1
|
Konduru AS, Lee BC, Li JD. Curcumin suppresses NTHi-induced CXCL5 expression via inhibition of positive IKKβ pathway and up-regulation of negative MKP-1 pathway. Sci Rep 2016; 6:31695. [PMID: 27538525 PMCID: PMC4990917 DOI: 10.1038/srep31695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/25/2016] [Indexed: 11/09/2022] Open
Abstract
Otitis media (OM) is the most common childhood bacterial infection, and leading cause of conductive hearing loss. Nontypeable Haemophilus influenzae (NTHi) is a major bacterial pathogen for OM. OM characterized by the presence of overactive inflammatory responses is due to the aberrant production of inflammatory mediators including C-X-C motif chemokine ligand 5 (CXCL5). The molecular mechanism underlying induction of CXCL5 by NTHi is unknown. Here we show that NTHi up-regulates CXCL5 expression by activating IKKβ-IκBα and p38 MAPK pathways via NF-κB nuclear translocation-dependent and -independent mechanism in middle ear epithelial cells. Current therapies for OM are ineffective due to the emergence of antibiotic-resistant NTHi strains and risk of side effects with prolonged use of immunosuppressant drugs. In this study, we show that curcumin, derived from Curcuma longa plant, long known for its medicinal properties, inhibited NTHi-induced CXCL5 expression in vitro and in vivo. Curcumin suppressed CXCL5 expression by direct inhibition of IKKβ phosphorylation, and inhibition of p38 MAPK via induction of negative regulator MKP-1. Thus, identification of curcumin as a potential therapeutic for treating OM is of particular translational significance due to the attractiveness of targeting overactive inflammation without significant adverse effects.
Collapse
Affiliation(s)
- Anuhya S. Konduru
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Byung-Cheol Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Jian-Dong Li
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
2
|
Abstract
Otitis media (OM) is a common cause of childhood hearing loss. The large medical costs involved in treating this condition have meant that research to understand the pathology of this disease and identify new therapeutic interventions is important. There is evidence that susceptibility to OM has a significant genetic component, although little is known about the key genetic pathways involved. Mouse models for disease have become an important resource to understand a variety of human pathologies, including OM, due to the ability to easily manipulate their genetic components. This has enabled researchers to create models of acute OM, and has aided in the identification of a number of new genes associated with chronic disease, through the use of mutagenesis programs. The use of mouse models has identified a number of key molecular signalling pathways involved in the development of this condition, with genes identified from models shown to be associated with human OM.
Collapse
|
3
|
Lebeaux D, Chauhan A, Rendueles O, Beloin C. From in vitro to in vivo Models of Bacterial Biofilm-Related Infections. Pathogens 2013; 2:288-356. [PMID: 25437038 PMCID: PMC4235718 DOI: 10.3390/pathogens2020288] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 12/13/2022] Open
Abstract
The influence of microorganisms growing as sessile communities in a large number of human infections has been extensively studied and recognized for 30–40 years, therefore warranting intense scientific and medical research. Nonetheless, mimicking the biofilm-life style of bacteria and biofilm-related infections has been an arduous task. Models used to study biofilms range from simple in vitro to complex in vivo models of tissues or device-related infections. These different models have progressively contributed to the current knowledge of biofilm physiology within the host context. While far from a complete understanding of the multiple elements controlling the dynamic interactions between the host and biofilms, we are nowadays witnessing the emergence of promising preventive or curative strategies to fight biofilm-related infections. This review undertakes a comprehensive analysis of the literature from a historic perspective commenting on the contribution of the different models and discussing future venues and new approaches that can be merged with more traditional techniques in order to model biofilm-infections and efficiently fight them.
Collapse
Affiliation(s)
- David Lebeaux
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Ashwini Chauhan
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Olaya Rendueles
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, 25 rue du Dr. Roux, 75724 Paris cedex 15, France.
