1
|
Ronda C, Chen SP, Cabral V, Yaung SJ, Wang HH. Metagenomic engineering of the mammalian gut microbiome in situ. Nat Methods 2019; 16:167-170. [PMID: 30643213 PMCID: PMC6467691 DOI: 10.1038/s41592-018-0301-y] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/12/2018] [Indexed: 12/24/2022]
Abstract
Engineering microbial communities in open environments remains challenging. Here, we describe a platform to identify and modify genetically tractable mammalian microbiota by engineering community-wide horizontal gene transfer events in situ. With this approach, we demonstrate that diverse taxa in the murine gut microbiome can be modified directly with a desired genetic payload. In situ microbiome engineering in living animals enables introduction of novel capabilities into established communities in their native milieu.
Collapse
Affiliation(s)
- Carlotta Ronda
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sway P Chen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.,Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Irving Medical Center, New York, NY, USA
| | - Vitor Cabral
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephanie J Yaung
- Program in Medical Engineering and Medical Physics, Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA. .,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Modernized Tools for Streamlined Genetic Manipulation and Comparative Study of Wild and Diverse Proteobacterial Lineages. mBio 2018; 9:mBio.01877-18. [PMID: 30301859 PMCID: PMC6178617 DOI: 10.1128/mbio.01877-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A great challenge in microbiota research is the immense diversity of symbiotic bacteria with the capacity to impact the lives of plants and animals. Moving beyond correlative DNA sequencing-based studies to define the cellular and molecular mechanisms by which symbiotic bacteria influence the biology of their hosts is stalling because genetic manipulation of new and uncharacterized bacterial isolates remains slow and difficult with current genetic tools. Moreover, developing tools de novo is an arduous and time-consuming task and thus represents a significant barrier to progress. To address this problem, we developed a suite of engineering vectors that streamline conventional genetic techniques by improving postconjugation counterselection, modularity, and allelic exchange. Our modernized tools and step-by-step protocols will empower researchers to investigate the inner workings of both established and newly emerging models of bacterial symbiosis. Correlating the presence of bacteria and the genes they carry with aspects of plant and animal biology is rapidly outpacing the functional characterization of naturally occurring symbioses. A major barrier to mechanistic studies is the lack of tools for the efficient genetic manipulation of wild and diverse bacterial isolates. To address the need for improved molecular tools, we used a collection of proteobacterial isolates native to the zebrafish intestinal microbiota as a testbed to construct a series of modernized vectors that expedite genetic knock-in and knockout procedures across lineages. The innovations that we introduce enhance the flexibility of conventional genetic techniques, making it easier to manipulate many different bacterial isolates with a single set of tools. We developed alternative strategies for domestication-free conjugation, designed plasmids with customizable features, and streamlined allelic exchange using visual markers of homologous recombination. We demonstrate the potential of these tools through a comparative study of bacterial behavior within the zebrafish intestine. Live imaging of fluorescently tagged isolates revealed a spectrum of distinct population structures that differ in their biogeography and dominant growth mode (i.e., planktonic versus aggregated). Most striking, we observed divergent genotype-phenotype relationships: several isolates that are predicted by genomic analysis and in vitro assays to be capable of flagellar motility do not display this trait within living hosts. Together, the tools generated in this work provide a new resource for the functional characterization of wild and diverse bacterial lineages that will help speed the research pipeline from sequencing-based correlations to mechanistic underpinnings.
Collapse
|
3
|
Bober JR, Beisel CL, Nair NU. Synthetic Biology Approaches to Engineer Probiotics and Members of the Human Microbiota for Biomedical Applications. Annu Rev Biomed Eng 2018. [PMID: 29528686 DOI: 10.1146/annurev-bioeng-062117-121019] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An increasing number of studies have strongly correlated the composition of the human microbiota with many human health conditions and, in several cases, have shown that manipulating the microbiota directly affects health. These insights have generated significant interest in engineering indigenous microbiota community members and nonresident probiotic bacteria as biotic diagnostics and therapeutics that can probe and improve human health. In this review, we discuss recent advances in synthetic biology to engineer commensal and probiotic lactic acid bacteria, bifidobacteria, and Bacteroides for these purposes, and we provide our perspective on the future potential of these technologies.
