1
|
Detergent Isolation Stabilizes and Activates the Shigella Type III Secretion System Translocator Protein IpaC. J Pharm Sci 2016; 105:2240-8. [PMID: 27297397 DOI: 10.1016/j.xphs.2016.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 01/18/2023]
Abstract
Shigella rely on a type III secretion system as the primary virulence factor for invasion and colonization of human hosts. Although there are an estimated 90 million Shigella infections, annually responsible for more than 100,000 deaths worldwide, challenges isolating and stabilizing many type III secretion system proteins have prevented a full understanding of the Shigella invasion mechanism and additionally slowed progress toward a much needed Shigella vaccine. Here, we show that the non-denaturing zwitterionic detergent N, N-dimethyldodecylamine N-oxide (LDAO) and non-ionic detergent n-octyl-oligo-oxyethylene efficiently isolated the hydrophobic Shigella translocator protein IpaC from the co-purified IpaC/IpgC chaperone-bound complex. Both detergents resulted in monomeric IpaC that exhibits strong membrane binding and lysis characteristics while the chaperone-bound complex does not, suggesting that the stabilizing detergents provide a means of following IpaC "activation" in vitro. Additionally, biophysical characterization found that LDAO provides significant thermal and temporal stability to IpaC, protecting it for several days at room temperature and brief exposure to temperatures reaching 90°C. In summary, this work identified and characterized conditions that provide stable, membrane active IpaC, providing insight into key interactions with membranes and laying a strong foundation for future vaccine formulation studies taking advantage of the native immunogenicity of IpaC and the stability provided by LDAO.
Collapse
|
2
|
Burgess JL, Jones HB, Kumar P, Toth RT, Middaugh CR, Antony E, Dickenson NE. Spa47 is an oligomerization-activated type three secretion system (T3SS) ATPase from Shigella flexneri. Protein Sci 2016; 25:1037-48. [PMID: 26947936 DOI: 10.1002/pro.2917] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/23/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023]
Abstract
Gram-negative pathogens often use conserved type three secretion systems (T3SS) for virulence. The Shigella type three secretion apparatus (T3SA) penetrates the host cell membrane and provides a unidirectional conduit for injection of effectors into host cells. The protein Spa47 localizes to the base of the apparatus and is speculated to be an ATPase that provides the energy for T3SA formation and secretion. Here, we developed an expression and purification protocol, producing active Spa47 and providing the first direct evidence that Spa47 is a bona fide ATPase. Additionally, size exclusion chromatography and analytical ultracentrifugation identified multiple oligomeric species of Spa47 with the largest greater than 8 fold more active for ATP hydrolysis than the monomer. An ATPase inactive Spa47 point mutant was then engineered by targeting a conserved Lysine within the predicted Walker A motif of Spa47. Interestingly, the mutant maintained a similar oligomerization pattern as active Spa47, but was unable to restore invasion phenotype when used to complement a spa47 null S. flexneri strain. Together, these results identify Spa47 as a Shigella T3SS ATPase and suggest that its activity is linked to oligomerization, perhaps as a regulatory mechanism as seen in some related pathogens. Additionally, Spa47 catalyzed ATP hydrolysis appears to be essential for host cell invasion, providing a strong platform for additional studies dissecting its role in virulence and providing an attractive target for anti-infective agents.
Collapse
Affiliation(s)
- Jamie L Burgess
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, 84322
| | - Heather B Jones
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, 84322
| | - Prashant Kumar
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, 66047
| | - Ronald T Toth
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas, 66047
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas, 66047
| | - Edwin Antony
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Nicholas E Dickenson
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, 84322
| |
Collapse
|
3
|
Casabonne C, González A, Aquili V, Balagué C. Prevalence and Virulence Genes of Shigella spp. Isolated from Patients with Diarrhea in Rosario, Argentina. Jpn J Infect Dis 2016; 69:477-481. [PMID: 26902216 DOI: 10.7883/yoken.jjid.2015.459] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to determine the prevalence and virulence factors of Shigella species isolated from patients with diarrhea. Shigella species were isolated from 1,022 stool samples collected from different hospitals in Rosario, Argentina. The isolates were characterized using phenotypic tests, serotyping, and detection of virulence genes by PCR. One hundred strains (9.8% of samples collected) of Shigella were isolated. Shigella flexneri was the most frequently identified species (74%), followed by S. sonnei (26%). S. flexneri was also the predominant species isolated from children aged 6-14 years. These clinical strains of Shigella were then tested for the presence of ipaH, virA, ial, sen, and set using specific primers. virA was present in all strains, whereas ipaH was detected in 98% of strains and ial in 83%. sen was found in 71.6% of S. flexneri and 42.3% of S. sonnei isolates, and 41.9% of S. flexneri isolates were positive for set. Furthermore, 32.4% of S. flexneri isolates were positive for both set and sen. This study provides data on the prevalence and distribution of diverse Shigella strains.
