1
|
Watanabe H, Urano S, Kikuchi N, Kubo Y, Kikuchi A, Gomi K, Shintani T. Ykt6 functionally overlaps with vacuolar and exocytic R-SNAREs in the yeast Saccharomyces cerevisiae. J Biol Chem 2024; 300:107274. [PMID: 38588809 PMCID: PMC11091695 DOI: 10.1016/j.jbc.2024.107274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 03/17/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex forms a 4-helix coiled-coil bundle consisting of 16 layers of interacting side chains upon membrane fusion. The central layer (layer 0) is highly conserved and comprises three glutamines (Q) and one arginine (R), and thus SNAREs are classified into Qa-, Qb-, Qc-, and R-SNAREs. Homotypic vacuolar fusion in Saccharomyces cerevisiae requires the SNAREs Vam3 (Qa), Vti1 (Qb), Vam7 (Qc), and Nyv1 (R). However, the yeast strain lacking NYV1 (nyv1Δ) shows no vacuole fragmentation, whereas the vam3Δ and vam7Δ strains display fragmented vacuoles. Here, we provide genetic evidence that the R-SNAREs Ykt6 and Nyv1 are functionally redundant in vacuole homotypic fusion in vivo using a newly isolated ykt6 mutant. We observed the ykt6-104 mutant showed no defect in vacuole morphology, but the ykt6-104 nyv1Δ double mutant had highly fragmented vacuoles. Furthermore, we show the defect in homotypic vacuole fusion caused by the vam7-Q284R mutation was compensated by the nyv1-R192Q or ykt6-R165Q mutations, which maintained the 3Q:1R ratio in the layer 0 of the SNARE complex, indicating that Nyv1 is exchangeable with Ykt6 in the vacuole SNARE complex. Unexpectedly, we found Ykt6 assembled with exocytic Q-SNAREs when the intrinsic exocytic R-SNAREs Snc1 and its paralog Snc2 lose their ability to assemble into the exocytic SNARE complex. These results suggest that Ykt6 may serve as a backup when other R-SNAREs become dysfunctional and that this flexible assembly of SNARE complexes may help cells maintain the robustness of the vesicular transport network.
Collapse
Affiliation(s)
- Hayate Watanabe
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shingo Urano
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Nozomi Kikuchi
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yurika Kubo
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ayumi Kikuchi
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Katsuya Gomi
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takahiro Shintani
- Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
2
|
Lahiri V, Metur SP, Hu Z, Song X, Mari M, Hawkins WD, Bhattarai J, Delorme-Axford E, Reggiori F, Tang D, Dengjel J, Klionsky DJ. Post-transcriptional regulation of ATG1 is a critical node that modulates autophagy during distinct nutrient stresses. Autophagy 2022; 18:1694-1714. [PMID: 34836487 PMCID: PMC9298455 DOI: 10.1080/15548627.2021.1997305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy/autophagy is a highly conserved nutrient-recycling pathway that eukaryotes utilize to combat diverse stresses including nutrient depletion. Dysregulation of autophagy disrupts cellular homeostasis leading to starvation susceptibility in yeast and disease development in humans. In yeast, the robust autophagy response to starvation is controlled by the upregulation of ATG genes, via regulatory processes involving multiple levels of gene expression. Despite the identification of several regulators through genetic studies, the predominant mechanism of regulation modulating the autophagy response to subtle differences in nutrient status remains undefined. Here, we report the unexpected finding that subtle changes in nutrient availability can cause large differences in autophagy flux, governed by hitherto unknown post-transcriptional regulatory mechanisms affecting the expression of the key autophagyinducing kinase Atg1 (ULK1/ULK2 in mammals). We have identified two novel post-transcriptional regulators of ATG1 expression, the kinase Rad53 and the RNA-binding protein Ded1 (DDX3 in mammals). Furthermore, we show that DDX3 regulates ULK1 expression post-transcriptionally, establishing mechanistic conservation and highlighting the power of yeast biology in uncovering regulatory mechanisms that can inform therapeutic approaches.