Collapse
Affiliation(s)
- Josef R Bober
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA;
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA;
| | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA;
| |
Collapse
|
4
|
Motley J, Stamps BW, Mitchell CA, Thompson AT, Cross J, You J, Powell DR, Stevenson BS, Cichewicz RH. Opportunistic Sampling of Roadkill as an Entry Point to Accessing Natural Products Assembled by Bacteria Associated with Non-anthropoidal Mammalian Microbiomes. JOURNAL OF NATURAL PRODUCTS 2017; 80:598-608. [PMID: 28335605 PMCID: PMC5368682 DOI: 10.1021/acs.jnatprod.6b00772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Indexed: 05/09/2023]
Abstract
Few secondary metabolites have been reported from mammalian microbiome bacteria despite the large numbers of diverse taxa that inhabit warm-blooded higher vertebrates. As a means to investigate natural products from these microorganisms, an opportunistic sampling protocol was developed, which focused on exploring bacteria isolated from roadkill mammals. This initiative was made possible through the establishment of a newly created discovery pipeline, which couples laser ablation electrospray ionization mass spectrometry (LAESIMS) with bioassay testing, to target biologically active metabolites from microbiome-associated bacteria. To illustrate this process, this report focuses on samples obtained from the ear of a roadkill opossum (Dideiphis virginiana) as the source of two bacterial isolates (Pseudomonas sp. and Serratia sp.) that produced several new and known cyclic lipodepsipeptides (viscosin and serrawettins, respectively). These natural products inhibited biofilm formation by the human pathogenic yeast Candida albicans at concentrations well below those required to inhibit yeast viability. Phylogenetic analysis of 16S rRNA gene sequence libraries revealed the presence of diverse microbial communities associated with different sites throughout the opossum carcass. A putative biosynthetic pathway responsible for the production of the new serrawettin analogues was identified by sequencing the genome of the Serratia sp. isolate. This study provides a functional roadmap to carrying out the systematic investigation of the genomic, microbiological, and chemical parameters related to the production of natural products made by bacteria associated with non-anthropoidal mammalian microbiomes. Discoveries emerging from these studies are anticipated to provide a working framework for efforts aimed at augmenting microbiomes to deliver beneficial natural products to a host.
Collapse
Affiliation(s)
- Jeremy
L. Motley
- Natural
Products Discovery Group, Department of Chemistry and Biochemistry, and Institute for
Natural Products Applications and Research Technologies, Stephenson
Life Sciences Research Center, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Blake W. Stamps
- Department
of Microbiology and Plant Biology, University
of Oklahoma, Norman, Oklahoma 73019-0390, United States
| | - Carter A. Mitchell
- Natural
Products Discovery Group, Department of Chemistry and Biochemistry, and Institute for
Natural Products Applications and Research Technologies, Stephenson
Life Sciences Research Center, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Alec T. Thompson
- Natural
Products Discovery Group, Department of Chemistry and Biochemistry, and Institute for
Natural Products Applications and Research Technologies, Stephenson
Life Sciences Research Center, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Jayson Cross
- Natural
Products Discovery Group, Department of Chemistry and Biochemistry, and Institute for
Natural Products Applications and Research Technologies, Stephenson
Life Sciences Research Center, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Jianlan You
- Natural
Products Discovery Group, Department of Chemistry and Biochemistry, and Institute for
Natural Products Applications and Research Technologies, Stephenson
Life Sciences Research Center, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Douglas R. Powell
- Natural
Products Discovery Group, Department of Chemistry and Biochemistry, and Institute for
Natural Products Applications and Research Technologies, Stephenson
Life Sciences Research Center, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Bradley S. Stevenson
- Natural
Products Discovery Group, Department of Chemistry and Biochemistry, and Institute for
Natural Products Applications and Research Technologies, Stephenson
Life Sciences Research Center, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
- Department
of Microbiology and Plant Biology, University
of Oklahoma, Norman, Oklahoma 73019-0390, United States
| | - Robert H. Cichewicz
- Natural
Products Discovery Group, Department of Chemistry and Biochemistry, and Institute for
Natural Products Applications and Research Technologies, Stephenson
Life Sciences Research Center, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| |
Collapse
|
5
|
Menezes AA, Montague MG, Cumbers J, Hogan JA, Arkin AP. Grand challenges in space synthetic biology. J R Soc Interface 2016; 12:20150803. [PMID: 26631337 PMCID: PMC4707852 DOI: 10.1098/rsif.2015.0803] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth.
