1
|
Wen Y, Chen YQ, Konrad RJ. The Regulation of Triacylglycerol Metabolism and Lipoprotein Lipase Activity. Adv Biol (Weinh) 2022; 6:e2200093. [PMID: 35676229 DOI: 10.1002/adbi.202200093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/03/2022] [Indexed: 01/28/2023]
Abstract
Triacylglycerol (TG) metabolism is tightly regulated to maintain a pool of TG within circulating lipoproteins that can be hydrolyzed in a tissue-specific manner by lipoprotein lipase (LPL) to enable the delivery of fatty acids to adipose or oxidative tissues as needed. Elevated serum TG concentrations, which result from a deficiency of LPL activity or, more commonly, an imbalance in the regulation of tissue-specific LPL activities, have been associated with an increased risk of atherosclerotic cardiovascular disease through multiple studies. Among the most critical LPL regulators are the angiopoietin-like (ANGPTL) proteins ANGPTL3, ANGPTL4, and ANGPTL8, and a number of different apolipoproteins including apolipoprotein A5 (ApoA5), apolipoprotein C2 (ApoC2), and apolipoprotein C3 (ApoC3). These ANGPTLs and apolipoproteins work together to orchestrate LPL activity and therefore play pivotal roles in TG partitioning, hydrolysis, and utilization. This review summarizes the mechanisms of action, epidemiological findings, and genetic data most relevant to these ANGPTLs and apolipoproteins. The interplay between these important regulators of TG metabolism in both fasted and fed states is highlighted with a holistic view toward understanding key concepts and interactions. Strategies for developing safe and effective therapeutics to reduce circulating TG by selectively targeting these ANGPTLs and apolipoproteins are also discussed.
Collapse
Affiliation(s)
- Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
2
|
Wolska A, Dunbar RL, Freeman LA, Ueda M, Amar MJ, Sviridov DO, Remaley AT. Apolipoprotein C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis 2017; 267:49-60. [PMID: 29100061 DOI: 10.1016/j.atherosclerosis.2017.10.025] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/03/2017] [Accepted: 10/19/2017] [Indexed: 02/08/2023]
Abstract
Apolipoprotein C-II (apoC-II) is a small exchangeable apolipoprotein found on triglyceride-rich lipoproteins (TRL), such as chylomicrons (CM) and very low-density lipoproteins (VLDL), and on high-density lipoproteins (HDL), particularly during fasting. ApoC-II plays a critical role in TRL metabolism by acting as a cofactor of lipoprotein lipase (LPL), the main enzyme that hydrolyses plasma triglycerides (TG) on TRL. Here, we present an overview of the role of apoC-II in TG metabolism, emphasizing recent novel findings regarding its transcriptional regulation and biochemistry. We also review the 24 genetic mutations in the APOC2 gene reported to date that cause hypertriglyceridemia (HTG). Finally, we describe the clinical presentation of apoC-II deficiency and assess the current therapeutic approaches, as well as potential novel emerging therapies.
Collapse
Affiliation(s)
- Anna Wolska
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Richard L Dunbar
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ICON plc, North Wales, PA, USA; Cardiometabolic and Lipid Clinic, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Lita A Freeman
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Masako Ueda
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo J Amar
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Denis O Sviridov
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
|
4
|
Chen CH, Cao YL, Hu WC. Apolipoprotein C-II promoter T→A substitution at position −190 affects on the transcription of the gene and its relationship to hyperlipemia. Biochem Biophys Res Commun 2007; 354:62-5. [PMID: 17222387 DOI: 10.1016/j.bbrc.2006.12.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 12/17/2006] [Indexed: 11/27/2022]
Abstract
A Chinese patient with severe hypertriglyceridemia was found to have similar clinical features to that of malignant hyperlipemia in infancy. DNA sequence analysis of the apoC-II gene from the patient's parents revealed a novel heterozygous mutation of T-->A substitution at position -190 base in the apoC-II promoter. We speculated that the patient was a homozygote of the same mutation that resulted in the deficiency of apoC-II. In vitro expression studies showed T-->A substitution in the apoC-II promoter leads to a decrease by approximately 20% in transcriptional activity compared with its counterpart that inserted the normal promoter. These results suggested that T-->A substitution at position -190 in the apoC-II gene promoter only partly affected transcriptional activity of the apoC-II promoter, leading to decrease of apoC-II expression in quantity.