Collapse
Affiliation(s)
- Cecilia Casabonne
- Bacteriology Area, College of Biochemical and Pharmaceutical Sciences, National University of Rosario
| | | | | | | |
Collapse
|
4
|
Bien J, Sokolova O, Bozko P. Characterization of Virulence Factors of Staphylococcus aureus: Novel Function of Known Virulence Factors That Are Implicated in Activation of Airway Epithelial Proinflammatory Response. J Pathog 2011; 2011:601905. [PMID: 22567334 PMCID: PMC3335658 DOI: 10.4061/2011/601905] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/23/2011] [Accepted: 07/15/2011] [Indexed: 12/04/2022] Open
Abstract
Airway epithelial cells play a major role in initiating inflammation in response to bacterial pathogens. S. aureus is an important pathogen associated with activation of diverse types of infection characterized by inflammation dominated by polymorphonuclear leukocytes. This bacterium frequently causes lung infection, which is attributed to virulence factors. Many of virulence determinants associated with S. aureus-mediated lung infection have been known for several years. In this paper, we discuss recent advances in our understanding of known virulence factors implicated in pneumonia. We anticipate that better understanding of novel functions of known virulence factors could open the way to regulate inflammatory reactions of the epithelium and to develop effective strategies to treat S. aureus-induced airway diseases.
Collapse
Affiliation(s)
- Justyna Bien
- Witold Stefanski Institute of Parasitology of the Polish Academy of Sciences, Twarda Street 51/55, 00-818 Warsaw, Poland
| | | | | |
Collapse
|
5
|
Vinh H, Nhu NTK, Nga TVT, Duy PT, Campbell JI, Hoang NVM, Boni MF, My PVT, Parry C, Nga TTT, Van Minh P, Thuy CT, Diep TS, Phuong LT, Chinh MT, Loan HT, Tham NTH, Lanh MN, Mong BL, Anh VTC, Bay PVB, Chau NVV, Farrar J, Baker S. A changing picture of shigellosis in southern Vietnam: shifting species dominance, antimicrobial susceptibility and clinical presentation. BMC Infect Dis 2009; 9:204. [PMID: 20003464 PMCID: PMC2803792 DOI: 10.1186/1471-2334-9-204] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 12/15/2009] [Indexed: 11/18/2022] Open
Abstract
Background Shigellosis remains considerable public health problem in some developing countries. The nature of Shigellae suggests that they are highly adaptable when placed under selective pressure in a human population. This is demonstrated by variation and fluctuations in serotypes and antimicrobial resistance profile of organisms circulating in differing setting in endemic locations. Antimicrobial resistance in the genus Shigella is a constant threat, with reports of organisms in Asia being resistant to multiple antimicrobials and new generation therapies. Methods Here we compare microbiological, clinical and epidemiological data from patients with shigellosis over three different periods in southern Vietnam spanning14 years. Results Our data demonstrates a shift in dominant infecting species (S. flexneri to S. sonnei) and resistance profile of the organisms circulating in southern Vietnam. We find that there was no significant variation in the syndromes associated with either S. sonnei or S. flexneri, yet the clinical features of the disease are more severe in later observations. Conclusions Our findings show a change in clinical presentation of shigellosis in this setting, as the disease may be now more pronounced, this is concurrent with a change in antimicrobial resistance profile. These data highlight the socio-economic development of southern Vietnam and should guide future vaccine development and deployment strategies. Trial Registration Current Controlled Trials ISRCTN55945881
Collapse
Affiliation(s)
- Ha Vinh