Collapse
Affiliation(s)
- Vikramjit Lahiri
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Shree Padma Metur
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zehan Hu
- Department of Biology, University of Fribourg, FribourgSwitzerland
| | - Xinxin Song
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Muriel Mari
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, GroningenThe Netherlands
| | - Wayne D. Hawkins
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Janakraj Bhattarai
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, GroningenThe Netherlands
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joern Dengjel
- Department of Biology, University of Fribourg, FribourgSwitzerland
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Sun LX, Qian H, Liu MY, Wu MH, Wei YY, Zhu XM, Lu JP, Lin FC, Liu XH. Endosomal sorting complexes required for transport-0 (ESCRT-0) are essential for fungal development, pathogenicity, autophagy and ER-phagy in Magnaporthe oryzae. Environ Microbiol 2021; 24:1076-1092. [PMID: 34472190 DOI: 10.1111/1462-2920.15753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 12/23/2022]
Abstract
Magnaporthe oryzae is an important plant pathogen that causes rice blast. Hse1 and Vps27 are components of ESCRT-0 involved in the multivesicular body (MVB) sorting pathway and biogenesis. To date, the biological functions of ESCRT-0 in M. oryzae have not been determined. In this study, we identified and characterized Hse1 and Vps27 in M. oryzae. Disruption of MoHse1 and MoVps27 caused pleiotropic defects in growth, conidiation, sexual development and pathogenicity, thereby resulting in loss of virulence in rice and barley leaves. Disruption of MoHse1 and MoVps27 triggered increased lipidation of MoAtg8 and degradation of GFP-MoAtg8, indicating that ESCRT-0 is involved in the regulation of autophagy. ESCRT-0 was determined to interact with coat protein complex II (COPII), a regulator functioning in homeostasis of the endoplasmic reticulum (ER homeostasis), and disruption of MoHse1 and MoVps27 also blocked activation of the unfolded protein response (UPR) and autophagy of the endoplasmic reticulum (ER-phagy). Overall, our results indicate that ESCRT-0 plays critical roles in regulating fungal development, virulence, autophagy and ER-phagy in M. oryzae.
Collapse
Affiliation(s)
- Li-Xiao Sun
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hui Qian
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Meng-Yu Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Hua Wu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Yun Wei
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiao-Hong Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
He CW, Cui XF, Ma SJ, Xu Q, Ran YP, Chen WZ, Mu JX, Li H, Zhu J, Gong Q, Xie Z. Membrane recruitment of Atg8 by Hfl1 facilitates turnover of vacuolar membrane proteins in yeast cells approaching stationary phase. BMC Biol 2021; 19:117. [PMID: 34088313 PMCID: PMC8176713 DOI: 10.1186/s12915-021-01048-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/07/2021] [Indexed: 12/03/2022] Open
Abstract
Background The vacuole/lysosome is the final destination of autophagic pathways, but can also itself be degraded in whole or in part by selective macroautophagic or microautophagic processes. Diverse molecular mechanisms are involved in these processes, the characterization of which has lagged behind those of ATG-dependent macroautophagy and ESCRT-dependent endosomal multivesicular body pathways. Results Here we show that as yeast cells gradually exhaust available nutrients and approach stationary phase, multiple vacuolar integral membrane proteins with unrelated functions are degraded in the vacuolar lumen. This degradation depends on the ESCRT machinery, but does not strictly require ubiquitination of cargos or trafficking of cargos out of the vacuole. It is also temporally and mechanistically distinct from NPC-dependent microlipophagy. The turnover is facilitated by Atg8, an exception among autophagy proteins, and an Atg8-interacting vacuolar membrane protein, Hfl1. Lack of Atg8 or Hfl1 led to the accumulation of enlarged lumenal membrane structures in the vacuole. We further show that a key function of Hfl1 is the membrane recruitment of Atg8. In the presence of Hfl1, lipidation of Atg8 is not required for efficient cargo turnover. The need for Hfl1 can be partially bypassed by blocking Atg8 delipidation. Conclusions Our data reveal a vacuolar membrane protein degradation process with a unique dependence on vacuole-associated Atg8 downstream of ESCRTs, and we identify a specific role of Hfl1, a protein conserved from yeast to plants and animals, in membrane targeting of Atg8. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01048-7.