| |
Collapse
|
4
|
Lee J, Komatsu K, Lee BC, Lim JH, Jono H, Xu H, Kai H, Zhang ZJ, Yan C, Li JD. Phosphodiesterase 4B mediates extracellular signal-regulated kinase-dependent up-regulation of mucin MUC5AC protein by Streptococcus pneumoniae by inhibiting cAMP-protein kinase A-dependent MKP-1 phosphatase pathway. J Biol Chem 2012; 287:22799-811. [PMID: 22610099 DOI: 10.1074/jbc.m111.337378] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Otitis media (OM) is the most common childhood bacterial infection and the major cause of conductive hearing loss in children. Mucus overproduction is a hallmark of OM. Streptococcus pneumoniae is the most common gram-positive bacterial pathogen causing OM. Among many mucin genes, MUC5AC has been found to be greatly up-regulated in the middle ear mucosa of human patients with OM. We previously reported that S. pneumoniae up-regulates MUC5AC expression in a MAPK ERK-dependent manner. We also found that MAPK phosphatase-1 (MKP-1) negatively regulates S. pneumoniae-induced ERK-dependent MUC5AC up-regulation. Therapeutic strategies for up-regulating the expression of negative regulators such as MKP-1 may have significant therapeutic potential for treating mucus overproduction in OM. However, the underlying molecular mechanism by which MKP-1 expression is negatively regulated during S. pneumoniae infection is unknown. In this study we show that phosphodiesterase 4B (PDE4B) mediates S. pneumoniae-induced MUC5AC up-regulation by inhibiting the expression of a negative regulator MKP-1, which in turn leads to enhanced MAPK ERK activation and subsequent up-regulation of MUC5AC. PDE4B inhibits MKP-1 expression in a cAMP-PKA-dependent manner. PDE4-specific inhibitor rolipram inhibits S. pneumoniae-induced MUC5AC up-regulation both in vitro and in vivo. Moreover, we show that PDE4B plays a critical role in MUC5AC induction. Finally, topical and post-infection administration of rolipram into the middle ear potently inhibited S. pneumoniae-induced MUC5AC up-regulation. Collectively, these data demonstrate that PDE4B mediates ERK-dependent up-regulation of mucin MUC5AC by S. pneumoniae by inhibiting cAMP-PKA-dependent MKP-1 pathway. This study may lead to novel therapeutic strategy for inhibiting mucus overproduction.
Collapse
Affiliation(s)
- Jiyun Lee
- Center for Inflammation, Immunity, and Infection and Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sun J, Chen J, Cheng Z, Robbins JB, Battey JF, Gu XX. Biological activities of antibodies elicited by lipooligosaccharide based-conjugate vaccines of nontypeable Haemophilus influenzae in an otitis media model. Vaccine 2000; 18:1264-72. [PMID: 10649628 DOI: 10.1016/s0264-410x(99)00381-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vaccination of chinchillas with nontypeable Haemophilus influenzae (NTHi) lipooligosaccharide (LOS) conjugates protected against otitis media. Correlations between the levels of conjugate-induced LOS antibodies (Abs) in sera and middle ear fluids (MEFs) and Ab-mediated biological functions and protection were examined. Following parenteral vaccination and middle ear challenge, all vaccinated animals, but none of the controls, had high titers of anti-LOS in their sera and MEFs. There was a correlation between the levels of anti-LOS IgG + M, IgG or IgA in the sera and in the MEFs (P < 0.001). An inverse correlation was found between the level of serum IgG + M and bacterial counts and between the levels of MEF Abs and bacterial counts at the early postchallenge stage (P < 0.05). Of the 39 vaccinated animals, 44% showed complete protection against otitis media, 46% (18/39) of their sera inhibited adherence of NTHi to human epithelial cells, 49% (19/39) demonstrated bactericidal activity and 49% (19/39) showed opsonophagocytic activity. In contrast, none of the controls (19) were protected, none of their sera inhibited bacterial adherence or had bactericidal activity and only 21% showed opsonophagocytosis. Our interpretation is that vaccine-induced LOS Abs transuded into the middle ear and conferred immunity to NTHi by binding to LOS of NTHi, inhibition of NTHi adherence to epithelial cells and complement-mediated bacteriolysis (or opsonophagocytosis).
