1
|
Inactivation of mouse transmembrane prolyl 4-hydroxylase increases blood brain barrier permeability and ischemia-induced cerebral neuroinflammation. J Biol Chem 2022; 298:101721. [PMID: 35151685 PMCID: PMC8914383 DOI: 10.1016/j.jbc.2022.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
Hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) regulate the hypoxic induction of >300 genes required for survival and adaptation under oxygen deprivation. Inhibition of HIF-P4H-2 has been shown to be protective in focal cerebral ischemia rodent models, while that of HIF-P4H-1 has no effects and inactivation of HIF-P4H-3 has adverse effects. A transmembrane prolyl 4-hydroxylase (P4H-TM) is highly expressed in the brain and contributes to the regulation of HIF, but the outcome of its inhibition on stroke is yet unknown. To study this, we subjected WT and P4htm−/− mice to permanent middle cerebral artery occlusion (pMCAO). Lack of P4H-TM had no effect on lesion size following pMCAO, but increased inflammatory microgliosis and neutrophil infiltration was observed in the P4htm−/− cortex. Furthermore, both the permeability of blood brain barrier and ultrastructure of cerebral tight junctions were compromised in P4htm−/− mice. At the molecular level, P4H-TM deficiency led to increased expression of proinflammatory genes and robust activation of protein kinases in the cortex, while expression of tight junction proteins and the neuroprotective growth factors erythropoietin and vascular endothelial growth factor was reduced. Our data provide the first evidence that P4H-TM inactivation has no protective effect on infarct size and increases inflammatory microgliosis and neutrophil infiltration in the cortex at early stage after pMCAO. When considering HIF-P4H inhibitors as potential therapeutics in stroke, the current data support that isoenzyme-selective inhibitors that do not target P4H-TM or HIF-P4H-3 would be preferred.
Collapse
|
2
|
Effect of Intrahippocampal Administration of α7 Subtype Nicotinic Receptor Agonist PNU-282987 and Its Solvent Dimethyl Sulfoxide on the Efficiency of Hypoxic Preconditioning in Rats. Molecules 2021; 26:molecules26237387. [PMID: 34885970 PMCID: PMC8659180 DOI: 10.3390/molecules26237387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
We have previously suggested a key role of the hippocampus in the preconditioning action of moderate hypobaric hypoxia (HBH). The preconditioning efficiency of HBH is associated with acoustic startle prepulse inhibition (PPI). In rats with PPI > 40%, HBH activates the cholinergic projections of hippocampus, and PNU-282987, a selective agonist of α7 nicotinic receptors (α7nAChRs), reduces the HBH efficiency and potentiating effect on HBH of its solvent dimethyl sulfoxide (DMSO, anticholinesterase agent) when administered intraperitoneally. In order to validate the hippocampus as a key structure in the mechanism of hypoxic preconditioning and research a significance of α7nAChR activation in the hypoxic preconditioning, we performed an in vivo pharmacological study of intrahippocampal injections of PNU-282987 into the CA1 area on HBH efficiency in rats with PPI ≥ 40%. We found that PNU-282987 (30 μM) reduced HBH efficiency as with intraperitoneal administration, while DMSO (0.05%) still potentiated this effect. Thus, direct evidence of the key role of the hippocampus in the preconditioning effect of HBH and some details of this mechanism were obtained in rats with PPI ≥ 40%. The activation of α7nAChRs is not involved in the cholinergic signaling initiated by HBH or DMSO via any route of administration. Possible ways of the potentiating action of DMSO on HBH efficiency and its dependence on α7nAChRs are discussed.
Collapse
|
3
|
Burtscher J, Syed MMK, Keller MA, Lashuel HA, Millet GP. Fatal attraction - The role of hypoxia when alpha-synuclein gets intimate with mitochondria. Neurobiol Aging 2021; 107:128-141. [PMID: 34428721 DOI: 10.1016/j.neurobiolaging.2021.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022]
Abstract
Alpha-synuclein aggregation and mitochondrial dysfunction are main pathological hallmarks of Parkinson's disease (PD) and several other neurodegenerative diseases, collectively known as synucleinopathies. However, increasing evidence suggests that they may not be sufficient to cause PD. Here we propose the role of hypoxia as a missing link that connects the complex interplay between alpha-synuclein biochemistry and pathology, mitochondrial dysfunctions and neurodegeneration in PD. We review the partly conflicting literature on alpha-synuclein binding to membranes and mitochondria and its impact on mitochondrial functions. From there, we focus on adverse changes in cellular environments, revolving around hypoxic stress, that may trigger or facilitate PD progression. Inter-dependent structural re-arrangements of mitochondrial membranes, including increased cytoplasmic exposure of mitochondrial cardiolipins and changes in alpha-synuclein localization and conformation are discussed consequences of such conditions. Enhancing cellular resilience could be an integral part of future combination-based therapies of PD. This may be achieved by boosting the capacity of cellular and specifically mitochondrial processes to regulate and adapt to altered proteostasis, redox, and inflammatory conditions and by inducing protective molecular and tissue re-modelling.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland; Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Muhammed Muazzam Kamil Syed
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Liu Y, Lei Y, Guo S, Zuo Z. Ensemble-based virtual screening in discovering potent inhibitors targeting Von Hippel-Lindau (VHL) E3 ubiquitin ligase. Life Sci 2020; 262:118495. [PMID: 32987061 DOI: 10.1016/j.lfs.2020.118495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/11/2020] [Accepted: 09/20/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND The Von Hippel-Lindau (VHL) E3 ubiquitin ligase, which mediates its substrate hypoxia-inducible factor 1α (HIF-1α) for ubiquitination and subsequent degradation, is an attractive drug target in various diseases, such as anemia, inflammation, neurodegeneration and cancer. Proteolysis targeting chimeras (PROTACs) containing a VHL ligand that can hijack the E3 ligase activity to degrade the target protein has also been studied in academic and in industry areas recently. METHODS Herein, by developing and optimizing the Bayesian Model, we report ensemble-based virtual screening as an effective strategy to discover potential VHL inhibitors from Specs database. RESULTS The virtual screening protocol was developed, ten representative molecules were obtained and five compounds were selected for subsequent binding mode analysis to be potent VHL inhibitors.