Collapse
Affiliation(s)
- Cheng-Wen He
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xue-Fei Cui
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shao-Jie Ma
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Present address: Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan-Peng Ran
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei-Zhi Chen
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun-Xi Mu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Li
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Zhu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Abstract
Macroautophagy, by its very nature, is a protein trafficking process. Cargos are transported and processed. Atg proteins come and go. In this chapter, we present three assays to monitor these dynamic events: a non-radioactive pulse-chase labeling assay to monitor the transport of prApe1 and two fluorescent microscopy-based assays to assess the trafficking of Atg8 and Atg9.
Collapse
Affiliation(s)
- Jing Zhu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiping Xie
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Li D, Yang SG, He CW, Zhang ZT, Liang Y, Li H, Zhu J, Su X, Gong Q, Xie Z. Excess diacylglycerol at the endoplasmic reticulum disrupts endomembrane homeostasis and autophagy. BMC Biol 2020; 18:107. [PMID: 32859196 PMCID: PMC7453538 DOI: 10.1186/s12915-020-00837-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/24/2020] [Indexed: 01/22/2023] Open
Abstract
Background When stressed, eukaryotic cells produce triacylglycerol (TAG) to store nutrients and mobilize autophagy to combat internal damage. We and others previously reported that in yeast, elimination of TAG synthesizing enzymes inhibits autophagy under nitrogen starvation, yet the underlying mechanism has remained elusive. Results Here, we show that disruption of TAG synthesis led to diacylglycerol (DAG) accumulation and its relocation from the vacuolar membrane to the endoplasmic reticulum (ER). We further show that, beyond autophagy, ER-accumulated DAG caused severe defects in the endomembrane system, including disturbing the balance of ER-Golgi protein trafficking, manifesting in bulging of ER and loss of the Golgi apparatus. Genetic or chemical manipulations that increase consumption or decrease supply of DAG reversed these defects. In contrast, increased amounts of precursors of glycerolipid synthesis, including phosphatidic acid and free fatty acids, did not replicate the effects of excess DAG. We also provide evidence that the observed endomembrane defects do not rely on Golgi-produced DAG, Pkc1 signaling, or the unfolded protein response. Conclusions This work identifies DAG as the critical lipid molecule responsible for autophagy inhibition under condition of defective TAG synthesis and demonstrates the disruption of ER and Golgi function by excess DAG as the potential cause of the autophagy defect.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, #800 Dong-Chuan Road, Shanghai, 200240, People's Republic of China
| | - Shu-Gao Yang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Cheng-Wen He
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, #800 Dong-Chuan Road, Shanghai, 200240, People's Republic of China
| | - Zheng-Tan Zhang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, #800 Dong-Chuan Road, Shanghai, 200240, People's Republic of China
| | - Yongheng Liang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Hui Li
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, #800 Dong-Chuan Road, Shanghai, 200240, People's Republic of China
| | - Jing Zhu
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, #800 Dong-Chuan Road, Shanghai, 200240, People's Republic of China
| | - Xiong Su
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China.
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, #800 Dong-Chuan Road, Shanghai, 200240, People's Republic of China.