Collapse
Affiliation(s)
- J Sun
- Laboratory of Immunology, National Institute on Deafness and Other Communication Disorders, Rockville, MD 20850, USA
| | | | | | | | | | | |
Collapse
|
6
|
Gu XX, Sun J, Jin S, Barenkamp SJ, Lim DJ, Robbins JB, Battey J. Detoxified lipooligosaccharide from nontypeable Haemophilus influenzae conjugated to proteins confers protection against otitis media in chinchillas. Infect Immun 1997; 65:4488-93. [PMID: 9353024 PMCID: PMC175645 DOI: 10.1128/iai.65.11.4488-4493.1997] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Detoxified-lipooligosaccharide (dLOS)-protein conjugates from nontypeable Haemophilus influenzae (NTHi) elicited a significant rise of anti-LOS antibodies with bactericidal activity in rabbits (X.-X. Gu, C.-M. Tsai, T. Ueyama, S. J. Barenkamp, J. B. Robbins, and D. J. Lim, Infect. Immun. 64:4047-4053, 1996). In this study, we evaluated whether vaccination with the conjugates would protect against NTHi otitis media in chinchillas. Fifty-eight chinchillas received three subcutaneous or intramuscular injections of dLOS-conjugated tetanus toxoid, dLOS-conjugated high-molecular-weight proteins from NTHi, or saline (control) in Freund's adjuvant and then were challenged by intrabullar inoculation with 140 CFU of NTHi. All vaccinated animals responded with elevated serum titers of anti-LOS antibody, and 49% (19 of 39) demonstrated bactericidal activity against the homologous strain. Otitis media with culture-positive NTHi effusions developed in all 19 controls and 56% (22 of 39) of the vaccinated animals during a period of 21 days (P < 0.001). Bacterial counts of the middle ear effusions were lower in the vaccine groups than in the controls (P < 0.01). The incidences of infection in the unchallenged ear or inner ear were 26 or 28% in the vaccine groups and 53 or 58% in the controls (P < 0.05). The signs of infection observed by otoscopy were less severe in the vaccine groups than in the controls. There was no significant difference between the two vaccine groups. These data indicate that active immunization with LOS-based conjugates reduces the incidence of NTHi-induced otitis media.
Collapse
Affiliation(s)
- X X Gu
- Laboratory of Immunology, National Institute on Deafness and Other Communication Disorders, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Gu XX, Tsai CM, Ueyama T, Barenkamp SJ, Robbins JB, Lim DJ. Synthesis, characterization, and immunologic properties of detoxified lipooligosaccharide from nontypeable Haemophilus influenzae conjugated to proteins. Infect Immun 1996; 64:4047-53. [PMID: 8926067 PMCID: PMC174335 DOI: 10.1128/iai.64.10.4047-4053.1996] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an important cause of otitis media in children and of pneumonitis in adults with depressed resistance. Lipooligosaccharide (LOS) is a major surface antigen of NTHi and elicits bactericidal and opsonic antibodies. We prepared detoxified LOS (dLOS) protein conjugates from NTHi for use as experimental vaccines. LOS from NTHi 9274 was treated with anhydrous hydrazine and had its toxicity reduced to clinically acceptable levels. dLOS was bound to tetanus toxoid (TT) or high- molecular-weight proteins (HMPs) from NTHi through a linker of adipic acid dihydrazide to form dLOS-TT or dLOS-HMP. The molar ratio of the dLOS to protein carriers ranged from 26:1 to 50:1. The antigenicity of the conjugates was similar to that of the LOS alone as determined by double immunodiffusion. Subcutaneous or intramuscular injection of the conjugates elicited a 28- to 486-fold rise in the level of immunoglobulin G antibodies in mice to the homologous LOS after two or three injections and a 169- to 243-fold rise in the level of immunoglobulin G antibodies in rabbits after two injections. The immunogenicity of the conjugates in mice and rabbits was enhanced by formulation with monophosphoryl lipid A plus trehalose dimycolate. In rabbits, conjugate-induced LOS antibodies induced complement-mediated bactericidal activity against the homologous strain 9274 and prototype strain 3189. These results indicate that a detoxified LOS-protein conjugate is a candidate vaccine for otitis media and pneumonitis caused by NTHi.
Collapse
Affiliation(s)
- X X Gu
- Vaccine Development Unit, Laboratory of Cellular Biology, National Institute of Deafness and Other Communication Disorders, NIH, Rockville, Maryland 20850, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Recurrent acute otitis media (AOM) is an extremely prevalent disease in young children. Epidemiologic associations suggest that primary prevention or reduction of AOM frequency may be achieved with breast-feeding during infancy, elimination of household tobacco smoking, and use of small rather than large day-care arrangements for infants and toddlers. Secondary antimicrobial prophylaxis with amoxicillin or sulfisoxazole reduces the frequency of recurrent AOM by about 50%, but it does not appear to reduce the duration of otitis media with effusion (OME). Tympanostomy tube insertion is not as effective as amoxicillin in reducing AOM frequency in children without OME. Adenoidectomy appears to be warranted for children who develop recurrent AOM after extrusion of tubes. Vaccines against the common bacteria and viruses causing AOM hold the greatest promise of preventing AOM and blocking the sequence of pathologic events leading to chronic OME and middle ear sequelae. The greatest progress has been made recently with pneumococcal protein conjugate vaccines, and clinical testing is in progress.
Collapse
Affiliation(s)
- G S Giebink
- Otitis Media Research Center, University of Minnesota School of Medicine, Minneapolis
| |
Collapse
|