Collapse
Affiliation(s)
- Amor A Menezes
- California Institute for Quantitative Biosciences, University of California, 2151 Berkeley Way, Berkeley, CA 94704-5230, USA
| | - Michael G Montague
- Applications of Vital Knowledge, 113 Chestnut Hill Way, Frederick, MD 21702, USA
| | - John Cumbers
- NASA Ames Space Portal, NASA Ames Research Center, MS 555-2, Moffett Field, CA 94035, USA
| | - John A Hogan
- Bioengineering Branch, NASA Ames Research Center, MS 239-15, Moffett Field, CA 94035, USA
| | - Adam P Arkin
- California Institute for Quantitative Biosciences, University of California, 2151 Berkeley Way, Berkeley, CA 94704-5230, USA E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS955-512 L, Berkeley, CA 94720, USA Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Sheth RU, Cabral V, Chen SP, Wang HH. Manipulating Bacterial Communities by in situ Microbiome Engineering. Trends Genet 2016; 32:189-200. [PMID: 26916078 PMCID: PMC4828914 DOI: 10.1016/j.tig.2016.01.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 02/07/2023]
Abstract
Microbial communities inhabit our entire planet and have a crucial role in biogeochemical processes, agriculture, biotechnology, and human health. Here, we argue that 'in situ microbiome engineering' represents a new paradigm of community-scale genetic and microbial engineering. We discuss contemporary applications of this approach to directly add, remove, or modify specific sets of functions and alter community-level properties in terrestrial, aquatic, and host-associated microbial communities. Specifically, we highlight emerging in situ genome engineering approaches as tractable techniques to manipulate microbial communities with high specificity and efficacy. Finally, we describe opportunities for technological innovation and ways to bridge existing knowledge gaps to accelerate the development of in situ approaches for microbiome manipulations.
Collapse
Affiliation(s)
- Ravi U Sheth
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, NY, USA
| | - Vitor Cabral
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Sway P Chen
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, NY, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
7
|
De Fazio L, Spisni E, Cavazza E, Strillacci A, Candela M, Centanni M, Ricci C, Rizzello F, Campieri M, Valerii MC. Dietary Geraniol by Oral or Enema Administration Strongly Reduces Dysbiosis and Systemic Inflammation in Dextran Sulfate Sodium-Treated Mice. Front Pharmacol 2016; 7:38. [PMID: 26973525 PMCID: PMC4776160 DOI: 10.3389/fphar.2016.00038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/11/2016] [Indexed: 12/13/2022] Open
Abstract
(Trans)-3,7-Dimethyl-2,6-octadien-1-ol, commonly called geraniol (Ge-OH), is an acyclic monoterpene alcohol with well-known anti-inflammatory, antitumoral, and antimicrobial properties. It is widely used as a preservative in the food industry and as an antimicrobial agent in animal farming. The present study investigated the role of Ge-OH as an anti-inflammatory and anti-dysbiotic agent in the dextran sulfate sodium (DSS)-induced colitis mouse model. Ge-OH was orally administered to C57BL/6 mice at daily doses of 30 and 120 mg kg((-1)) body weight, starting 6 days before DSS treatment and ending the day after DSS removal. Furthermore, Ge-OH 120 mg kg((-1)) dose body weight was administered via enema during the acute phase of colitis to facilitate its on-site action. The results show that orally or enema-administered Ge-OH is a powerful antimicrobial agent able to prevent colitis-associated dysbiosis and decrease the inflammatory systemic profile of colitic mice. As a whole, Ge-OH strongly improved the clinical signs of colitis and significantly reduced cyclooxygenase-2 (COX-2) expression in colonocytes and in the gut wall. Ge-OH could be a powerful drug for the treatment of intestinal inflammation and dysbiosis.