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, #800 Dong-Chuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
7
|
Green R, Sonal, Wang L, Hart SFM, Lu W, Skelding D, Burton JC, Mi H, Capel A, Chen HA, Lin A, Subramaniam AR, Rabinowitz JD, Shou W. Metabolic excretion associated with nutrient-growth dysregulation promotes the rapid evolution of an overt metabolic defect. PLoS Biol 2020; 18:e3000757. [PMID: 32833957 PMCID: PMC7470746 DOI: 10.1371/journal.pbio.3000757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/03/2020] [Accepted: 07/20/2020] [Indexed: 01/19/2023] Open
Abstract
In eukaryotes, conserved mechanisms ensure that cell growth is coordinated with nutrient availability. Overactive growth during nutrient limitation ("nutrient-growth dysregulation") can lead to rapid cell death. Here, we demonstrate that cells can adapt to nutrient-growth dysregulation by evolving major metabolic defects. Specifically, when yeast lysine-auxotrophic mutant lys- encountered lysine limitation, an evolutionarily novel stress, cells suffered nutrient-growth dysregulation. A subpopulation repeatedly evolved to lose the ability to synthesize organosulfurs (lys-orgS-). Organosulfurs, mainly reduced glutathione (GSH) and GSH conjugates, were released by lys- cells during lysine limitation when growth was dysregulated, but not during glucose limitation when growth was regulated. Limiting organosulfurs conferred a frequency-dependent fitness advantage to lys-orgS- by eliciting a proper slow growth program, including autophagy. Thus, nutrient-growth dysregulation is associated with rapid organosulfur release, which enables the selection of organosulfur auxotrophy to better tune cell growth to the metabolic environment. We speculate that evolutionarily novel stresses can trigger atypical release of certain metabolites, setting the stage for the evolution of new ecological interactions.
Collapse
Affiliation(s)
- Robin Green
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Sonal
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lin Wang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Samuel F. M. Hart
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Wenyun Lu
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - David Skelding
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Justin C. Burton
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Hanbing Mi
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Aric Capel
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Hung Alex Chen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Aaron Lin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Arvind R. Subramaniam
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Joshua D. Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Wenying Shou
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
8
|
Zheng L, Shu WJ, Li YM, Mari M, Yan C, Wang D, Yin ZH, Jiang W, Zhou Y, Okamoto K, Reggiori F, Klionsky DJ, Song Z, Du HN. The Paf1 complex transcriptionally regulates the mitochondrial-anchored protein Atg32 leading to activation of mitophagy. Autophagy 2019; 16:1366-1379. [PMID: 31525119 DOI: 10.1080/15548627.2019.1668228] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mitophagy is a critical process that safeguards mitochondrial quality control in order to maintain proper cellular homeostasis. Although the mitochondrial-anchored receptor Atg32-mediated cargo-recognition system has been well characterized to be essential for this process, the signaling pathway modulating its expression as a contribution of governing the mitophagy process remains largely unknown. Here, bioinformatics analyses of epigenetic or transcriptional regulators modulating gene expression allow us to identify the Paf1 complex (the polymerase-associated factor 1 complex, Paf1C) as a transcriptional repressor of ATG genes. We show that Paf1C suppresses glucose starvation-induced autophagy, but does not affect nitrogen starvation- or rapamycin-induced autophagy. Moreover, we show that Paf1C specifically regulates mitophagy through modulating ATG32 expression. Deletion of the genes encoding two core subunits of Paf1C, Paf1 and Ctr9, increases ATG32 and ATG11 expression and facilitates mitophagy activity. Although Paf1C is required for many histone modifications and gene activation, we show that Paf1C regulates mitophagy independent of its positive regulatory role in other processes. More importantly, we also demonstrate the mitophagic role of PAF1C in mammals. Overall, we conclude that Paf1C maintains mitophagy at a low level through binding the promoter of the ATG32 gene in glucose-rich conditions. Dissociation of Paf1C from ATG32 leads to the increased expression of this gene, and mitophagy induction upon glucose starvation. Thus, we uncover a new role of Paf1C in modulating the mitophagy process at the transcriptional level. ABBREVIATIONS AMPK: AMP-activated protein kinase; ATP5F1A: ATP synthase F1 subunit alpha; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CCCP: chlorophenylhydrazone; DFP: chelator deferiprone; GFP: green fluorescent protein; H2B-Ub1: H2B monoubiquitination; HSPD1/HSP60: heat shock protein family D (Hsp60) member 1; KD: kinase dead; OPTN, optineurin; Paf1: polymerase-associated factor 1; PINK1: PTEN induced kinase 1; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; RT-qPCR: real-time quantitative PCR; SD-N: synthetic dropout without nitrogen base; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20: translocase of outer mitochondrial membrane 20; WT: wild-type; YPD: yeast extract peptone dextrose; YPL: yeast extract peptone lactate.
