1
|
Wegener M, Persicke M, Dietz KJ. Reprogramming the translatome during daily light transitions as affected by cytosolic glyceraldehyde-3-phosphate dehydrogenases GAPC1/C2. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2494-2509. [PMID: 38156667 DOI: 10.1093/jxb/erad509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Dark-light and light-dark transitions during the day are switching points of leaf metabolism that strongly affect the regulatory state of the cells, and this change is hypothesized to affect the translatome. The cytosolic glyceraldehyde-3-phosphate dehydrogenases GAPC1 and GAPC2 function in glycolysis, and carbohydrate and energy metabolism, but GAPC1/C2 also shows moonlighting functions in gene expression and post-transcriptional regulation. In this study we examined the rapid reprogramming of the translatome that occurs within 10 min at the end of the night and the end of the day in wild-type (WT) Arabidopsis and a gapc1/c2 double-knockdown mutant. Metabolite profiling compared to the WT showed that gapc1/c2 knockdown led to increases in a set of metabolites at the start of day, particularly intermediates of the citric acid cycle and linked pathways. Differences in metabolite changes were also detected at the end of the day. Only small sets of transcripts changed in the total RNA pool; however, RNA-sequencing revealed major alterations in polysome-associated transcripts at the light-transition points. The most pronounced difference between the WT and gapc1/c2 was seen in the reorganization of the translatome at the start of the night. Our results are in line with the proposed hypothesis that GAPC1/C2 play a role in the control of the translatome during light/dark transitions.
Collapse
Affiliation(s)
- Melanie Wegener
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Universitätsstr.25, D-33615, Bielefeld, Germany
| | - Marcus Persicke
- Center for Biotechnology-CeBiTec, Bielefeld University, Universitätsstr. 27, D-33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Universitätsstr.25, D-33615, Bielefeld, Germany
- Center for Biotechnology-CeBiTec, Bielefeld University, Universitätsstr. 27, D-33615 Bielefeld, Germany
| |
Collapse
|
2
|
Ji G, Lv K, Chen H, Wang Y, Zhang Y, Li Y, Qu L. Hydrogen peroxide modulates clock gene expression via PRX2-STAT3-REV-ERBα/β pathway. Free Radic Biol Med 2019; 145:312-320. [PMID: 31585206 DOI: 10.1016/j.freeradbiomed.2019.09.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022]
Abstract
The circadian rhythm is a widespread physiological phenomenon present in almost all forms of life and is constituted by a system of interlocked transcriptional/translational feedback loops (TTFLs). External zeitgebers regulate biological rhythms through the direct or indirect regulation of circadian genes. Oxidative stress is involved in many diseases and injuries, such as ageing, diabetes, Alzheimer's disease, and cancer. Despite an increasing number of studies on circadian rhythm disorders caused by oxidative stress, little is known about the effects of oxidants on clock gene expression and the underlying mechanism. In this study, we found that the protein expression of circadian genes Clock, Bmal1, Per1/2, and Cry1/2 in NIH3T3 cells was upregulated by hydrogen peroxide (H2O2), an important mediator of oxidative stress. In addition, H2O2 modulated the circadian rhythm of Bmal1-luciferase via RORα, REV-ERBα (NR1D1), and REV-ERBβ (NR1D2). Further studies showed that H2O2 regulated biological rhythm by PRX2-STAT3-REV-ERBα/β pathway. These findings provide an accessory loop-related mechanism by which non-transcriptional oscillation interplays with TTFLs.
Collapse
Affiliation(s)
- Guohua Ji
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 26 Beiqing Road, Beijing, 100094, PR China
| | - Ke Lv
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 26 Beiqing Road, Beijing, 100094, PR China
| | - Hailong Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 26 Beiqing Road, Beijing, 100094, PR China
| | - Yanli Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 26 Beiqing Road, Beijing, 100094, PR China
| | - Yongliang Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 26 Beiqing Road, Beijing, 100094, PR China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 26 Beiqing Road, Beijing, 100094, PR China
| | - Lina Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, 26 Beiqing Road, Beijing, 100094, PR China.