- The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Espina M, Olive AJ, Kenjale R, Moore DS, Ausar SF, Kaminski RW, Oaks EV, Middaugh CR, Picking WD, Picking WL. IpaD localizes to the tip of the type III secretion system needle of Shigella flexneri. Infect Immun 2006; 74:4391-400. [PMID: 16861624 PMCID: PMC1539624 DOI: 10.1128/iai.00440-06] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Shigella flexneri, the causative agent of shigellosis, is a gram-negative bacterial pathogen that initiates infection by invading cells within the colonic epithelium. Contact with host cell surfaces induces a rapid burst of protein secretion via the Shigella type III secretion system (TTSS). The first proteins secreted are IpaD, IpaB, and IpaC, with IpaB and IpaC being inserted into the host cell membrane to form a pore for translocating late effectors into the target cell cytoplasm. The resulting pathogen-host cross talk results in localized actin polymerization, membrane ruffling, and, ultimately, pathogen entry. IpaD is essential for host cell invasion, but its role in this process is just now coming to light. IpaD is a multifunctional protein that controls the secretion and presentation of IpaB and IpaC at the pathogen-host interface. We show here that antibodies recognizing the surface-exposed N terminus of IpaD neutralize Shigella's ability to promote pore formation in erythrocyte membranes. We further show that MxiH and IpaD colocalize on the bacterial surface. When TTSS needles were sheared from the Shigella surface, IpaD was found at only the needle tips. Consistent with this, IpaD localized to the exposed tips of needles that were still attached to the bacterium. Molecular analyses then showed that the IpaD C terminus is required for this surface localization and function. Furthermore, mutations that prevent IpaD surface localization also eliminate all IpaD-related functions. Thus, this study demonstrates that IpaD localizes to the TTSA needle tip, where it functions to control the secretion and proper insertion of translocators into host cell membranes.
Collapse
Affiliation(s)
- Marianela Espina
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Uchiyama T, Kawano H, Kusuhara Y. The major outer membrane protein rOmpB of spotted fever group rickettsiae functions in the rickettsial adherence to and invasion of Vero cells. Microbes Infect 2006; 8:801-9. [PMID: 16500128 DOI: 10.1016/j.micinf.2005.10.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 10/03/2005] [Accepted: 10/03/2005] [Indexed: 01/13/2023]
Abstract
The role of one of the major outer membrane proteins, rOmpB, of spotted fever group rickettsiae was examined. Antibodies generated against native rOmpB inhibited plaque formation by Rickettsia japonica in Vero cells when applied at the time of inoculation of the rickettsiae. However, antibodies to heat-denatured rOmpB did not. Moreover, the soluble recombinant rOmpB also inhibited plaque formation to some extent. Thus it seems that rOmpB functions at least in the adherence of rickettsiae to host cells. To obtain direct evidence of its function in the adherence to and invasion of Vero cells, we generated Escherichia coli transformed by the vector pET-22b(+) inserted with the ompB open reading frame of R. japonica. The recombinant bacteria expressed a 165-kDa protein consistent with the precursor of rOmpB. The protein reacted with monoclonal antibodies to heat-labile epitopes of rOmpB. Immunofluorescence of the recombinant bacteria demonstrated surface expression of the protein. It was shown by light microscopy and transmission and scanning electron microscopy that the bacteria adhered to and invaded Vero cells. Thus, although the recombinant precursor rOmpB was not processed on the outer membrane of E. coli, it functions during these steps. The manner of entry was similar to that of rickettsiae although at a slower rate.