Collapse
Affiliation(s)
- Yi Liu
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xueyuan Street, Huixing Road, Zigong, Sichuan 643000, China.
| | - Yu Lei
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xueyuan Street, Huixing Road, Zigong, Sichuan 643000, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Sheng Guo
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xueyuan Street, Huixing Road, Zigong, Sichuan 643000, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhili Zuo
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xueyuan Street, Huixing Road, Zigong, Sichuan 643000, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
5
|
Abstract
Hypoxia-inducible factors (HIFs) control transcriptional responses to reduced O2 availability. HIFs are heterodimeric proteins composed of an O2-regulated HIF-α subunit and a constitutively expressed HIF-1β subunit. HIF-α subunits are subject to prolyl hydroxylation, which targets the proteins for degradation under normoxic conditions. Small molecule prolyl hydroxylase inhibitors, which stabilize the HIF-α subunits and increase HIF-dependent expression of erythropoietin, are in phase III clinical trials for the treatment of anemia in patients with chronic kidney disease. HIFs contribute to the pathogenesis of many cancers, particularly the clear cell type of renal cell carcinoma in which loss of function of the von Hippel-Lindau tumor suppressor blocks HIF-2α degradation. A small molecule inhibitor that binds to HIF-2α and blocks dimerization with HIF-1β is in clinical trials for the treatment of renal cell carcinoma. Targeting HIFs for stabilization or inhibition may improve outcomes in diseases that are common causes of mortality in the US population.
Collapse
Affiliation(s)
- Gregg L Semenza
- Institute for Cell Engineering, McKusick-Nathans Institute of Genetic Medicine, and Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
6
|
Association of HIF1A and Parkinson’s disease in a Han Chinese population demonstrated by molecular inversion probe analysis. Neurol Sci 2019; 40:1927-1931. [DOI: 10.1007/s10072-019-03905-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/15/2019] [Indexed: 12/21/2022]
|
7
|
Camara-Lemarroy CR, Metz L, Smith EE, Dunn JF, Yong VW. Expanding the Potential Therapeutic Options for Remote Ischemic Preconditioning: Use in Multiple Sclerosis. Front Neurol 2018; 9:475. [PMID: 29971043 PMCID: PMC6018107 DOI: 10.3389/fneur.2018.00475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Carlos R Camara-Lemarroy
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,UANL School of Medicine and University Hospital, Monterrey, Mexico
| | - Luanne Metz
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Eric E Smith
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff F Dunn
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Gaisina IN, Lee SH, Kaidery NA, Ben Aissa M, Ahuja M, Smirnova NN, Wakade S, Gaisin A, Bourassa MW, Ratan RR, Nikulin SV, Poloznikov AA, Thomas B, Thatcher GRJ, Gazaryan IG. Activation of Nrf2 and Hypoxic Adaptive Response Contribute to Neuroprotection Elicited by Phenylhydroxamic Acid Selective HDAC6 Inhibitors. ACS Chem Neurosci 2018; 9:894-900. [PMID: 29338172 DOI: 10.1021/acschemneuro.7b00435] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Activation of HIF-1α and Nrf2 is a primary component of cellular response to oxidative stress, and activation of HIF-1α and Nrf2 provides neuroprotection in models of neurodegenerative disorders, including ischemic stroke, Alzheimer's and Parkinson's diseases. Screening a library of CNS-targeted drugs using novel reporters for HIF-1α and Nrf2 elevation in neuronal cells revealed histone deacetylase (HDAC) inhibitors as potential activators of these pathways. We report the identification of phenylhydroxamates as single agents exhibiting tripartite inhibition of HDAC6, inhibition of HIF-1 prolyl hydroxylase (PHD), and activation of Nrf2. Two superior tripartite agents, ING-6 and ING-66, showed neuroprotection against various cellular insults, associated with stabilization of both Nrf2 and HIF-1, and expression of their respective target genes in vitro and in vivo. Discovery of the innate ability of phenylhydroxamate HDAC inhibitors to activate Nrf2 and HIF provides a novel route to multifunctional neuroprotective agents and cautions against HDAC6 selective inhibitors as chemical probes of specific HDAC isoform function.