| |
Collapse
|
3
|
Kumar V, Vogelsang L, Seidel T, Schmidt R, Weber M, Reichelt M, Meyer A, Clemens S, Sharma SS, Dietz KJ. Interference between arsenic-induced toxicity and hypoxia. PLANT, CELL & ENVIRONMENT 2019; 42:574-590. [PMID: 30198184 DOI: 10.1111/pce.13441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Plants often face combinatorial stresses in their natural environment. Here, arsenic (As) toxicity was combined with hypoxia (Hpx) in the roots of Arabidopsis thaliana as it often occurs in nature. Arsenic inhibited growth of both roots and leaves, whereas root growth almost entirely ceased in Hpx. Growth efficiently resumed, and Hpx marker transcripts decreased upon reaeration. Compromised recovery from HpxAs treatment following reaeration indicated some persistent effects of combined stresses despite lower As accumulation. Root glutathione redox potential turned more oxidized in Hpx and most strongly in HpxAs. The more oxidizing root cell redox potential and the lowered glutathione amounts may be conducive to the growth arrest of plants exposed to HpxAs. The stresses elicited changes in elemental and transcriptomic composition. Thus, calcium, magnesium, and phosphorous amounts decreased in rosettes, but the strongest decline was seen for potassium. The reorganized potassium-related transcriptome supports the conclusion that disturbed potassium homeostasis contributes to the growth phenotype. In a converse manner, photosynthesis-related parameters were hardly affected, whereas accumulated carbohydrates under all stresses and anthocyanins under Hpx exclude carbohydrate limitation. The study demonstrates the existence of both synergistic since mutually aggravating effects and antagonistic effects of single and combined stresses.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
- Department of Biosciences, Himachal Pradesh University, Shimla, India
| | - Lara Vogelsang
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Thorsten Seidel
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Romy Schmidt
- Institute of Biology I (Botany/Molecular Genetics), RWTH Aachen University, Aachen, Germany
| | - Michael Weber
- Department of Plant Physiology, Faculty of Biology, Chemistry and Earth Sciences, University of Bayreuth, Bayreuth, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Andreas Meyer
- Institute of Crop Science and Resource Conservation (INRES)-Chemical Signalling, University of Bonn, Bonn, Germany
- Bioeconomy Science Center, Forschungszentrum Jülich, Jülich, Germany
| | - Stephan Clemens
- Department of Plant Physiology, Faculty of Biology, Chemistry and Earth Sciences, University of Bayreuth, Bayreuth, Germany
| | - Shanti S Sharma
- Department of Biosciences, Himachal Pradesh University, Shimla, India
- Department of Botany, School of Life Sciences, Sikkim University, Gangtok, India
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
4
|
König K, Vaseghi MJ, Dreyer A, Dietz KJ. The significance of glutathione and ascorbate in modulating the retrograde high light response in Arabidopsis thaliana leaves. PHYSIOLOGIA PLANTARUM 2018; 162:262-273. [PMID: 28984358 DOI: 10.1111/ppl.12644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 05/13/2023]
Abstract
Retrograde signals from the chloroplast control expression of nuclear genes. A large fraction of these genes is affected rapidly upon light intensity shifts. This study was designed to address the interdependence of signaling pathways involved in the rapid high light response and redox and reactive oxygen species signaling by exploiting the glutathione and ascorbate deficient mutants pad2 and vtc1. In the first set of experiments the transcriptional response of the two transcription factors ERF6 and ERF105 that had previously been shown to rapidly respond to light was shown to be deregulated in the pad2 mutant but not in the vtc1 background. The transcriptional response after combining the low-to-high light transfer with methylviologen pretreatment further demonstrated the significance of glutathione in strongly modulating the retrograde response. Transcripts encoding small heat shock proteins (HSP17.4, HSP176a, HSP20-like1 and HSP20-like2) and the lipid transfer protein LTP3 were taken as markers responding to the combinatorial treatment in wild type, and most strongly in pad2 in high light or upon methylviologen treatment. A correlation with H2 O2 accumulation was not observed. It is concluded that glutathione-dependent processes participate in light-triggered rapid gene regulation independent on cellular H2 O2 .