Collapse
Affiliation(s)
- Luigia De Fazio
- Biology Unit, Department of Biological, Geological and Environmental Sciences, University of Bologna Bologna, Italy
| | - Enzo Spisni
- Biology Unit, Department of Biological, Geological and Environmental Sciences, University of Bologna Bologna, Italy
| | - Elena Cavazza
- Biology Unit, Department of Biological, Geological and Environmental Sciences, University of Bologna Bologna, Italy
| | - Antonio Strillacci
- Biology Unit, Department of Biological, Geological and Environmental Sciences, University of Bologna Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Manuela Centanni
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Chiara Ricci
- Department of Clinical and Experimental Sciences, University of Brescia Brescia, Italy
| | - Fernando Rizzello
- Department of Medical and Surgical Sciences, University of Bologna Bologna, Italy
| | - Massimo Campieri
- Department of Medical and Surgical Sciences, University of Bologna Bologna, Italy
| | - Maria C Valerii
- Biology Unit, Department of Biological, Geological and Environmental Sciences, University of Bologna Bologna, Italy
| |
Collapse
|
8
|
Gibson TE, Bashan A, Cao HT, Weiss ST, Liu YY. On the Origins and Control of Community Types in the Human Microbiome. PLoS Comput Biol 2016; 12:e1004688. [PMID: 26866806 PMCID: PMC4750989 DOI: 10.1371/journal.pcbi.1004688] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/01/2015] [Indexed: 01/12/2023] Open
Abstract
Microbiome-based stratification of healthy individuals into compositional categories, referred to as "enterotypes" or "community types", holds promise for drastically improving personalized medicine. Despite this potential, the existence of community types and the degree of their distinctness have been highly debated. Here we adopted a dynamic systems approach and found that heterogeneity in the interspecific interactions or the presence of strongly interacting species is sufficient to explain community types, independent of the topology of the underlying ecological network. By controlling the presence or absence of these strongly interacting species we can steer the microbial ecosystem to any desired community type. This open-loop control strategy still holds even when the community types are not distinct but appear as dense regions within a continuous gradient. This finding can be used to develop viable therapeutic strategies for shifting the microbial composition to a healthy configuration.
Collapse
Affiliation(s)
- Travis E. Gibson
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amir Bashan
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hong-Tai Cao
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Electrical Engineering, University of Southern California, Los Angeles, California, United States of America
- Chu Kochen Honors College, College of Electrical Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| |
Collapse
|
9
|
Better together: engineering and application of microbial symbioses. Curr Opin Biotechnol 2015; 36:40-9. [DOI: 10.1016/j.copbio.2015.08.008] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/28/2015] [Accepted: 08/09/2015] [Indexed: 12/26/2022]
|
10
|
Use of 16S rRNA Gene-Targeted Group-Specific Primers for Real-Time PCR Analysis of Predominant Bacteria in Mouse Feces. Appl Environ Microbiol 2015; 81:6749-56. [PMID: 26187967 DOI: 10.1128/aem.01906-15] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/14/2015] [Indexed: 02/04/2023] Open
Abstract
Mouse models are widely used for studying gastrointestinal (GI) tract-related diseases. It is necessary and important to develop a new set of primers to monitor the mouse gut microbiota. In this study, 16S rRNA gene-targeted group-specific primers for Firmicutes, Actinobacteria, Bacteroidetes, Deferribacteres, "Candidatus Saccharibacteria," Verrucomicrobia, Tenericutes, and Proteobacteria were designed and validated for quantification of the predominant bacterial species in mouse feces by real-time PCR. After confirmation of their accuracy and specificity by high-throughput sequencing technologies, these primers were applied to quantify the changes in the fecal samples from a trinitrobenzene sulfonic acid-induced colitis mouse model. Our results showed that this approach efficiently predicted the occurrence of colitis, such as spontaneous chronic inflammatory bowel disease in transgenic mice. The set of primers developed in this study provides a simple and affordable method to monitor changes in the intestinal microbiota at the phylum level.
Collapse
|