Collapse
Affiliation(s)
- Liangde Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Cancer Center of Renmin Hospital of Wuhan University, Wuhan University , Wuhan, China
| | - Wen-Jie Shu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Cancer Center of Renmin Hospital of Wuhan University, Wuhan University , Wuhan, China
| | - Yu-Min Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Cancer Center of Renmin Hospital of Wuhan University, Wuhan University , Wuhan, China
| | - Muriel Mari
- Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen , Groningen, The Netherlands
| | - Chaojun Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University , Wuhan, China
| | - Dehe Wang
- College of Life Sciences and Institute for Advanced Studies, Wuhan University , Wuhan, China
| | - Zhao-Hong Yin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Cancer Center of Renmin Hospital of Wuhan University, Wuhan University , Wuhan, China
| | - Wei Jiang
- Medical Research Institute, School of Medicine, Wuhan University , Wuhan, China
| | - Yu Zhou
- College of Life Sciences and Institute for Advanced Studies, Wuhan University , Wuhan, China
| | - Koji Okamoto
- The Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University , Osaka, Japan
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen , Groningen, The Netherlands
| | - Daniel J Klionsky
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI, USA
| | - Zhiyin Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University , Wuhan, China
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Cancer Center of Renmin Hospital of Wuhan University, Wuhan University , Wuhan, China
| |
Collapse
|
9
|
Sengupta A, Sarkar S, Keswani T, Mukherjee S, Ghosh S, Bhattacharyya A. Impact of autophagic regulation on splenic red pulp macrophages during cerebral malarial infection. Parasitol Int 2019; 71:18-26. [PMID: 30872003 DOI: 10.1016/j.parint.2019.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022]
Abstract
Splenic red pulp macrophages play a critical role infiltration of infected RBC and elimination of pathogens during malarial infection. However, the efficiency of pathogenic processing and the intricate pathway followed by them to boost the downstream immune response has not been studied in details. We checked the status of autophagic regulation within the cells both before and after the infection and also modulated the autophagic flux with either its inducer or inhibitor. We found that the upregulation of autophagic gene and the corresponding pathway is correlated with better parasite clearance and survivability, with an enhanced downstream immune response. It also increases their phagocytic potential with better Lysosomal associated protein I and II synthesis. The autophagolysosome formation increases as well, and more vacuole bound LC3B protein are detected. Chemokine synthesized from Red Pulp macrophage helps in mediating the induction for recruiting neutrophil and CD4 + T cells to the splenic red pulp region. The skewing of M1 macrophage polarity is observed post autophagic induction with a better costimulatory molecule like CD80, CD86 expression and antigen presenting molecule MHC I, MHC II is observed. This study shows the possibility of an alternative or adjuvant therapy regimen for the malarial patient by inducing the autophagic pathway that targets the red pulp macrophages. This might be helpful for better pathogen degradation and processing. The subsequent clearance of parasite will result in a better outcome for the patients.