Collapse
Affiliation(s)
- Tsuneo Uchiyama
- Department of Virology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima-shi, Tokushima 770-8503, Japan.
| | | | | |
Collapse
|
8
|
Que YA, Haefliger JA, Piroth L, François P, Widmer E, Entenza JM, Sinha B, Herrmann M, Francioli P, Vaudaux P, Moreillon P. Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. ACTA ACUST UNITED AC 2005; 201:1627-35. [PMID: 15897276 PMCID: PMC2212930 DOI: 10.1084/jem.20050125] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The expression of Staphylococcus aureus adhesins in Lactococcus lactis identified clumping factor A (ClfA) and fibronectin-binding protein A (FnBPA) as critical for valve colonization in rats with experimental endocarditis. This study further analyzed their role in disease evolution. Infected animals were followed for 3 d. ClfA-positive lactococci successfully colonized damaged valves, but were spontaneously eradicated over 48 h. In contrast, FnBPA-positive lactococci progressively increased bacterial titers in vegetations and spleens. At imaging, ClfA-positive lactococci were restricted to the vegetations, whereas FnBPA-positive lactococci also invaded the adjacent endothelium. This reflected the capacity of FnBPA to trigger cell internalization in vitro. Because FnBPA carries both fibrinogen- and fibronectin-binding domains, we tested the role of these functionalities by deleting the fibrinogen-binding domain of FnBPA and supplementing it with the fibrinogen-binding domain of ClfA in cis or in trans. Deletion of the fibrinogen-binding domain of FnBPA did not alter fibronectin binding and cell internalization in vitro. However, it totally abrogated valve infectivity in vivo. This ability was restored in cis by inserting the fibrinogen-binding domain of ClfA into truncated FnBPA, and in trans by coexpressing full-length ClfA and truncated FnBPA on two separate plasmids. Thus, fibrinogen and fibronectin binding could cooperate for S. aureus valve colonization and endothelial invasion in vivo.
Collapse
MESH Headings
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/metabolism
- Animals
- Bacterial Adhesion/genetics
- Coagulase/genetics
- Coagulase/metabolism
- Endocarditis, Bacterial/metabolism
- Endocarditis, Bacterial/microbiology
- Endocarditis, Bacterial/pathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/microbiology
- Endothelium, Vascular/pathology
- Female
- Fibrinogen/metabolism
- Fibronectins/metabolism
- Heart Valves/metabolism
- Heart Valves/microbiology
- Heart Valves/pathology
- Lactococcus lactis/genetics
- Lactococcus lactis/pathogenicity
- Protein Binding
- Protein Structure, Tertiary/genetics
- Rats
- Rats, Wistar
- Sequence Deletion
- Spleen/metabolism
- Spleen/microbiology
- Spleen/pathology
- Staphylococcal Infections/metabolism
- Staphylococcal Infections/microbiology
- Staphylococcal Infections/pathology
- Staphylococcus aureus/genetics
- Staphylococcus aureus/pathogenicity
Collapse
Affiliation(s)
- Yok-Ai Que
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yavlovich A, Tarshis M, Rottem S. Internalization and intracellular survival ofMycoplasma pneumoniaeby non-phagocytic cells. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09488.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Adam R, Mussa S, Lindemann D, Oelschlaeger TA, Deadman M, Ferguson DJP, Moxon R, Schroten H. The avian chorioallantoic membrane in ovo--a useful model for bacterial invasion assays. Int J Med Microbiol 2002; 292:267-75. [PMID: 12398217 DOI: 10.1078/1438-4221-00209] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to evaluate the practicability of the chick embryo chorioallantoic membrane (CAM) with special regard to the 'natural air sac' technique (NAST) of preparation for in-vivo research on the invasive potential of bacterial strains of various enterobacterial species. It was sought to establish an experimental system more closely resembling in-vivo conditions than cell lines on one hand, and cheaper and easier to handle than established animal models on the other. Fertilized eggs of the domestic fowl were incubated. The CAM was prepared atraumatically at the natural air space of the egg, and a cannula was inserted for subsequent extraction of allantoic fluid (AF) below the CAM. The CAM was then inoculated with either one out of five strains of Klebsiella pneumoniae, an Escherichia coli K-12 strain or a Salmonella typhimurium strain, either alone or in combinations, respectively. AF samples were extracted at certain time points, and the presence of bacteria was determined by cultivation. Penetration and mortality ratios of the infected embryos were calculated. In addition, the mode of crossing the epithelial barrier was examined by electron microscopy. Differing rates of invasion through the CAM and rates of mortality of the chicken embryos demonstrated a clear dependency on the inoculated bacterial strain. Low invading bacteria could be distinguished from intermediate strains, and from strains exerting a strong capability of invasion and killing of the embryos. Simultaneous monotopical inoculation of Klebsiella and E. coli showed a permissive effect of co-incubated Klebsiella on the invasiveness of E. coli. The chick embryo CAM prepared by NAST has shown to be a useful model for in vivo studies on invasion capabilities, pathogenicity and interactions of inoculated bacteria.
