transfection of several DNAs, containing oncogenes ras, src, fes or fps, into rat 3Y1 cells invariably induced the neosynthesis of sialosylparagloboside (SPG; IV3 alpha NeuAc nLcOse4Cer), with a concomitant decrease in GM3. All these oncogenes are 'extranuclear' type oncogenes, of which the products are expressed in the cytoplasm or on the cell surface membrane. These results are in striking contrast to those on the transfection of 'intranuclear' type oncogenes (ex., adeno E1) into the same 3Y1 cells, where GD3 neosynthesis was specifically brought about by the transfection.
Collapse
Affiliation(s)
- H Nakaishi
- Department of Biochemistry, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | |
Collapse
|
15
|
Brown RE, Thompson TE. Spontaneous transfer of ganglioside GM1 between phospholipid vesicles. Biochemistry 1987; 26:5454-60. [PMID: 3676263 DOI: 10.1021/bi00391a036] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The transfer kinetics of the negatively charged glycosphingolipid II3-N-acetylneuraminosyl-gangliotetraosylceramide (GM1) were investigated by monitoring tritiated GM1 movement between donor and acceptor vesicles. After appropriate incubation times at 45 degrees C, donor and acceptor vesicles were separated by molecular sieve chromatography. Donors were small unilamellar vesicles produced by sonication, whereas acceptors were large unilamellar vesicles produced by either fusion or ethanol injection. Initial GM1 transfer to acceptors followed first-order kinetics with a half-time of about 40 h assuming that GM1 is present in equal mole fractions in the exterior and interior surfaces of the donor vesicle bilayer and that no glycolipid flip-flop occurs. GM1 net transfer was calculated relative to that of [14C]cholesteryl oleate, which served as a nontransferable marker in the donor vesicles. Factors affecting the GM1 interbilayer transfer rate included phospholipid matrix composition, initial GM1 concentration in donor vesicles, and the GM1 distribution in donor vesicles with respect to total lipid symmetry. The findings provide evidence that GM1 is molecularly dispersed at low concentrations within liquid-crystalline phospholipid bilayers.
Collapse
Affiliation(s)
- R E Brown
- Department of Biochemistry, University of Virginia School of Medicine, Charlottesville 22908
| | | |
Collapse
|