Collapse
Affiliation(s)
- Anirban Sengupta
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Samrat Sarkar
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Tarun Keswani
- Basic and Clinical Immunology of Parasitic Diseases, Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 8204, CIIL - Centre of Infection and Immunity Lille, F-59000 Lille, 1 rue du Professeur Calmette, 59019 Lille, France
| | - Saikat Mukherjee
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Soubhik Ghosh
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
10
|
Yokota H, Gomi K, Shintani T. Induction of autophagy by phosphate starvation in an Atg11-dependent manner in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2016; 483:522-527. [PMID: 28013049 DOI: 10.1016/j.bbrc.2016.12.112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/17/2016] [Indexed: 02/02/2023]
Abstract
Upon nutrient starvation, eukaryotic cells exploit autophagy to reconstruct cellular components. Although autophagy is induced by depletion of various nutrients such as nitrogen, carbon, amino acids, and sulfur in yeast, it was previously ambiguous whether phosphate depletion could trigger the induction of autophagy. Here, we showed that phosphate depletion induced autophagy in Saccharomyces cerevisiae, albeit to a lesser extent than nitrogen starvation. It is known that rapid inactivation of the target of rapamycin complex 1 (TORC1) signaling pathway contributes to Atg13 dephosphorylation, which is one of the cues for autophagy induction. We found that phosphate starvation caused Atg13 dephosphorylation with slower kinetics than nitrogen starvation, suggesting that poor autophagic activity during phosphate starvation was associated with slower inactivation of the TORC1 pathway. Phosphate starvation-induced autophagy requires Atg11, an adaptor protein for selective autophagy, but not its cargo recognition domain. These results suggested that Atg11 plays important roles in low-level nonselective autophagy.
Collapse
Affiliation(s)
- Hiroto Yokota
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Katsuya Gomi
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Takahiro Shintani
- Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| |
Collapse
|
11
|
Bastow EL, Peswani AR, Tarrant DSJ, Pentland DR, Chen X, Morgan A, Staniforth GL, Tullet JM, Rowe ML, Howard MJ, Tuite MF, Gourlay CW. New links between SOD1 and metabolic dysfunction from a yeast model of amyotrophic lateral sclerosis. J Cell Sci 2016; 129:4118-4129. [PMID: 27656112 PMCID: PMC5117206 DOI: 10.1242/jcs.190298] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/16/2016] [Indexed: 12/26/2022] Open
Abstract
A number of genes have been linked to familial forms of the fatal motor neuron disease amyotrophic lateral sclerosis (ALS). Over 150 mutations within the gene encoding superoxide dismutase 1 (SOD1) have been implicated in ALS, but why such mutations lead to ALS-associated cellular dysfunction is unclear. In this study, we identify how ALS-linked SOD1 mutations lead to changes in the cellular health of the yeast Saccharomyces cerevisiae. We find that it is not the accumulation of aggregates but the loss of Sod1 protein stability that drives cellular dysfunction. The toxic effect of Sod1 instability does not correlate with a loss of mitochondrial function or increased production of reactive oxygen species, but instead prevents acidification of the vacuole, perturbs metabolic regulation and promotes senescence. Central to the toxic gain-of-function seen with the SOD1 mutants examined was an inability to regulate amino acid biosynthesis. We also report that leucine supplementation results in an improvement in motor function in a Caenorhabditiselegans model of ALS. Our data suggest that metabolic dysfunction plays an important role in Sod1-mediated toxicity in both the yeast and worm models of ALS. Summary: In a new yeast model of ALS we have discovered for the first time that mutations in Sod1 can lead to the formation of toxic, soluble proteins that disrupt metabolic regulation.
