1
|
Powers RK, Culp-Hill R, Ludwig MP, Smith KP, Waugh KA, Minter R, Tuttle KD, Lewis HC, Rachubinski AL, Granrath RE, Carmona-Iragui M, Wilkerson RB, Kahn DE, Joshi M, Lleó A, Blesa R, Fortea J, D'Alessandro A, Costello JC, Sullivan KD, Espinosa JM. Trisomy 21 activates the kynurenine pathway via increased dosage of interferon receptors. Nat Commun 2019; 10:4766. [PMID: 31628327 PMCID: PMC6800452 DOI: 10.1038/s41467-019-12739-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Trisomy 21 (T21) causes Down syndrome (DS), affecting immune and neurological function by ill-defined mechanisms. Here we report a large metabolomics study of plasma and cerebrospinal fluid, showing in independent cohorts that people with DS produce elevated levels of kynurenine and quinolinic acid, two tryptophan catabolites with potent immunosuppressive and neurotoxic properties, respectively. Immune cells of people with DS overexpress IDO1, the rate-limiting enzyme in the kynurenine pathway (KP) and a known interferon (IFN)-stimulated gene. Furthermore, the levels of IFN-inducible cytokines positively correlate with KP dysregulation. Using metabolic tracing assays, we show that overexpression of IFN receptors encoded on chromosome 21 contribute to enhanced IFN stimulation, thereby causing IDO1 overexpression and kynurenine overproduction in cells with T21. Finally, a mouse model of DS carrying triplication of IFN receptors exhibits KP dysregulation. Together, our results reveal a mechanism by which T21 could drive immunosuppression and neurotoxicity in DS.
Collapse
Affiliation(s)
- Rani K Powers
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael P Ludwig
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Katherine A Waugh
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ross Minter
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kathryn D Tuttle
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hannah C Lewis
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ross E Granrath
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - María Carmona-Iragui
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autonoma de Barcelona, CIBERNED, Barcelona, Spain.,Barcelona Down Medical Center, Catalan Down Syndrome Foundation, Barcelona, Spain
| | - Rebecca B Wilkerson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Darcy E Kahn
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Molishree Joshi
- Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alberto Lleó
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autonoma de Barcelona, CIBERNED, Barcelona, Spain
| | - Rafael Blesa
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autonoma de Barcelona, CIBERNED, Barcelona, Spain
| | - Juan Fortea
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autonoma de Barcelona, CIBERNED, Barcelona, Spain.,Barcelona Down Medical Center, Catalan Down Syndrome Foundation, Barcelona, Spain
| | - Angelo D'Alessandro
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - James C Costello
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA. .,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA. .,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA. .,Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA. .,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA. .,Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA. .,Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA.
| |
Collapse
|
4
|
Xu P, Sauve AA. Vitamin B3, the nicotinamide adenine dinucleotides and aging. Mech Ageing Dev 2010; 131:287-98. [PMID: 20307564 DOI: 10.1016/j.mad.2010.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 03/07/2010] [Accepted: 03/10/2010] [Indexed: 02/07/2023]
Abstract
Organism aging is a process of time and maturation culminating in senescence and death. The molecular details that define and determine aging have been intensely investigated. It has become appreciated that the process is partly an accumulation of random yet inevitable changes, but it can be strongly affected by genes that alter lifespan. In this review, we consider how NAD(+) metabolism plays important roles in the random patterns of aging, and also in the more programmatic aspects. The derivatives of NAD(+), such as reduced and oxidized forms of NAD(P)(+), play important roles in maintaining and regulating cellular redox state, Ca(2+) stores, DNA damage and repair, stress responses, cell cycle timing and lipid and energy metabolism. NAD(+) is also a substrate for signaling enzymes like the sirtuins and poly-ADP-ribosylpolymerases, members of a broad family of protein deacetylases and ADP-ribosyltransferases that regulate fundamental cellular processes such as transcription, recombination, cell division, proliferation, genome maintenance, apoptosis, stress resistance and senescence. NAD(+)-dependent enzymes are increasingly appreciated to regulate the timing of changes that lead to aging phenotypes. We consider how metabolism, specifically connected with Vitamin B3 and the nicotinamide adenine dinucleotides and their derivatives, occupies a central place in the aging processes of mammals.
Collapse
Affiliation(s)
- Ping Xu
- Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue LC216, New York, NY 10065, USA
| | | |
Collapse
|
6
|
Bogan KL, Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr 2008; 28:115-30. [PMID: 18429699 DOI: 10.1146/annurev.nutr.28.061807.155443] [Citation(s) in RCA: 490] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although baseline requirements for nicotinamide adenine dinucleotide (NAD+) synthesis can be met either with dietary tryptophan or with less than 20 mg of daily niacin, which consists of nicotinic acid and/or nicotinamide, there is growing evidence that substantially greater rates of NAD+ synthesis may be beneficial to protect against neurological degeneration, Candida glabrata infection, and possibly to enhance reverse cholesterol transport. The distinct and tissue-specific biosynthetic and/or ligand activities of tryptophan, nicotinic acid, nicotinamide, and the newly identified NAD+ precursor, nicotinamide riboside, reviewed herein, are responsible for vitamin-specific effects and side effects. Because current data suggest that nicotinamide riboside may be the only vitamin precursor that supports neuronal NAD+ synthesis, we present prospects for human nicotinamide riboside supplementation and propose areas for future research.
Collapse
Affiliation(s)
- Katrina L Bogan
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.
| | | |
Collapse
|
7
|
Fukuoka SI, Ishiguro K, Tanabe A, Egashira Y, Sanada H, Fukuwatari T, Shibata K. Identification and Expression of α Cdna Encoding Human 2-Amino-3- Carboxymuconate-6-Semialdehyde Decarboxylase (Acmsd): A Key Enzyme for the Tryptophan-Niacine Pathway and Quinolinate Hypothesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 527:443-53. [PMID: 15206762 DOI: 10.1007/978-1-4615-0135-0_52] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Quinolinate (quinolinic acid) is a potent endogenous excitotoxin of neuronal cells. Elevation of quinolinate levels in the brain has been implicated in the pathogenesis of various neurodegenerative disorders, the so-called "quinolinate hypothesis." Quinolinate is non-enzymatically derived from 2-amino-3-carboxymuconate-6-semialdehyde (ACMS). 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD) is the only known enzyme which can process ACMS to a benign catabolite and thus prevent the accumulation of quinolinate from ACMS. ACMSD seems to be regulated by nutritional and hormonal signals, but its molecular mechanism has, to date, been largely unknown. Utilizing partial amino acid sequences obtained from highly purified porcine kidney ACMSD, a cDNA encoding human ACMSD was cloned and characterized. The cDNA encodes a unique open reading frame of 336 amino acids and displays little homology to any known enzymes or motifs in mammalian databases, suggesting that ACMSD may contain a new kind of protein fold. Real-time PCR-based quantification of ACMSD revealed very low but significant levels of the expression in the brain. Brain ACMSD messages was down- and up-regulated in response to low protein diet and streptozocin-induced diabetes, respectively. Expression of QPRT, another enzyme which catabolizes quinolinate, was also found in the brain. This suggests that a pathway does exist by which the levels of quinolinate in the brain are regulated. In this report, we address the molecular basis underlying quinolinate metabolism and the regulation of ACMSD expression.
Collapse
Affiliation(s)
- Shin-Ichi Fukuoka
- Graduate School of Agriculuture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | | | | | | | | | | | | |
Collapse
|