Collapse
Affiliation(s)
- Katharina König
- Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33501, Bielefeld, Germany
| | - Mohamad Javad Vaseghi
- Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33501, Bielefeld, Germany
| | - Anna Dreyer
- Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33501, Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33501, Bielefeld, Germany
| |
Collapse
|
5
|
Schwarzländer M, Dick TP, Meyer AJ, Morgan B. Dissecting Redox Biology Using Fluorescent Protein Sensors. Antioxid Redox Signal 2016; 24:680-712. [PMID: 25867539 DOI: 10.1089/ars.2015.6266] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Fluorescent protein sensors have revitalized the field of redox biology by revolutionizing the study of redox processes in living cells and organisms. RECENT ADVANCES Within one decade, a set of fundamental new insights has been gained, driven by the rapid technical development of in vivo redox sensing. Redox-sensitive yellow and green fluorescent protein variants (rxYFP and roGFPs) have been the central players. CRITICAL ISSUES Although widely used as an established standard tool, important questions remain surrounding their meaningful use in vivo. We review the growing range of thiol redox sensor variants and their application in different cells, tissues, and organisms. We highlight five key findings where in vivo sensing has been instrumental in changing our understanding of redox biology, critically assess the interpretation of in vivo redox data, and discuss technical and biological limitations of current redox sensors and sensing approaches. FUTURE DIRECTIONS We explore how novel sensor variants may further add to the current momentum toward a novel mechanistic and integrated understanding of redox biology in vivo. Antioxid. Redox Signal. 24, 680-712.
Collapse
Affiliation(s)
- Markus Schwarzländer
- 1 Plant Energy Biology Lab, Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Tobias P Dick
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas J Meyer
- 3 Department Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn , Bonn, Germany
| | - Bruce Morgan
- 2 Division of Redox Regulation, German Cancer Research Center (DKFZ) , DKFZ-ZMBH Alliance, Heidelberg, Germany .,4 Cellular Biochemistry, Department of Biology, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
6
|
Manchester LC, Coto-Montes A, Boga JA, Andersen LPH, Zhou Z, Galano A, Vriend J, Tan DX, Reiter RJ. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 2015; 59:403-19. [PMID: 26272235 DOI: 10.1111/jpi.12267] [Citation(s) in RCA: 641] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022]
Abstract
Melatonin is remarkably functionally diverse with actions as a free radical scavenger and antioxidant, circadian rhythm regulator, anti-inflammatory and immunoregulating molecule, and as an oncostatic agent. We hypothesize that the initial and primary function of melatonin in photosynthetic cyanobacteria, which appeared on Earth 3.5-3.2 billion years ago, was as an antioxidant. The evolution of melatonin as an antioxidant by this organism was necessary as photosynthesis is associated with the generation of toxic-free radicals. The other secondary functions of melatonin came about much later in evolution. We also surmise that mitochondria and chloroplasts may be primary sites of melatonin synthesis in all eukaryotic cells that possess these organelles. This prediction is made on the basis that mitochondria and chloroplasts of eukaryotes developed from purple nonsulfur bacteria (which also produce melatonin) and cyanobacteria when they were engulfed by early eukaryotes. Thus, we speculate that the melatonin-synthesizing actions of the engulfed bacteria were retained when these organelles became mitochondria and chloroplasts, respectively. That mitochondria are likely sites of melatonin formation is supported by the observation that this organelle contains high levels of melatonin that are not impacted by blood melatonin concentrations. Melatonin has a remarkable array of means by which it thwarts oxidative damage. It, as well as its metabolites, is differentially effective in scavenging a variety of reactive oxygen and reactive nitrogen species. Moreover, melatonin and its metabolites modulate a large number of antioxidative and pro-oxidative enzymes, leading to a reduction in oxidative damage. The actions of melatonin on radical metabolizing/producing enzymes may be mediated by the Keap1-Nrf2-ARE pathway. Beyond its direct free radical scavenging and indirect antioxidant effects, melatonin has a variety of physiological and metabolic advantages that may enhance its ability to limit oxidative stress.
Collapse
Affiliation(s)
- Lucien C Manchester
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Ana Coto-Montes
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Jose Antonio Boga
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Lars Peter H Andersen
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Zhou Zhou
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Annia Galano
- Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, Mexico DF, Mexico
| | - Jerry Vriend
- Department of Human Anatomy and Cell Biology, University of Manitoba, Winnipeg, MA, Canada
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|