Collapse
Affiliation(s)
- Emma L Bastow
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Amber R Peswani
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Daniel S J Tarrant
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Daniel R Pentland
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Xi Chen
- Institute of Translational Medicine, Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Alan Morgan
- Institute of Translational Medicine, Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Gemma L Staniforth
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Jennifer M Tullet
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Michelle L Rowe
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Mark J Howard
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Mick F Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Campbell W Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| |
Collapse
|
12
|
Li D, Song JZ, Shan MH, Li SP, Liu W, Li H, Zhu J, Wang Y, Lin J, Xie Z. A fluorescent tool set for yeast Atg proteins. Autophagy 2016; 11:954-60. [PMID: 25998947 DOI: 10.1080/15548627.2015.1040971] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Fluorescence microscopy of live cells is instrumental in deciphering the molecular details of autophagy. To facilitate the routine examination of yeast Atg proteins under diverse conditions, here we provide a comprehensive tool set, including (1) plasmids for the expression of GFP chimeras at endogenous levels for most Atg proteins, (2) RFP-Atg8 constructs with improved properties as a PAS marker, and (3) plasmids for the complementation of common yeast auxotrophic markers. We hope that the availability of this tool set will further accelerate yeast autophagy research.
Collapse
Key Words
- Atg, autophagy related
- C,G,R,YFP, cyan, green, red and yellow fluorescent protein
- Cvt, cytoplasm-to-vacuole targeting
- DsRed eExpress 2
- PAS, phagophore assembly site
- Vps, vacuolar protein sorting.
- autophagy
- auxotroph
- fluorescent protein
- mKO, monomeric Kusabira Orange
- pseudo-monomer
- starter kit
- yeast
Collapse
Affiliation(s)
- Dan Li
- a School of Life Sciences and Biotechnology; Shanghai Jiao Tong University ; Shanghai , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhu J, Deng S, Lu P, Bu W, Li T, Yu L, Xie Z. The Ccl1-Kin28 kinase complex regulates autophagy under nitrogen starvation. J Cell Sci 2015; 129:135-44. [PMID: 26567215 DOI: 10.1242/jcs.177071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/06/2015] [Indexed: 01/15/2023] Open
Abstract
Starvation triggers global alterations in the synthesis and turnover of proteins. Under such conditions, the recycling of essential nutrients by using autophagy is indispensable for survival. By screening known kinases in the yeast genome, we newly identified a regulator of autophagy, the Ccl1-Kin28 kinase complex (the equivalent of the mammalian cyclin-H-Cdk7 complex), which is known to play key roles in RNA-polymerase-II-mediated transcription. We show that inactivation of Ccl1 caused complete block of autophagy. Interestingly, Ccl1 itself was subject to proteasomal degradation, limiting the level of autophagy during prolonged starvation. We present further evidence that the Ccl1-Kin28 complex regulates the expression of Atg29 and Atg31, which is crucial in the assembly of the Atg1 kinase complex. The identification of this previously unknown regulatory pathway sheds new light on the complex signaling network that governs autophagy activity.
Collapse
Affiliation(s)
- Jing Zhu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Shuangsheng Deng
- School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Puzhong Lu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wenting Bu
- Division of Structure Biology & Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 138673, Singapore
| | - Tian Li
- School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Li Yu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhiping Xie
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
14
|
Storage lipid synthesis is necessary for autophagy induced by nitrogen starvation. FEBS Lett 2014; 589:269-76. [PMID: 25500271 DOI: 10.1016/j.febslet.2014.11.050] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 11/24/2022]
Abstract
Nitrogen starvation is a universal stimulus of autophagy. At present, little is known about the relationship between carbon metabolism and autophagy under nitrogen starvation. Here, we show that yeast cells continue to consume glucose and downregulate fermentation under nitrogen starvation. Storage lipid production is increased, with concurrent proliferation of lipid droplets. Furthermore, we provide evidence that triacylglycerol synthesis is crucial for autophagosome biogenesis. It is involved in a step downstream of PAS (phagophore assembly site) scaffold assembly, and upstream of the recruitment of Atg1, Atg14, Atg5 and Atg8. Finally, we demonstrate that lipid droplets transiently interact with Atg8-containing membranes. Our study reveals a novel connection linking neutral lipid metabolism, lipid droplets and autophagy.
Collapse
|