Collapse
Affiliation(s)
- Chun-Hua Chen
- Department of Immunology, School of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan 250012, PR China
| | | | | |
Collapse
|
5
|
Kim MS, Shigenaga J, Moser A, Feingold K, Grunfeld C. Repression of farnesoid X receptor during the acute phase response. J Biol Chem 2003; 278:8988-95. [PMID: 12519762 DOI: 10.1074/jbc.m212633200] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The acute phase response is associated with changes in the hepatic expression of genes involved in lipid metabolism. Nuclear hormone receptors that heterodimerize with retinoid X receptor (RXR), such as thyroid receptors, peroxisome proliferator-activated receptors, and liver X receptors, modulate lipid metabolism. We recently demonstrated that these nuclear hormone receptors are repressed during the acute phase response induced by lipopolysaccharide (LPS), consistent with the known decreases in genes that they regulate. In the present study, we show that LPS significantly decreases farnesoid X receptor (FXR) mRNA in mouse liver as early as 8 h after LPS administration, and this decrease was dose-dependent with the half-maximal effect observed at 0.5 microg/100 g of body weight. Gel-shift experiments demonstrated that DNA binding activity to an FXR response element (IR1) is significantly reduced by LPS treatment. Supershift experiments demonstrated that the shifted protein-DNA complex contains FXR and RXR. Furthermore, the expression of FXR target genes, SHP and apoCII, were significantly reduced by LPS (70 and 60%, respectively). Also, LPS decreases hepatic LRH expression in mouse, which may explain the reduced expression of CYP7A1 in the face of SHP repression. In Hep3B human hepatoma cells, both tumor necrosis factor (TNF) and interleukin-1 (IL-1) significantly decreased FXR mRNA, whereas IL-6 did not have any effect. TNF and IL-1 also decreased the DNA binding activity to an IR1 response element and the expression of SHP and apoCII. Importantly, TNF and IL-1 almost completely blocked the expression of luciferase activity linked to a FXR response element promoter construct transfected into Hep3B cells. Together with our earlier studies on the repression of RXRs, peroxisome proliferator-activated receptors, LXRs, thyroid receptors, constitutive androstane receptor, and pregnane X receptor, these results suggest that decreases in nuclear hormone receptors are major contributors to the decreased gene expression that occurs in the negative acute phase response.
Collapse
Affiliation(s)
- Min Sun Kim
- Department of Medicine, University of California San Francisco, Metabolism Section, Medical Service, Department of Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | | | | | | | | |
Collapse
|
6
|
Rouis M, Dugi KA, Previato L, Patterson AP, Brunzell JD, Brewer HB, Santamarina-Fojo S. Therapeutic response to medium-chain triglycerides and omega-3 fatty acids in a patient with the familial chylomicronemia syndrome. Arterioscler Thromb Vasc Biol 1997; 17:1400-6. [PMID: 9261273 DOI: 10.1161/01.atv.17.7.1400] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have studied the underlying molecular defect in a patient presenting with recurrent pancreatitis, hypertriglyceridemia, and virtually undetectable postheparin plasma lipoprotein lipase (LPL) mass and activity, who normalized her triglycerides 3 to 6 months after initiation of either medium-chain triglyceride (MCT) oil or omega-3 fatty acid (omega-3-FA) therapy. After treatment, postheparin plasma LPL activity and mass ranged from 24% to 39% of normal and LPL specific activity was normal (1.0 nmol.ng-1.min-1). On discontinuation of MCT oil or omega-3-FA, plasma triglyceride increased to > 2000 mg/dL. Northern blotting revealed both normal size and abundance of LPL mRNA isolated from adipocytes as well as macrophages. Sequence analysis of the LPL gene, which included all 10 exons, intron-exon splice junctions, and 1.7 kb of the 5'-flanking region, and of LPL cDNA failed to identify any mutations. ApoC-II activity and mass assays revealed the presence of normal levels of a fully functional cofactor as well as the absence of circulating plasma inhibitors of lipase function. In summary, we describe a unique patient presenting with classical features of the familial chylomicronemia syndrome who manifests an unusually beneficial therapeutic response to MCT oil and omega-3-FA therapy. Unlike that in most patients with LPL deficiency, the chylomicronemia in this patient is not caused by a mutation in the structural LPL gene but possibly by a posttranscriptional defect. Thus, a subset of LPL-deficient patients with unique genetic defects respond to therapy by normalizing fasting plasma triglycerides; a therapeutic trial with MCT oil should be considered in all patients presenting with the familial chylomicronemia syndrome.