Collapse
Affiliation(s)
- Irina N. Gaisina
- College of Pharmacy, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Sue H. Lee
- College of Pharmacy, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Navneet A. Kaidery
- Department of Pharmacology, Toxicology & Neurology, Augusta University, 1459 Laney Walker Blvd, Augusta, Georgia 30912, United States
| | - Manel Ben Aissa
- College of Pharmacy, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Manuj Ahuja
- Department of Pharmacology, Toxicology & Neurology, Augusta University, 1459 Laney Walker Blvd, Augusta, Georgia 30912, United States
| | - Natalya N. Smirnova
- D. Rogachev Federal Scientific and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Samora Mashela 1, Moscow 117997, Russian Federation
| | - Sushama Wakade
- Department of Pharmacology, Toxicology & Neurology, Augusta University, 1459 Laney Walker Blvd, Augusta, Georgia 30912, United States
| | - Arsen Gaisin
- Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Megan W. Bourassa
- Feil Family Brain and Mind Research Institute, Weill Medical College at Cornell University, New York, New York 10065, United States
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, New York 10605, United States
| | - Rajiv R. Ratan
- Feil Family Brain and Mind Research Institute, Weill Medical College at Cornell University, New York, New York 10065, United States
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, New York 10605, United States
| | - Sergey V. Nikulin
- D. Rogachev Federal Scientific and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Samora Mashela 1, Moscow 117997, Russian Federation
| | - Andrey A. Poloznikov
- D. Rogachev Federal Scientific and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Samora Mashela 1, Moscow 117997, Russian Federation
| | - Bobby Thomas
- Department of Pharmacology, Toxicology & Neurology, Augusta University, 1459 Laney Walker Blvd, Augusta, Georgia 30912, United States
| | - Gregory R. J. Thatcher
- College of Pharmacy, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Irina G. Gazaryan
- D. Rogachev Federal Scientific and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Samora Mashela 1, Moscow 117997, Russian Federation
- Feil Family Brain and Mind Research Institute, Weill Medical College at Cornell University, New York, New York 10065, United States
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, New York 10605, United States
- Department of Cell Biology and Anatomy, School of Medicine, New York Medical College, 15 Dana Road, Valhalla, New York 10595, United States
| |
Collapse
|
9
|
Soares P, Gadd MS, Frost J, Galdeano C, Ellis L, Epemolu O, Rocha S, Read KD, Ciulli A. Group-Based Optimization of Potent and Cell-Active Inhibitors of the von Hippel-Lindau (VHL) E3 Ubiquitin Ligase: Structure-Activity Relationships Leading to the Chemical Probe (2S,4R)-1-((S)-2-(1-Cyanocyclopropanecarboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (VH298). J Med Chem 2017; 61:599-618. [PMID: 28853884 PMCID: PMC5788404 DOI: 10.1021/acs.jmedchem.7b00675] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
The
von Hippel–Lindau tumor suppressor protein is the substrate
binding subunit of the VHL E3 ubiquitin ligase, which targets hydroxylated
α subunit of hypoxia inducible factors (HIFs) for ubiquitination
and subsequent proteasomal degradation. VHL is a potential target
for treating anemia and ischemic diseases, motivating the development
of inhibitors of the VHL:HIF-α protein–protein interaction.
Additionally, bifunctional proteolysis targeting chimeras (PROTACs)
containing a VHL ligand can hijack the E3 ligase activity to induce
degradation of target proteins. We report the structure-guided design
and group-based optimization of a series of VHL inhibitors with low
nanomolar potencies and improved cellular permeability. Structure–activity
relationships led to the discovery of potent inhibitors 10 and chemical probe VH298, with dissociation constants <100 nM,
which induced marked HIF-1α intracellular stabilization. Our
study provides new chemical tools to probe the VHL-HIF pathways and
new VHL ligands for next-generation PROTACs.
Collapse
Affiliation(s)
- Pedro Soares
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee , Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Morgan S Gadd
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee , Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Julianty Frost
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee , Dow Street, Dundee DD1 5EH, Scotland, U.K.,Center for Gene Regulation and Expression, School of Life Sciences, University of Dundee , Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Carles Galdeano
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee , Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Lucy Ellis
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee , Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Ola Epemolu
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee , Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Sonia Rocha
- Center for Gene Regulation and Expression, School of Life Sciences, University of Dundee , Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Kevin D Read
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee , Dow Street, Dundee DD1 5EH, Scotland, U.K
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee , Dow Street, Dundee DD1 5EH, Scotland, U.K
| |
Collapse
|