Collapse
Affiliation(s)
- Rüdiger Adam
- Zentrum für Kinderheilkunde, Universitätsklinikum Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Magdalena J, Hachani A, Chamekh M, Jouihri N, Gounon P, Blocker A, Allaoui A. Spa32 regulates a switch in substrate specificity of the type III secreton of Shigella flexneri from needle components to Ipa proteins. J Bacteriol 2002; 184:3433-41. [PMID: 12057936 PMCID: PMC135143 DOI: 10.1128/jb.184.13.3433-3441.2002] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2002] [Accepted: 04/03/2002] [Indexed: 11/20/2022] Open
Abstract
Type III secretion systems (TTSS) are essential virulence determinants of many gram-negative bacteria and serve, upon physical contact with target cells, to translocate bacterial proteins directly across eukaryotic cell membranes. The Shigella TTSS is encoded by the mxi/spa loci located on its virulence plasmid. By electron microscopy secretons are visualized as tripartite with an external needle, a transmembrane domain, and a cytoplasmic bulb. In the present study, we generated a Shigella spa32 mutant and studied its phenotype. The spa32 gene shows low sequence homology to Salmonella TTSS1 invJ/spaN and to flagellar fliK. The spa32 mutant, like the wild-type strain, secreted the Ipas and IpgD, which are normally secreted via the TTSS, at low levels into the growth medium. However, unlike the wild-type strain, the spa32 mutant could neither be induced to secrete the Ipas and IpgD instantaneously upon addition of Congo red nor penetrate HeLa cells in vitro. Additionally, the Spa32 protein is secreted in large amounts by the TTSS during exponential growth but not upon Congo red induction. Interestingly, electron microscopy analysis of the spa32 mutant revealed that the needle of its secretons were up to 10 times longer than those of the wild type. In addition, in the absence of induction, the spa32 mutant secreted normal levels of MxiI but a large excess of MxiH. Taken together, our data indicate that the spa32 mutant presents a novel phenotype and that the primary defect of the mutant may be its inability to regulate or control secretion of MxiH.
Collapse
Affiliation(s)
- Juana Magdalena
- Laboratoire de Bactériologie Moléculaire, Faculté de Médecine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
12
|
Blocker A, Jouihri N, Larquet E, Gounon P, Ebel F, Parsot C, Sansonetti P, Allaoui A. Structure and composition of the Shigella flexneri "needle complex", a part of its type III secreton. Mol Microbiol 2001; 39:652-63. [PMID: 11169106 DOI: 10.1046/j.1365-2958.2001.02200.x] [Citation(s) in RCA: 292] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Type III secretion systems (TTSSs or secretons), essential virulence determinants of many Gram-negative bacteria, serve to translocate proteins directly from the bacteria into the host cytoplasm. Electron microscopy (EM) indicates that the TTSSs of Shigella flexneri are composed of: (1) an external needle; (2) a transmembrane domain; and (3) a cytoplasmic bulb. EM analysis of purified and negatively stained parts 1, 2 and a portion of 3 of the TTSS, together termed the "needle complex" (NC), produced an average image at 17 A resolution in which a base, an outer ring and a needle, inserted through the ring into the base, could be discerned. This analysis and cryoEM images of NCs indicated that the needle and base contain a central 2-3 nm canal. Five major NC components, MxiD, MxiG, MxiJ, MxiH and MxiI, were identified by N-terminal sequencing. MxiG and MxiJ are predicted to be inner membrane proteins and presumably form the base. MxiD is predicted to be an outer membrane protein and to form the outer ring. MxiH and MxiI are small hydrophilic proteins. Mutants lacking either of these proteins formed needleless secretons and were unable to secrete Ipa proteins. As MxiH was present in NCs in large molar excess, we propose that it is the major needle component. MxiI may cap at the external needle tip.
Collapse
Affiliation(s)
- A Blocker
- Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
|