Collapse
Affiliation(s)
- M Rouis
- Molecular Disease Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md. 20892-1666, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Aalto-Setälä K, Weinstock PH, Bisgaier CL, Wu L, Smith JD, Breslow JL. Further characterization of the metabolic properties of triglyceride-rich lipoproteins from human and mouse apoC-III transgenic mice. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)39123-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Aalto-Setälä K, Fisher EA, Chen X, Chajek-Shaul T, Hayek T, Zechner R, Walsh A, Ramakrishnan R, Ginsberg HN, Breslow JL. Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein fractional catabolic rate associated with increased apo CIII and reduced apo E on the particles. J Clin Invest 1992; 90:1889-900. [PMID: 1430212 PMCID: PMC443250 DOI: 10.1172/jci116066] [Citation(s) in RCA: 363] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hypertriglyceridemia is common in the general population, but its mechanism is largely unknown. In previous work human apo CIII transgenic (HuCIIITg) mice were found to have elevated triglyceride levels. In this report, the mechanism for the hypertriglyceridemia was studied. Two different HuCIIITg mouse lines were used: a low expressor line with serum triglycerides of approximately 280 mg/dl, and a high expressor line with serum triglycerides of approximately 1,000 mg/dl. Elevated triglycerides were mainly in VLDL. VLDL particles were 1.5 times more triglyceride-rich in high expressor mice than in controls. The total amount of apo CIII (human and mouse) per VLDL particle was 2 and 2.5 times the normal amount in low and high expressors, respectively. Mouse apo E was decreased by 35 and 77% in low and high expressor mice, respectively. Under electron microscopy, VLDL particles from low and high expressor mice were found to have a larger mean diameter, 55.2 +/- 16.6 and 58.2 +/- 17.8 nm, respectively, compared with 51.0 +/- 13.4 nm from control mice. In in vivo studies, radiolabeled VLDL fractional catabolic rate (FCR) was reduced in low and high expressor mice to 2.58 and 0.77 pools/h, respectively, compared with 7.67 pools/h in controls, with no significant differences in the VLDL production rates. In an attempt to explain the reduced VLDL FCR in transgenic mice, tissue lipoprotein lipase (LPL) activity was determined in control and high expressor mice and no differences were observed. Also, VLDLs obtained from control and high expressor mice were found to be equally good substrates for purified LPL. Thus excess apo CIII in HuCIIITg mice does not cause reduced VLDL FCR by suppressing the amount of extractable LPL in tissues or making HuCIIITg VLDL a bad substrate for LPL. Tissue uptake of VLDL was studied in hepatoma cell cultures, and VLDL from transgenic mice was found to be taken up much more slowly than control VLDL (P < 0.0001), indicating that HuCIIITg VLDL is not well recognized by lipoprotein receptors. Additional in vivo studies with Triton-treated mice showed increased VLDL triglyceride, but not apo B, production in the HuCIIITg mice compared with controls. Tissue culture studies with primary hepatocytes showed a modest increase in triglyceride, but not apo B or total protein, secretion in high expressor mice compared with controls. In summary, hypertriglyceridemia in HuCIIITg mice appears to result primarily from decreased tissue uptake of triglyceride-rich particles from the circulation, which is most likely due to increased apo CIII and decreased apo E on VLDL particles. the HuCIIITg mouse appears to be a suitable animal model of primary familial hypertriglyceridemia, and these studies suggest a possible mechanism for this common lipoprotein disorder.
Collapse
Affiliation(s)
- K Aalto-Setälä
- Laboratory of Biochemical Genetics and Metabolism, Rockefeller University, New York 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|